植物维生素E生物合成途径及调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种重要的脂溶性抗氧化物质,维生素E(生育酚)在人类和动物的日常膳食中起着不可或缺的作用。维生素E只能在光合自养植物中合成,人类的日常所需摄取白植物源性的食物或药物补充。近来,借助于基因组学和分子生物学技术,维生素E生物合成途径的关键酶基因已在模式生物拟南芥(Arabidopsis thaliana)和蓝藻(Synechocystis sp. PCC 6803)中得以确认并克隆,由此廓清了植物维生物E生物合成途径的结构。
     本文以高等植物拟南芥维生素E生物合成途径关键酶编码基因为基础,通过转基因方法对该途径进行遗传操作,围绕维生素E生物合成途径进行了两个方向、四个具体内容的研究。
     一个方向是以模式生物拟南芥为平台,着力于评价生物合成途径各位点关键酶基因对维生素E合成产生的影响,为提升作物维生素E总量或改变作物维生素E组成提供有效的策略,并在蔬菜作物生菜中进行初步的验证,成功获得了大幅度提升维生素E含量和组成的高营养价值的作物品系;另一方向由关键酶和代谢途径作为切入点,研究维生素E在植物生理中的作用,观察分析了维生素E与维生素C之间的关系,并且探讨了维生素E对植物逆境防御的影响。
     四个具体研究内容概述如下:
     1)拟南芥遗传背景下维生素E生物合成途径关键酶作用评价
     以模式生物拟南芥为平台,在同一遗传背景下单独转化维生素E生物合成途径五个关键酶基因(hppd、hpt、mpbq mt、tc和γ-tmt),通过分析过量表达株系维生素E的含量和组成,对各个关键酶在维生素E生物合成途径中的作用加以评价。实验发现,转化维生素E生物合成途径的关键酶基因可以上调细胞内该基因的表达水平,同时促进维生素E含量的提高和/或组成的改变。依据主要作用的不同,五个关键酶大致可以分为两类——以提高维生素E含量为主要作用(包括HPPD和HPT)和以改变维生素E组成为主要作用(包括MPBQ MT、TC和γ-TMT)。在单基因转化的基础上,实验选择并设计了双基因转化策略,分别是组合γ-tmt+hpt和γ-tmt+mpbq mt,进一步验证了单基因转化评价的结论,并发现了双基因转化对同时提高维生素E的含量和改变维生素E组成有着十分显著的作用。基于此研究,以拟南芥为平台,建立了一整套可供评价比较的体系,为日后农业、经济作物的转基因工作提供有效的策略。
     2)通过基因工程方法调控生菜维生素E生物合成途径
     基于在拟南芥中的研究,选择拟南芥维生素E生物合成途径关键酶HPT和γ-TMT的基因,分别构建单基因转化和双基因共转化载体,组成性表达于生菜(Lactuca sativa L. var. logifolia)中,并获得含有目的基因的转基因株系。结果表明,单独转化hpt基因的株系可以提高维生素E生物合成途径的产物量,单独转化γ-tmt的株系可以改变维生素E的组成,使其中α-生育酚的比例大幅提高,双基因共转化株系较之非转基因对照(NC)和单基因转化株系,大幅度的提高了叶片维生素E的含量,最高达到了64.55μg/g FW,是NC株系叶片维生素E含量的9倍多,是hpt单基因转化最高表达株系的3倍多。由此得出结论,双基因共转化株系可以兼具提高维生素E总量以及改变组成的功能。另外值得注意的是提高下游关键酶γ-TMT的表达可以正向拉动生物合成,促进反应向下游进行,若同时提升上游关键酶的表达,可以明显提高最终产物量。本实验为改良蔬菜作物营养品质提供了一个有效的方法。
     3)基因工程调控维生素E生物合成途径对植物内源维生素C含量的影响
     以网络的角度,维生素E含量的提升可能会对转基因株系中抗坏血酸(维生素C)产生影响。本实验对过量单一表达维生素E生物合成途径关键酶的转基因株系叶片加以对比分析,发现内源维生素C的总量与维生素E的含量以及α-/γ-生育酚比例有负相关性。进一步的分析揭示在转基因株系中,参与Halliwell-Asada循环的关键酶基因(如apx、dhar和mdar)出现了表达上调,但维生素C生物合成途径相关基因并没有出现显著变化。这些发现初步揭示了脂溶性抗氧化物质维生素E与水溶性抗氧化物质维生素C之间通过Halliwell-Asada循环相互联系相互影响的关系,这对植物体内氧化还原内稳态的维持及植物生理活动有着重要的影响。本研究有助于进一步了解维生素E在植物生理中的作用,亦有助于为代谢工程提供实践的指导。
     4)改变拟南芥生育酚环化酶(TC)表达水平对维生素E生物合成的影响及其在逆境中的生理功能
     为研究维生素E在植物生理过程中的作用,通过基因工程方法调控关键酶TC的表达水平,构建了过量表达tc和RNAi抑制表达tc的转基因拟南芥株系,观察测量了这两种株系及NC株系在正常生理状态和逆境生理状态(盐逆境、干旱逆境)下的多种生理指标。结果表明,过量表达tc导致叶片γ-生育酚含量的显著提高,α-生育酚几乎不受影响;RNAi抑制tc的表达导致叶片生育酚含量的缺失,在正常生理状态下,虽不会致死,但植株出现了明显的生长延缓和矮弱现象,并导致维生素C含量的代偿性提高。施以不同程度逆境刺激后,与NC株系相比较,过量表达tc的株系的抗逆能力稍有增强。但是RNAi抑制tc表达的株系则出现了对逆境刺激的显著敏感性,一方面表现在体内应对逆境刺激能力的减弱,如脯氨酸和可溶性糖类积累水平降低;一方面表现在植株受到逆境伤害的程度增强,如脂类过氧化产物大量提高、细胞离子渗漏水平增强。这些发现初步证实了作为维持氧化还原内稳态的重要物质,维生素E对植物抵抗逆境有着重要的影响,协同维生素C共同发挥作用;并且发现γ-生育酚抗氧化的能力并不低于α-生育酚。
Tocopherols, known as vitamin E, play paramount roles in the daily diet of both humans and animals as important lipid-soluble antioxidants. Tocopherols can be synthesized only in photoautotrophy organisms, including plants and other oxygenic, photosynthetic organisms, and hence human everyday needs of vitamin E are derived from plant materials or supplementary nutritional drugs. Recently, genes required for tocopherol biosynthetic pathway have been identified and cloned with the help of genomics-based approaches and molecular manipulation in the model organisms: Arabidopsis thaliana and Synechocystis sp. PCC 6803.
     Genes encoding five enzymes involved in tocopherol biosynthesis of Arabidopsis were cloned, and genetic manipulations were put forward with these genes in this study. Strategies were given rise to value the role of each individual gene in one plant species system, attempting to enhance the level of tocopherol content or convert the constitution of tocopherol. In addition, dual-gene transformation were performed in both Arabidopsis and lettuce (Lactuca sativa L. var. logifolia), succeeding in obtaining strains with elevated tocopherol contents andα-tocopherol composition. On the other hand, transgenic lines with target gene(s) overexpression or inhibition could be used to investigate tocopherol physiology in plant. The relationship of lipid-soluble antioxidant tocopherol and water-soluble antioxidant ascorbate, and function of tocopherol in plant defense were analyzed and discussed in this study.
     1) Systematic value of individual gene encoding enzyme involved in tocopherol biosynthetic pathway under Arabidopsis background
     In order to increase tocopherol content and to obtain desired tocopherol composition in plant, genetic manipulation of tocopherol biosynthetic pathway is an effective approach. In this study, five genes(HPPD, HPT, MPBQ MT, TC, andγ-TMT), encoding enzymes involved in tocopherol biosynthesis, were over-expressed in model plant Arabidopsis thaliana, either alone or in couple combinations (γ-TMT+HPT andγ-TMT+MPBQ MT), aiming to value and compare the functions of enzymes played in tocopherol biosynthetic pathway under the same genetic background. Our results suggested that, elevated expression level of biosynthetic pathway gene affected either total tocopherol content or composition, based on the position of he enzyme in tocopherol biosynthetic pathway. It can be divided into two groups because of the different functions -- the enzymes whose function are mainly on increasing total tocopherol contents (such as HPPD and HPT), and the enzymes effectively change the composition of tocopherols (such as MPBQ MT, TC andγ-TMT). In addition, dual genes transformation was predominant compared with single gene transformation strategies. Based on these studies, an appraisable system in sole plant was set up to value and compare the different roles of enzymes played in tocopherol biosynthetic pathway in term of tocopherol content and composition.
     2) Genetic engineering tocopherol biosynthetic pathway in lettuce (Lactuca sativa L. var. logifolia)
     In order to increase tocopherol content and to obtain desired tocopherol composition, genetic manipulation of tocopherol biosynthetic pathway can be employed as an effective approach. In this study, genes encoding Arabidopsis homogentisate phytyltransferase (HPT) andγ-tocopherol methyltransferase (γ-TMT) were constitutively over-expressed in lettuce(Lactuca sativa L. var. logifolia), alone or in couple combination. Our results suggested that, over-expression of hpt could increase total flux of tocopherol biosynthetic pathway, while over-expression ofγ-tmt could shift tocopherol composition in favor ofα-tocopherol. Transgenic lettuce lines expressing both hpt andγ-tmt produced significantly higher levels of tocopherol and vitamin E activity compared with non-transgenic control and transgenic lines harboring a single gene(hpt orγ-tmt). The best line produced 64.55μg/g FW total tocopherol content in leaves, which was over eight times of that in the non-transgenic control and more than twice the amount in the highest tocopherol-producing hpt single-gene transgenic line. We conclude that transgenic plants harboring both hpt andγ-tmt lead to increased tocopherol content and elevatedα-/γ-tocopherol ratio, which is more efficient than plants harboring only one of the two genes. The downstream enzymeγ-TMT plays important roles as a pulling force by improving the tocopherol composition, whereas the functioning of the upstream enzyme HPT is increased proportionally. Based on these studies, an effective approach is provided for improving the nutritional value of vegetable by increasing natural vitamin E content.
     3) Genetic engineering tocopherol biosynthetic pathway influence ascorbate level in transgenic lines
     With the point of view of network, elevated tocopherol levels might have effect on other antioxidants in transgenic lines, especially ascorbic acid (AsA). It was found that metabolic engineering of tocopherol biosynthetic pathway affected endogenous AsA pool in leaves, which had negative correlation with tocopherol content and/orα-/γ-tocopherol ratio. Further study suggested that expression levels of genes encoding enzymes of Halliwell-Asada cycle were up-regulated, such as APX, DHAR and MDAR, while AsA biosynthetic pathway genes tested did not show remarkable changes. These findings provided hints on the relationship and regulation between lipid-soluble antioxidant tocopherol and water-soluble antioxidant AsA, which will help to perfect theory in plant physiology and give practical instruction for metabolic engineering.
     4) Overexpression and inhibition of tocopherol cyclase in Arabidopsis and its function in tocopherol biosynthesis and plant stress physiology
     Tocopherol functions have been studied most extensively in animal systems, and understanding of plant tocopherol functions pales by comparison. Tocopherols play important roles as antioxidants in many physiology processes. Transgenic lines with altered tocopherol levels and types will be important tools for physiology studies. In this study, expression level of gene encoding tocopherol cyclase was up- or down-regulated by transgenic methods. Changing in phenotype and physiology of transgenic and NC lines were investigated under normal, salt and drought stress state, respectively. Up-regulated of tc expression resulted in elevatingγ-tocopherol proportion, whileα-tocopherol content did not show marked increase compared with NC. RNAi inhibition lines succeeded in down-regulating tc expression level, and led to deficiency of total tocopherols. Decreased total tocopherol content was not lethal under normal growing state because of the complementary function of increased vitamin C level, but the strains were obviously weaker than NC. Tocopherol deficiency increased sensitivity of tc::RNAi transgenic lines toward all tested stress conditions, with altered proline or soluble sugar metabolism and increased lipid peroxidation and electrolyte leakage. However, tc overexpression lines showed an improved performance when challenged with salt or drought stress. These findings primarily confirm that vitamin E has important function in maintaining the balance of redox homeostasis and improving plant stress defense potential, with co-operation of vitamin C.γ-Tocopherol has similar antioxidant function asα-tocopherol.
引文
1. Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM.2007. Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol.143:1720-1738.
    2. Ajjawi I, Shintani D.2004. Engineered plants with elevated vitamin E:a nutraceutical success story. Trends Biotechnology.22:104-107.
    3. Albermann C, Ghanegaonkar S, Lemuth K, Vallon T, Reuss M, Armbruster W, Sprenger GA.2008. Biosynthesis of the Vitamin E compound δ-tocotrienol in recombinant Escherichia coli cells. ChemBioChem.9:2524-2533.
    4. Apel K, Hirt H.2004. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol.55:373-399.
    5. Asada K.1992. Ascorbate peroxidase:a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant.85:235-241.
    6. Asada K.1999. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol.50:601-639.
    7. Azzi A, Gysin R, Kempna P, Munteanu A, Negis Y, Villacorta L, Visarius Theresa, Zingg JM.2004. Vitamin E mediates cell signaling and regulation of gene expression. Ann NYAcad Sci.1031:86-95.
    8. Ball L, Accotto G, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM.2004. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448-2462.
    9. Bergmuller E, Porfirova S, Dormann P.2003. Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol.52:1181-1190.
    10. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P.1993. Physiological signals that induce flowering. Plant Cell.5:1147-1155.
    11. Botha CEJ, Cross RHM, van Bel AJE, Peter CI.2000. Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface. Protoplasma.214:65-72.
    12. Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA, Wagner KH.2000. Vitamin E. J Sci Food Agric.80:913-938.
    13. Cahoon EB, Hall SH, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ.2003. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol.21:1082-1087.
    14. Caretto S, Paradiso A, D'Amico L, Gara LD.2002. Ascorbate and glutathione metabolism in two sunflower cell lines of differing α-tocopherol biosynthetic capability. Plant Physiol Biochem.40:509-513.
    15. Chen Z, Young TE, Ling J, Chang SC, Gallie DR.2003. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA.100:3525-3530.
    16. Chen Z, Gallie DR.2004. The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell.16:1143-1162.
    17. Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D.2003. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell.15:2343-2356.
    18. Cho EA, Lee CA, Kim YS, Baek SH, Reyes BG, Yun SJ.2005. Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Lactuca sativa L.). Mol Cells.19:16-22.
    19. Collakova E, DellaPenna D. 2001. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol.127: 1113-1124.
    20. Collakova E, DellaPenna D.2003a. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol.131:632-642.
    21. Collakova E, DellaPenna D.2003b. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in regulation of tocopherol biosynthesifcs during abiotic stress. Plant Physiol.133:930-940.
    22. Conklin PL.2001. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ.24:383-394.
    23. Coruzzi M, Zhou L.2001. Carbon and nitrogen sensing and signaling in plants:emerging "matrix effect". Curr Opin Plant Biol.4:247-253.
    24. Creelman A, Mullet E.1997. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Mol Biol.48:255-381.
    25. Dahnhardt D, Falk J, Appel J, van der Kooij TA, Schulz-Friedrich R, Krupinska K. 2002. The hydroxyphenylpyruvate dioxygenase from Synechocystis sp. PCC 6803 is not required for plastoquinone biosynthesis. FEBS Lett.523:177-181.
    26. Dat JF, Foyer CH, Scott IM.1998. Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedings. Plant Physiol.118:1455-1461.
    27. Davey MW, Montagu MV.2000. Plant L-ascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing. JSci Food Agric.80:825-860.
    28. DellaPenna D.1999. Nutritional genomics:manipulating plant micronutrients to improve human health. Science.285:375-379.
    29. DellaPenna D.2005a. A decade of progress in understanding vitamin E synthesis in plants. J. Plant Physiol.162:729-737.
    30. DellaPenna D.2005b. Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci.10:574-579.
    31. DellaPenna D and Last RL.2006. Progress in the dissection and manipulation of plant vitamin E biosynthesis. Physiol. Plant.126:356-368.
    32. DellaPenna D and Pogson BJ.2006. Vitamin synthesis in plants:tocopherols and carotenoids. Annu Rev Plant Biol.57:711-738.
    33. Eitenmiller RR.1997. Vitamin E content of fats and oils-Nutritional implications. Food Technol.51:78-81.
    34. Evans HM, Bishop KS.1922. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science.56:650-651.
    35. Evans NH, McAinsh MR, Hetherington AM, Knight MR.2005. ROS perception in Arabidopsis thaliana:the ozone-induced calcium response. Plant J.41:615-626.
    36. Falk J, Krauβ N, Dahnhardt D, Krupinska K.2002. The senescence associated gene of barley encoding 4-hydroxyphenylpyruvate dioxygenase is expressed during oxidative stress. J Plant Physiol.159:1245-1253.
    37. Falk J, Brosch M, Schafer A, Braun S, Krupinska K.2005. Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenylpyruvate dioxygenase..J Plant Physiol.162:738-742.
    38. Foyer CH, Vanacker H, Gomez LD, Harbinson J.2002. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures. Plant Physiol Biochem.40:659-668.
    39. Foyer CH, Noctor G.2005. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell.17:1866-1875.
    40. Fryer MJ.1993. Evidence for the photoprotective effects of vitamin E (α-tocopherol). Plant Cell Enviroment.15:381-392.
    41. Fukuda A, Nakamura A, Tanaka Y.1999. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta.1446:149-155.
    42. Furuya T, Yoshikawa T, Kimura T, Kaneko H.1987. Production of tocopherols by cell culture of safflower. Phytochem.26:2741-2747.
    43. Garcia I, Rodgers M, Lenne C, Rolland A, Sailland A, Matringe M.1997. Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochemistry Journal.325:761-769.
    44. Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR.1999. The Arabidopsis thaliana proton transporters, AtNhxl and Avpl, can function in cation detoxification in yeast. Proc Natl Acad Sci USA.96:1480-1485.
    45. Gibson SI.2005. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol.8:93-102.
    46. Goffman FD, Mollers C.2000. Changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (Brassica napus L.) during storage as influenced by temperature and air oxygen. JAgric Food Chem.48:1605-1609.
    47. Goffman FD and Becker HC.2002. Genetic variation of tocopherol content in a germplasm collection of Brassica naptus L. Euphytica.125:189-196.
    48. Graβes T, Grimm B, Koroleva O, Jahns P.2001. Loss of a-tocopherol in tobacco plants with decreased geranylgeranyl reductase activity does not modify photosynthesis in optimal growth conditions but increases sensitivity to high-light stress. Planta.213:620-628.
    49. Green MA, Fry SC.2005. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature.433:83-87.
    50. Grusak MA.1999. Genomics-assisted plant improvement to benefit human nutrition and health. Trends Plant Sci.4:164-166.
    51. Grusak MA, DellaPenna D.1999. Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol.50:133-161.
    52. Harris JR.1996. Ascorbic acid:biochemistry and biomedical cell biology. Subcellular Biochemistry. Vol.25. New York:Plenum Press.
    53. Havaux M, Lutz C, Grimm B.2003. Chloroplast membrane stability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol.132:300-310.
    54. Havaux M, Eymery F, Porfirova S, Rey P, Dormann P.2005. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell.17:3451-3469.
    55. Hofius D, Sonnewald U.2003. Vitamin E biosynthesis:biochemistry meets cell biology. Trends Plant Sci.8:6-8.
    56. Hofius D, Hajirezaei M, Geiger M, Tschiersch H, Melzer M, Sonnewald U.2004. RNAi-mediated tocopherol deficiency impairs photo assimilate export in transgenic potato plants. Plant Physiol.135:1256-1268.
    57. Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Garashi O, Arai H, Inoue K.1997. Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett.409:105-108.
    58. Hunter SC, Cahoon EB.2007. Enhancing vitamin E in oilseeds:unraveling tocopherol and tocotrienols biosynthesis. Lipids.42:97-108.
    59. Kanwischer M, Porfirova S, Bergmuller E, Dormann P.2005. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol. 137:713-723.
    60. Karunanandaa B, Qi Q, Hao M, Baszis S, Jensen P, Wong Y-HH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss JD, Valentin HE.2005. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng.7: 384-400.
    61. Kato N and Esaka M.1999. Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant.105:321-329.
    62. Keller P, Bouvier F, d'Harlingue A, Camara B.1998. Metabolic compartmentaion of plastid prenyllipid biosynthesis. Evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem.251:413-417.
    63. Kruk J, Strzalka K.1995. Occurrence and function of alpha-tocopherol quinone in plants. J Plant Physiol.145:405-409.
    64. Kruk J, Schmid GH, Strzalka K.2000. Interaction of α-tocopherol quinone, α-tocopherol and other prenyllipids with photosystem Ⅱ. Plant Physiol Biochem.38:271-277.
    65. Kumar R, Raclaru M, Schupeler T, Gruber J, Sadre R, Luhs W, Zarhloul KM, Friedt W, Enders D, Frentzen M, Weier D.2005. Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett.579:1357-1364.
    66. Lee K, Lee SM, Park S-R, Jung J, Moon J-K, Cheong J-J, Kim M.2007. Overexpression of Arabidopsis Homogentisate Phytyltransferase or Tocopherol Cyclase Elevates Vitamin E Content by Increasing y-tocopherol Level in Lettuce (Lactuca sativa L.). Mol Cells.24: 301-306.
    67. Leech MJ, May K, Hallard D, Verpoorte R, de Luca VZ, Christou P.1998. Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco:molecular diversity influences levels of expression and product accumulation. Plant Mol Biol.38: 765-774.
    68. Leon P, Sheen J.2003. Sugar and hormone connections. Trends Plant Sci.8:110-116.
    69. Leth T, Sondergaard H.1977. Biological activity of vitamin E compounds and natural materials by the resorption-gestation test, and chemical determination of the vitamin E activity in foods and feeds. JNutr.107:2236-2243.
    70. Liebler DC, Burr JA.1992. Oxidation of vitamin E during iron-catalyzed lipid peroxidation: evidence for electron-transfer reactions of the tocopheroxyl radical. Biochemistry.8: 8278-8284.
    71. Lloyd JC, Zakhleniuk OV.2004. Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J Exp Bot.55:1221-1230.
    72. Maeda H, DellaPenna D.2007. Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol.10:260-265.
    73. Maeda H, Sakuragi Y, Bryant DA, DellaPenna D.2005. Tocopherols protect Synechocystis sp. Strain PCC 6803 from lipid peroxidation. Plant Physiol.138:1422-1435.
    74. Maeda H, Song W, Sage TL, DellaPenna D.2006. Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell.18:2710-2732.
    75. Mateo A, Muhlenbock P, Rustechal P, Keryer E, Miginiac-Maslow M, Decottignies P. 2004. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol.136:2818-2834.
    76. Maxwell DP, Nickels R, Mclntosh L.2002. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J.29:269-279.
    77. Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science.7: 405-410.
    78. Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K and Shinozaki K.2003. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplant biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J.34:719-731.
    79. Muller M, Hernandez I, Alegre L, Munne-Bosch.2006. Enhanced α-tocopherol quinine levels and tocotrienols cycle de-epoxidation in rosemary plants exposed to water deficit during a Mediterranean winter. J Plant Physiol.163:601-606.
    80. Munne-Bosch S.2005a. Linking tocopherols with cellular signaling in plants. New Phytol. 166:363-366.
    81. Munne-Bosch S.2005b. The role of α-tocopherol in plant stress tolerance. J Plant Physiol. 162:743-748.
    82. Munne-Bosch S.2007. Alpha-tocopherol:a multifaceted molecule in plants. Vitam Horm.76: 375-392.
    83. Munne-Bosch S, Alegre L.2002. The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci.21:31-57.
    84. Munne-Bosch S, Alegre L.2003. Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae plants differing in carnosic acid contents. Plant Physiol.131:1816-1825.
    85. Munne-Bosch S, Falk J.2004. New insights into the function of tocopherols in plants. Planta.218:323-326.
    86. Munne-Bosch S, Penuelas J.2004. Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci.166:1105-1110.
    87. Munne-Bosch S, Weiler EW, Alegre L, Muller M, Duchting P, Falk J.2007. α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta.225: 1039-1049.
    88. Norris SR, Barette TR, DellaPenna D.1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytone desaturation. Plant Cell.7:2139-2149.
    89. Norris SR, Shen X, DellaPenna D.1998. Complementation of the Arabidopsis pdsl mutation with the gene encoding p-hydroxyphenylpuruvate dioxygenase. Plant Physiol.117: 1317-1323.
    90. Norris S, Lincoln K, Abad M, Scott M, Eilers R, Hartsuyker K, Kindle K, Hirshberg J, Karunanandaa B, Moshiri F, Stein JC, Valentin HE, Venkatesh TV.2004. Tocopherol biosynthesis related genes and uses thereof. International Patent application. WO 2004013312A2.
    91. Packer L, Weber SU, and Rimbach G. 2001. Molecular aspects of α-tocotrienol antioxidant action and cell signaling. JNutr.131:369S-373S.
    92. Pascoe GA, Fariss MW, Olafsdottir K, Reed DJ.1987. A role of vitamin E in protection against cell injury. Eur J Biochem.166:241-247.
    93. Pastori GM and Foyer CH.2002. Common components, networks, and pathways of cross-tolerance to stress. The central role of "Redox" and abscisic acid-mediated controls. Plant Physiol.129:460-468.
    94. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH.2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell.15:939-951.
    95. Paul MJ, Pellny TK.2003. Carbon metabolite feedback regulation of leaf photosynthesis and development. JExp Bot.54:539-547.
    96. Price J, Li T-C, Kang SG, Na JK, Jang J-C.2003. Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol.132:1424-1438.
    97. Price J, Laxmi A, St Martin SK, Jang J-C.2004. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell.16:2128-2150.
    98. Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P.2002. Isolation of an Arbidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA.99:12495-12500.
    99. Provencher LM, Miao L, Sinha N, Lucas WJ.2001. Sucrose export defectivel encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell.13:1127-1141.
    100. Qi Q, Hao M, Ng W, Slater SC, Baszis SR, Weiss JD, Valentin HE.2005. Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway. Appl Environ Microbiol.71:5678-5684.
    101. Rao MV, Paliyath G, Ormrod P, Murr DP, Watkins CB.1997. Influence of salicylic acid on H2O2-metabolizing enzymes. Plant Physiol.115:137-149.
    102.Rippert P, Scimemi C, Dubald M, Matringe M.2004. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol.134: 92-100.
    103. Rise M, Cojocaru M, Gottlieb HE, Goldschmidt EE.1989. Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol.89:1028-1030.
    104. Rohmer M.2003. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem.75:375-387.
    105. Rolland F, Moore B, Sheen J.2002. Sugar sensing and signaling in plants. Plant Cell.14: S185-S205.
    106. Sakuragi Y, Maeda H, DellaPenna D, Bryant DA.2006. α-Tocopherol plays a role in photosynthesis and macronutrient homeostasis of the Cyanobacterium Synechocystis sp. PCC 6803 that is independent.of its antioxidant function. Plant Physiol.141:508-521.
    107. Sandorf I, Hollander-Czytko H.2002. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta.216:173-149.
    108. Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D.2003. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol.132:2184-2195.
    109. Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D.2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell.16:1419-1432.
    110. Sattler SE, Mene-Saffrane L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D.2006. Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell.18:3706-3720.
    111.Savidge B,Weiss JD,Wong YHH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE.2002. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp PCC6803 and Arabidopsis. Plant Physiol.129: 321-332.
    112. Schaller F.2001. Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. J Exp Bot.52:11-23.
    113. Schledz M, Seidler A, Beyer P, Neuhaus G. 2001. A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett.499:15-20.
    114. Schneider C.2005. Chemistry and biology of vitamin E. Mol. Nutr Food Res.49:7-30.
    115.Schultz G, Soil J, Fiedler E, Schulze-Siebert D.1985. Synthesis of prenylquinones in chloroplasts. Plant Physiol.64:123-129.
    116. Sen CK, Khanna S, Roy S.2006. Tocotrienols:vitamin E beyond tocopherols. Life Sci.78: 2088-2098.
    117. Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C.1999. A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot.50:1023-1036.
    118. Serrano R, Rodriguez-Navarro A.2001. Ion homeostasis during salt stress in plants. Curr Opin Cell Biol.13:399-404.
    119. Shi H, Ishitani M, Kim C, Zhu JK.2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA.97:6896-6901.
    120. Shintani D, DellaPenna D.1998. Elevating the vitamin E content of plants through metabolic engineering. Science.282:2098-2100.
    121. Shintani D, Cheng Z, DellaPenna D.2002. The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC 6803. FEBS Lett.511:1-5.
    122. Shpilyov AV, Zinchenko VV, Shestakov SV, Grimm B, Lokstein H.2005. Inactivation of the geranylgeranyl reductase (ChlP) gene in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta.1706:195-203.
    123. Smirnoff N.1996. The function and metabolism of ascorbic acid in plants. Ann. Bot.78: 661-669.
    124. Smirnoff N.2000. Ascorbate biosynthesis and function in photoprotection. Phil Trans R Soc Lond Ser B Biol Sci.355:1455-1464.
    125. Smirnoff N, Conklin PL, Loewus FA.2001. Biosynthesis of ascorbic acid in plants:a renaissance. Annu Rev Plant Physiol Plant Mol Biol.52:437-467.
    126. Soil J, Schultz G. 1979. Comparison of geranylgeranyl and phytyl substituted methylquinols in the tocopherol synthesis of spinach chloroplasts. Biochem Biophys Res Commun.91: 715-720.
    127. Soil J, Kemmerling M, Schultz G. 1980. Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch Biochem Biophys.204:544-550.
    128. Soil J, Schultz G. Riidiger W, Benz J.1983. Hydrogenation of geranylgeraniol. Plant Physiol.71:849-854.
    129. Subramanniam S, Slater S, Karberg K, Chen R, Valentin HE, Wong Y-HH.2001. Nucleic acid sequences to proteins involved in tocopherol synthesis. International Patent application. WO 01/79472.
    130. Theriault A, Chao JT, Wang Q, Gapor A, Adeli K.1999. Tocotrienol:a review of its therapeutic potential. Clin Biochem.32:309-319.
    131.Thum KE, Shin MJ, Palenchar PM, Kouranov A, Coruzzi GM.2004. Genome-wide investigation of light and carbon signaling interactions in Arabidopsis. Genome Biol.5:R10.
    132. Tokunaga T, Miyahara K, Tabata K, Esaka M.2005. Generation and properties of ascorbic acid-overrproducing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta.220:854-863.
    133. Traber MG. 2004. Vitamin E, nuclear receptors and xenobiotic metabolism. Arch Biochem Biophys.423:6-11.
    134. Traber MG. 2005. Vitamin E regulation. Curr Opin Gastroenterol.21:223-227.
    135. Traber MG, Sies H.1996. Vitamin E in humans:demand and delivery. Annual Review Nutrition.16:321-324.
    136. Traber MG, Arai H.1999. Molecular mechanisms of vitamin E transport. Annu Rev Nutr.19: 343-355.
    137. Trebst A, Depka B, Hollander-Czytko.2002. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem Ⅱ structure and function in Chlamydomonas reinhardtii.FEBS Lett.516:156-160.
    138. Tsegaye Y, Shintani DK, DellaPenna D.2002. Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem.40:913-920.
    139. Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL.2006. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell.18:212-224.
    140. Valentin HE, Qi Q.2005. Biotechnological production and application of vitamin E:current state and prospects. Appl Microbiol Biotechnol.68:436-444.
    141. van Eenennaam A, Valentin HE, Karunanandaa B, Hao M, Aasen E, Levering C.2003a. Methyltransferase genes and uses of thereof. International Patent application. WO 0/3016482.
    142. van Eenennaam A, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL. 2003b. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell.15: 3007-3019.
    143. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dormann P, Kessler F, Brehelin C.2006. Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. JBiol Chem.281:11225-11234.
    144. Wang W, Vinocur B, Altman A.2003. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta.218:1-14.
    145.Welsch R, Medina J, Giuliano G, Beyer P, von Litig J.2003. Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta.216: 523-534.
    146. Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U.2003. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J.33:395-411.
    147. Wheeler, G.L., Jones, M.A., Smirnoff, N.1998. The biosynthetic pathway of vitamin C in higher plants. Nature.393:365-369.
    148.Zingg JM, Azzi A.2004. Non-antioxidant activities of vitamin E. Curr Med Chem.11: 1113-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700