白菜、生菜高温伤害机理及其越夏栽培技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白菜(Brassica Campestris L. ssp. Chinensis(L) Mak.)是中国南方人天天喜食的绿叶蔬菜;生菜(Lactuca sativa L.)则是近10年来各开放城市港口、涉外宾馆饭店中每天不可缺少的西餐原料,两者都是中国南方最主要的蔬菜且要求周年均衡供应。但是,白菜和生菜均属于耐寒和半耐寒性蔬菜,性喜冷凉,生长适宜温度为15—20℃,夏季高温时出现生长障碍。中国南方蔬菜生产上存在的夏淡季问题,从某种意义上说就是缺少喜凉性的叶茎根菜类蔬菜的供应。因此,如何保障白菜、生菜等蔬菜在夏淡季期间的供应,是一项高难度而又亟需解决的问题。由于目前我国还不能借助于基因工程、植物工厂或冷链系统进行快速远途调运等高科技方法来解决“伏缺”问题,所以人们都通过在夏季的反季节(抗高温)栽培措施来维持这些喜凉性蔬菜的生产与供应。例如,80年代末,我们课题组参加研究开发的全国蔬菜遮阳网覆盖堵淡栽培技术和我们研究开发成的水培生菜再生苗越夏栽培技术,都为缓解当前夏淡季期间白菜和生菜的供应,提供了一条简易有效的新途径。
     不过,总的看来,在克服蔬菜夏淡季的研究中,普遍存在着基础理论研究远远落后于生产实际的现状。因此,本试验特地选择了前人未曾研究的白菜和生菜两种喜凉性蔬菜为对象,从研究其高温逆境生理出发,将它们在晴热型夏季的露地、遮阳网覆盖、防雨棚NFT水培床上和模拟高温生态箱中进行栽培试验并分析其在高温胁迫下生理生态特性的变化,藉以探明这两种喜凉性蔬菜在高温胁迫下的热伤害症状及其生理机制,同时研究遮阳网覆盖和再生苗越夏栽培等抗高温栽培措施对缓解高温伤害的效果及生理原因,为喜凉性蔬菜的抗高温栽培技术体系在我国南方地区的确立提供科学依据。
     本试验经1989—1993年连续4个夏季的试验结果表明,两种喜凉性蔬菜的根系对高温胁迫的敏感性大于地上部,表现为根系的生长和生理功能首先受高温胁迫而产生伤害,进而地上部表现为明显的生长障碍;植株矮小,叶数和叶面积锐减,粗纤维增多,含水量降低,衰老加速,产量品质明显下降,生菜还表现为茎节伸长,丧失商品价值等。
     进一步对这些伤害症状生理机制的研究结果表明:高温胁迫使根系生长受抑,吸收水分和养分能力下降,导致地上部生长和蒸腾减弱,植株叶面温度升高,同时根尖合成细胞分裂素类物质如异戊烯基腺嘌呤(iPA)、赤霉素
Pak-choi (Brassica campestris L. ssp. chinensis (L) Mak ) is a diurnal likable leaf vegetable in southern China while letturce ( Lactuca sativa L. ) is also a necessary ingredient of western-style food for the open cities, harbors, hotels and resteraunts in the recent 10 years. Both of them are important vegetables in south of China and balanced providence are required through out the year. But they are cold-tolerant and half cold-tolerant plants , the optimal growth temperature is 15 — 20℃ , and the growth inhibition emerges under high temperature in summer. In some points, we can say off - season vegetables in summer in southern vegetable practice are short of the cool leaf, stem and root vegetables. So how to insure the supply of Pak-choi and lettuce is a difficult problem demanding prompt solution. Since we can not adopt some high technological methods such as gene egineering, "plant work", cool-chain system to solve the problem at present in China, these cool vegetables are provided by anti-high-temperature methods during the period of time. For example, at the end of 1980s, the shading-net covering techniques of vegetables that our research group took part in and our successful lettuce regenerated seedling by soilless culture in summer gave a new simple and efficient method to Pak-choi and lettuce providence during the summer.In general, the study of basic theory on overcoming the problem of vegetables in summer is far behind the practice. So Pak-choi and lettuce, the two cool vegetables which had seldom studied were selected in our experiments. Starting from the high temperature stress physiology, the two plants were cultured: with and without shading-net covering in clear summer, in NFT in greenhouse as well as in the artificial high temperature ecological champer, to ascertain heat injury of the two vegetables and its physiological mechanism. At the same time, to verify the efficency and physiological reasons to relieve heat injury of several anti-high-temperature methods such as
    shading-net covering and regenerated seedling cultivation through the summer, and it provides the scientific basis for the establishment of anti-high temperature cultivated system of cool vegetables in southern China-The experiment began in 1989 and ended in 1993, lasting 4 summers. The result indicated : the sensitivity of the roots of the two vegetables to heat injury was more obvious than that of the shoots. The growth of the root and its physiology function were disordered initially under high temperature stress. Followed by the obvious growth inhibition of the shoot: the plant dwarfed, the number and area of the leaf decreased, crude fibre increased, the content of water went down, the process of senescence accelerated, and the product quality degraded. Besides, stem elongation and the loss of commodity value were shown in lettuce.Further studies on the physiology machanism of the injury by high temperature stress proved: high temperature stress induced the growth inhibition of the root with decreased absorption capacity of water and nutrients, which led to the growth and transpiration of the shoot weakened and the leaf surface temperature went up. Moreover, the synthesis al^lty °f CTKs such as iPA, as well as GAs was severely inhibited with obvious decreasing of these plant hormones both in the root and in the shoot. But the content of ABA increased and the ratio of GAs/ABA went down; the content of polyamines, especially the content of putresine had a relative reduction. The metabolism of activated oxygen enhanced, which broke the balance of the generating and clearing system of free radical; and the amount of MDA, the product of the peroxidation of membrane lipid increased, and the integration of membrane structure damaged, bringing about the decrease of the process of cell compartmentalization, disorder of metabolism function, disintegration of chloroplast, decrease of the activity of RuBp carboxylase and the net assimilation rate.In addition, the experiments indicated; the essence of shading-net covering cultivation techniques of Pak-choi and regenerated seedling lettuce in summer is that they improved the growth condition and physiology function of ?he root, which efficiently relieve the high temperature injury of the shoot. Compared to the cultivation without covering, the yield of Pak-choi with shading-net covering increased by 122 — 435%, while the exterior commity
    quality got an obvious improvement. The relatively active root absorption and synthesis contributed to the improvement of the root condition that relieved the high temperature injury of the shoot , to the increasing content of iPA and GAs in the shoot, to the low ABA level and the improvement of biosynthesis of polyamines, and to the decreasing leaf temperature through transpiration; Moreover, it helped to retard the dissolution of chlorophyll and the destroy of chloroplast by high temperature in the shoot. The inhibition of membrane lipid peroxidation and the relative integration of memebrane structure help the synthesis of nucleic acids and proteins, the process of cell division as well as other physiological metabolism processes.Studies on the character of shading net showed; the efficency of shading net is that it reduces high luminosity of 10, 000 lux to its 2/3 — 1/3 in clear summer. The decrease of leaf temperature and the temperature of 20cm around the ground, especially the sharp decreased gound surface temperature, improved the root growth condition. The biosynthesis of iPA is vigorious in the root and the contents of iPA, GAs and the ratio of GAs/ABA increased remarkably; The metabolism of activated oxygen is low, the regenerating and clearing system of free radical were relatively balanced, which weakened the destroy of free radical to membrane, slowed the membrane lipid peroxidation and protected the integration of membrane structure. The reduction of high luminosity limited photo-inhibitant photosynthesis, which led to ligh activity of RuBp carbocylase and net assimilation rate; The mechanism that the regenerated lettuce seedling retards heat injury lied in the anter strong root with acitve absorption and synthesis capacity, which provided the water needed by the shoot for transpiration as well as plenty of physiological active substances such as iPA. Stroma resistence declined, transpiration enhanced, the leaf temperature went down, the high activity of those enzymes for the clearing system of free radical in the shoot such as SOD and POD, relieved the membrane damage by free radical from the activated oxygen metabolism, slowed membrane lipid peroxidation and kept relatively intact membrane structure. On the other side, the increase of ABA level and decrease of GAs enhanced the stress-resistance.The physiological basis of the formation of regenerated seedling of lettuce were also studied. The result showed the formation of regenerated seedling is
    related to the variety heredity. The formation ability of butter lettuce is stronger than that of loose leaf lettuce. The formation of regenerated seedling was also related to the substances in stubble root, especially the content of proteins. It has been found that the endogenous plant hormone level and its changes had an important effect on the formation of regenerated seedlings. Those hormones such as iPA, GAs, which prompt the division and growth of cells, had positive effects on the formation. While the other hormones which inhibit the cell growth obstracted the formation process. The content of the two kinds of plant hormones and their consistency determined the regenerating ability of the variety.Studies on the two summer cultivation techniques suggested : the key of the simple, efficient shading net covering of cool vegetable off-season culture is to select a correspondent net type with appropriate colour and shading percentage according to the climate, the plant growth condition and the aim of covering. For example, it will get a good effect for selecting the black net with 70% shading percentage when maxium air temperature surpases 35°C in clear summer. The shading net must be taken off from Pak-choi 5 days before harvest, otherwise, the negetive effects such as the content of vitamin C and proteins decrease and nitrate accumulation appeared. The key points of lettuce regenerated seedling cultivation techniques in summer; the first, select the varieties such as shanghai Baituo, which had strong regenerating ability and hard to earlier bolting, in order to make use of the huge anter root; the second, the methods such as remaining 2 pieces of leaves on anter root, selecting 1 or 2 strong buds and improving N-nutrient a week before harvest were also applied to obtain better quality products.
引文
1.王洪春,1981,植物抗性生理,植物生理学通讯,(6):76~81。
    2.刘鸿先等,1981,植物抗寒性与酶系统多态性的关系,植物生理学通讯,(6):6~11。
    3.刘鸿先等,1981,零上低温对不同抗冷力亚热带植物过氧化物酶与酯酶同工酶的影响,植物生理学报,7(4):337~343。
    4.刘鸿先等,1985,低温对不同耐寒力黄瓜(cucumis sativus)幼苗子叶各细胞器中超氧化物歧化酶(SOD)的影响,植物生理学报,16(1):37~42。
    5.曾韶西等,1990,低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响,植物生理学报,16(1):37~42.
    6.简令成等,1983,冬小麦幼叶细胞内APT酶活性的超微结构定位及其在抗寒锻炼和冻害中的变化,植物学集刊,第一集:183~192。
    7.简令成等,1986,几种植物细胞表面糖蛋白的电镜细胞化学及其与植物抗逆性的关系,实验生物学报,19(31):282~291。
    8.简令成等,1987,植物冻害和抗冻性的细胞生物学研究,植物生理生化进展,第5期;1~8,科学出版社。
    9. Levitt. J. 1980, Responses of plant to enviromental stress Vol. 1. Academic press, New York.
    10. Lycons, J. M. 1973, Chilling injury in paints, Ann. Rev. Plant Physiol, 24: 445~486.
    11. Lycons, J. M., et al., 1979, In J. M. Lycons et al., eds. "Low temperature stress in crop plant". Academic press, New York.
    12. Patta, J. P. et al. , 1978, Cell membrane alterations following a slow freeze thaw cycle: Ion leakage injury and recovery. In: plant cold hardiness and freezing stress. Academic press. New York.
    13. Hall, A. E. 1990, Plant adaptation to heat and dry stress relation to horticultural breeding 23d I. H. IC. Plenary Lecture: 44~47.
    14.李扬汉主编,植物学,1978,P279,上海科学技术出版社。
    15. Belehradek, J. (1957) Physiological aspects of heat and cold. Ann. Rev. Physiol 19: 59~82.
    16. Berry J. A. et al. , 1975, Mechanitic studies of thermal damage to leaves. Carnegie Inst washington yearb, 74: 751.
    17. Bjokman D. and Berry. J. A. 1980. Photosynthetic response and adaptation to temperature in high plants. Ann. Rev. Physiol. 31: 491~543.
    18. Mahan. J. R. J. J. Burke et al. 1987, The " thermal kinetic window" as an indicator of optimum plant temperature. Plant Physiol. 83. 5—87.
    19. Burke JJ. JK. Mahan et al. , 1988, Crop -specific thermal kinetic windows in ralation to wheat and cotton biomass production. Agron. J. 80: 553— 556.
    20. Alexandrov. V. Y. 1977, Cells. molecules and tempreture. conformational flexibility of macromolecules and ecological adaptation. In " ecological studies". Berlin: springer—verlag, Vol. 21.
    21. Armond PA et al. , 1978, Photosynthetic acclimation to temperature in the desert shrub Larrea divaricata II. Ligh-harvesting efficiency and electron transport, Plant Physiol. 61: 411—415.
    22. Berry J. O. Bjorkman 1980, Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 31: 491 — 543.
    23. Bhullar SS. CF Jenner 1986: effect of temperature on the conversion of sucrose to starch in the developing wheat endosperm. Aust J. Plant Physiol 13: 605—615.
    24. Brown D. KA kershaw 1986, Seasonal changes in the kinetic parameters of a photosynthetic fructose —1, 6—bisphosphatase isolated from peltigera Tufescens . Plant Physiol 82; 457—461.
    25. Went. FW. 1953, The effect of temperature on plant growth. Ann. Rev. Plant Physiol. 4: 347—362.
    26. Alexandrov. VY 1967, A study of the change in resistance of plant cell to the action of various agents in the light of cytoecological considerations. In: Troshin, The cell and Environmental Temperature, pergamon press New York PP142—151.
    27. Santarius K A 1974, Seasonal changes in paint membrance stability as eviclenced by the heat sensitivity of chloroplast membrance reactions pflazenphysiol. Bd 73s : 448—451.
    28. Dominy PJ. PG Thomas, et al. , 1986. The effect of lipid saturation on membrane struture and function of isolated pea thylakoids. Biochem Soc Trans 14: 56.
    29. Fork DC, et al. , 1985. The detection of early stress events in heat disruption of thylakoid membranes by delayed light emission. Physiol 23, 511~521.
    30. Gounaris K. wp Williams et al. , 1983, Heat stress induces non-bilayer lipid structures in chloroplast membranes. Biochem Soc Trans 11: 388~389.
    31. Turner, N. C. and Kramer P. J. ed. 1980, Adaptation of plants to water and high temperature stress, New york Chichester Brishabane Toroto: 173~189.
    32. Bernstam, V. A. et al., 1973. Effect of superoptimal temperature on the myxomyeete physarum I. protoplsmic steaming respiration and leakage of protoplasmic substances Arch. Mikrobid 92: 251~261.
    33. Bernstam V. A. et al. , 1973, The thermostibility of some indices of vitality of physaum polycephalum. J. Sitologiya: 15: 1091~1096.
    34.北京农业大学主编,1980,植物生理学,农业出版社,P396~400。
    35.邢成,1988,热休克蛋白的产生分布和功能,生物化学与生物物理进展,14:406~410。
    36.邱德有等,1994,植物热激蛋白,植物生理学通讯,VOL30(2):139~142。
    37. Burke, J. J. et al. , 1985. Accumulation of heat shock proteins in fieldgrown cotton Plant Physiol. 78: 394~497.
    38. Cooper, P. et al. , 1984. Tissue specffictiy of the heat shock response in maize, Plant Physiol 75: 431~436.
    39. Cooper, P. et al. , 1987. Intercellular localization of heat shock proteins in Maize, Plant Physiol 84: 1197~1202.
    40. Strittmatter G. chua NH. 1987. Artificial combination of two cisregulatory elements generates, a unique pattern of expression in transgenic palnts, Proc. Natl. Acad. Sci. USA. 84: 8986.
    41. Wing D. et al. , 1989. Conserved function in. Nicotiana tabacum of a single Drosophila Hsp 70 promoter heat shock element when fused to a minimal T-DNA promoter Mol. Gen. Gent. 219: 9.
    42. Martineau, J. R. et al., 1979, Temperature tolerance in soybeans Ⅰ. Evaluation of a technique for assessing cellular membrane thermostability. Crop. Science 19: 75~78.
    43. Martineau, J. R. et al., 1979. Temperature tolerance in soybeans Ⅱ. Evaluation of segregating populations for membrane thermostability. Crop. Science 19: 79—81.
    44. Navarat et al. , 1990, Photosynthetic responses to heat stress in common bean genotypes differing in heat acclimation potential, Crop. Science 30: 100—104.
    45. Geeta K. N. et al. , 1992. Electrolyte leakage and evolution of ethylene and ethane from pepper leaf disks following temperature stress and fatty acid infiltration. J. Amer Soc Hort. Sci. 117 (5): 846—851.
    46. Santarius K. A. 1975. Sites of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophosphorylation by heating J. Therm. Biol. 1: 101—107.
    47. Santarius K. A. 1980. Membrane lipids in heat injury of spinach chloroplasts , Physiol Plant 49: 1~6.
    48. Smillie RM. et al. , 1978, Effect of growth temperature on chloroplast structure and activity in barley, Plant Physiol. 62: 191 — 196.
    49. SundbyC. B. Andersson 1985. Temperature-induced reversible migration along the thylakoid membrance of photosystem 2 regulation its association with LHC-II, FEBS Lett 191, 24—27.
    50. Raison J. K . et al. , 1980. In adaptation of plants to water and high temperature stress. (N. C. Jurner et al. , ed) John wiley and sons. New York Chichester Brishbane Toroto P. 252—261.
    51. Gounaris K. APR Brain (1983): Structural and functional changes associated with heat-induced phase separations of non-bilayer lipid in chloroplast thylakoid. membranes, FEBS lett 153. 47—52.
    52. Gounaris. K. ,WP. Williams and PJ Guinn 1983, heat stress induces non- bilayer lipid sturctures in chlorophast membrances, Biochem Sic. Trans. 11: 388—389.
    53. Kleinschmidt et al. , 1970. Effect of growth temperature on the lipid composition of cyanidium caldorium II . Glysolipid and phopholipid compositions, Plant Physiol 46: 290—293.
    54. Pearcy R. W. 1978. Effect of growth temperature of the leaf lipid in Atriplen lentiformids wats, Plant Physiol 61: 484—486.
    55. Fridovich I, 1975. Superoxide dismutases. Ann. Rew. Biochem. 44: 147-159. 56. Fridovich I, 1976. Oxygen radicals hydrogen peroxide and oxygen toxicity in " Free Radical in Biology" (W. A. pryored) Acadamic Press. New York. Chapter 6.
    57. Fridovich I, 1978: The biology of oxygen radicals. The superoxide radical is an agent of oxygen tonicity; Superoxide dismutase provide an important defence, Science 201: 875—880.
    58. Weis E 1981: reversible heat-inactivation of the calvin cycle. A possible mechanism of the temperature regulation of photosynthesis, Planta. 151: 33—39.
    59. Helly NP. Aj. Keys (1983): Temperature dependance of the enzymic carboxylation and oxygenation of ribulose .1. 5-bisphosphate in relation to effects of temperature on photosynthesis, Plant Physiol 72: 945 —948.
    60. Weidoer M. E Fehling 1985: Heat modification of ribulose -1. 5- bisphosphate carboxylase / oxygenase by temperature pretreatment of wheat (triticum aestivum) seedlings , Planta 166: 117-127.
    61. Kobza J. GE Edwards 1987: Influences of leaf temperature on photosynt etic carbon metabolism in wheat, Plant Physiol. 83; 69—74.
    62. Brandts. J. F. 1967: Thermobiology (A. H. Rose ed) P25—72.
    63. Petinov. NS et al. , 1957: Protective reactions in heat resistant plants induced by high temperature. Fiziol Rast. 4: 221—228.
    64. 赵可夫等,1990, 作物抗性重理, 农业出版社。
    65. Bjorkman O, M. Badger 1977. Thermal stability of photosynthetic enzymes in heat and cool-adapted C_4 species , Carnegie Inst Washington Yearb. 76: 346—354.
    66. Chen, H. H. et al. , 1982. Adaptability of crop .plant to high temperature stress. Crop. Science. 22: 719—722.
    67. Yaswood, C. E. 1981. Acquired tolerance of leaf to heat, Science. 134: 941.
    68. Suss, K. H. IT yordanov 1986: Biosynthetic cause of in vivo acquired thermotolerance of photosynthetic light reaction and metabolic responses of chloroplasts to heat stress , Plant Physiol.
    69. Pearcy R. W. 1977: Effects of growth temperature on the thermal stability of the photosynthetic apparatus of Atrip lex Lentiformis (Torr. ) Wats, Plant Physiol. 59: 921—928.
    70. Lester. GE. et al. , 1985. leaf cell membrane thermostability of cucumis mela, 3. Amer. Soc. Hort. Sci. 110 (4): 506~509.
    71. Lester GE et al. , 1986. Physiology of melon leaf membrane thermostability during heat conditioning. J. Amer. Soc. Hort. Sci. 11 (4): 561~564.
    72. Andtrson J et al., 1990. High temperature acclimation in peper leaves HortSci. 25 (10): 1272~1275.
    73. Ingrain. D. L. et al. , 1974. Lethal high temperature for root of three citrus root-stocks, J. Amer. Soc. Hort. Sci. 109: 189~192.
    74.杨尚筠等,1988,热休克蛋白的分子生物学,生物化学和生物物理进展,15(1):11~14。
    75. Martin M. S. et al., 1988. Alteration of gene expression during enviromental stress in plants. Ann. Rev. Plant. Physiol. 37: 363~376.
    76. Lindquist. S. 1981. Regulation of protein synthesis during heat shock. Nature 294: 311~314.
    77. Key. , J. L. et al. , 1981. Heat shock proteins of higher plants. Proc. Natl. Acad. Sci. USA 78 (6): 3526~3531.
    78. Xiao, C. M. et al. , 1985. High temperature induced thermotolerance in pollen Tubes of Tradescantia and heat-shock proteins. Plant Physiol. 78: 887~890.
    79. Bauer, H. senser, M. 1979. Photosynthesis of ivy leaves (hedera helix. L.) after heat stress. Ⅱ. activity of ribulose bisphosphate carboxylase. Hill reaction and chloroplast ultrastructure. Z Pflanzen Physiol. 91: 359~369.
    80.山东农学院、西北农学院等编,植物生理学实验指导,1980,山东科学技术出版社,115~117。
    81.北京农业大学园艺系编,1981,全国高等农业院校果蔬贮存加工学实验指导,农业出版社,12~15。
    82.西北农业大学编,1986,基础生物化学实验指导,陕西科学技术出版社,16~18.
    83.华东师范大学生物系植物生理教研组编,1981,植物生理学实验指导,人民教育出版社,156~158。
    84.中国科学院南京土壤研究所编,土壤理化分析。
    85.华东师范大学生物系植物生理教研组编,1981,植物生理学实验指导,人民教育出版社,95~97。
    86.徐增事、方志伟等,1990。小麦二磷酸核酮糖羧化酶和叶片导度与光合速率的关系,南京农业大学学报,13(4):5~11。
    87. Arnon DI. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1~15.
    88. Heath R. L. and L. packer 1968. Photoperoxidation in isolated chloroplasts. Ⅰ. kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189~198.
    89.谭常等,1985,植物细胞(质膜)差别透性的测定,上海植物生理学会编,植物生理学实验手册,上海科技出版社,67~70.
    90.罗广华等,1984,大豆和花生种子超氧物歧化酶的同工酶研究,植物生理学报,10:175~179。
    91.华东师范大学生物系,植物生理教研组主编,植物生理学实验指导,人民教育出版社,224~229。
    92. Dhindsa, R. S. et al. , 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 23 (126): 93~100.
    93.华东师范大学生物系植物生理教研组主编,1981,植物生理学实验指导,人民教育出版社,143~144。
    94.山东农学院西北农学院主编,1980,植物生理学实验指导,山东科学技术出版社,109~112。
    95. Flores. H. F. and A. W Galston, 1982, Analysis of polyamines in higher palnt by Hight performance liquid chromatography. Plant Physiol 69: 701~706.
    96.吴松如等,1988,酶联免疫法(ELISA)测定内源植物激素,植物生理学通讯,(5):53~57。
    97. Secor J. et al. , 1983. Metabolic changes in senescing soybean leaves of similar plant ontogeny. Crop Sci. 18: 769~772.
    98. Wittenbach. V. A. et al. , 1982. Vacuolar localization of proteases and degradation of chloroplasts in mesephyll protoplasts from senescing primary wheat leaves. Plant Physiol. 69: 98~102.
    99. Coher A. S. et al. , 1979. Effect of polyamines on chlorophyll and protein content, photochemical activity and chloroplast ultrastructure of barley leaf disc during senescence. Plant Physiol. 64: 717~720.
    100. Drolet, G. et al. , 1986. Radical scavenging properties of polyamines. Phytochemistry. 25: 367~370.
    101.蒋明义等,1991,渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响,植物生理学报,17(1):80~84。
    102.王宝山、赵恩齐,1987,干旱对小麦幼苗膜脂过氧化及保护酶的影响,山东师范大学学报,(自然科学版),2:29~39。
    103. Phindsa R. S Matowe W. 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32: 79~91.
    104. Mali P. C. et al. , 1977. Effect of drought on proteins and isoenzymes in rice during germination. Phytochemistry 16: 643~646.
    105.许旭旦,1988,ABA等内源激素与植物抗旱性,植物生理学通讯,(1):1~6。
    106. Li H. et al. , 1982. Plant cold hardiness and freezing stress. Vol. 2.
    107.李式军,1985,日本蔬菜工厂化生产,世界农业,(6):46。
    108.小岛道也,伊东正,1983,食物学,日本放送出版协会,107。
    109.李式军等,1992,水培再生生菜抗高温栽培技术及其生理特性的研究,中国蔬菜,无土栽培专辑,21~24。
    110. Harry W. J. et al. , 1982. Effect of root zone heating on growth of poinsettia, J. Amer. Soc. Hort. Sci. 107 (3): 525~530.
    111. Dewayne LI et al. , 1986. Response of container-grown Banana, Ixora, Citrus, and Dracaena to elevated root temperature. Hortscience. 21 (2): 254~255.
    112.廖廑(鹿各) 曹大铭,1988,再生稻茎杆贮藏物质与再生力的细胞化学研究,南京农业大学学报,11(4):17~19。
    113.廖廑(鹿各) 曹大铭,1991,再生稻茎杆贮藏淀粉与再生苗生长的细胞化学研究,南京农业大学学报 14(2)12~15.
    114.苏祖芳等,1986,再生稻的生育特性及高产栽培技术研究,江苏农学院学报,11(1):15~19。
    115.陈周前等,N.Y.K.,1979,肥料对再生稻影响的研究,安徽农业科技,(3):32~39。
    116.姚厚军等,1988,再生稻可行性及潜伏芽生长规律的研究,安徽农业科学,(2):40~45。
    117.黄友钦等,1988,汕优63再生芽幼穗分化发育规律,杂交水稻,(4):10 ~13。
    118.陈孝之,1986,再生稻新品种“40—1”试验示范初报,湖北农业科学,(12):4~7。
    119.张明鹏,1980,中国农业科学,(3):25~30。
    120.华东师范大学生物系植物生理教研组编,《植物生理学实验指导》,人民教育出版社,30~31。
    121.曹寿椿等,1990,不结球白菜品质鉴定及性状相关的初步研究,Ⅰ.风味品质鉴定及与营养成分含量的相关,中国园艺学会成立六十周上纪念暨第六届年会论文集,Ⅱ.蔬菜,39~42。
    122. Jairo A. P. and S. N. park. 1989. Root respiration for agave deserti: Influence of temperature water status and root age on daily patterns. J. of Expt. Bot. (40): 181~186.
    123. Foster. W. J. 1986. Photosynthesis respiration and carbohydrate partitioning in Ilex crenata Rotundifotia in response to supraoptimal root-zone temperatures. MS thesis. Univ. of Florida, Gainesville.
    124. John M. R and L I Dewayne: 1990, Carbon-labeled photosynthate partitioning in Ilex crenata Rotundifolia at supraoptimal root-zone temperatures. J. Amer. Soc. Hort. Sci. 115 (6): 1008~1013.
    125. Skene, K G M and G H Kerridge, 1967, Effect of root temperature on cytokinin activity in root exudate of vitis vinifera. L. Plant Physiol. 42: 1131~1139.
    126. Barlow, F. W. R. et al., 1976. Root temperature and soil water potential effecs on growth and soluble carbohydrate concentration of corn seedlings. Crop. Sci. 16: 59~62.
    127. Barta, A. L. 1978. Effect of root temperature on dry matter distribution. Carbohydrate accumulation and acetylene reduction activity in alfalfa and birdsfoot trefoil. Crop. Sci. 18: 640~647.
    128. Brown. R. H. et al. , 1970. Soil moisture and temperature effects on growth and soluble carbohydrates of orchard grass (Dactylis glomerata) Crop. Sci. 10: 213~216.
    129. Fretz TA. 1971. Influence of physical conditions on summer temperature in nursery containers. Hortscience. 6: 400~401.
    130. Guinn. G. and R. F. Hunter. 1968. Root temperature and carbohydrate status of yong cotton plants. Crop. Sci. 8: 67~70.
    131. Gur. A. Y. et al. , 1976. The influence of root temperature on apple trees: Ⅱ. clonal differences in susceptibility to damage caused by supraoptimal root temperature J. Hort Sci. 51: 195~202.
    132. Ingram. D. L. 1985. Modeling high temperature and exposure time interaction on pittosp orum tobira thrub, root cell membrane thermostability. J. Amer. Soc. Hort. Sci. 110: 470~473.
    133. Turner, D. W. and E. Lahav. 1983. The growth of banana plants in relation to temperature Austral. J. plant, physiol. 10: 43~53.
    134.高丽红、李式军,1994,生菜再生苗耐高温生理基础,南京农业大学学报,17(2):23~27。
    135.高丽红、李式军等,1993,小白菜高温生理障碍及遮阳网覆盖效应的研究,江苏省植物生理学会1993年学术年会论文集。
    136.李式军,1989,省力的浮面覆盖技术,长江蔬菜,6:40。
    137.李式军、张真和,1991,高效低成本的遮阳网覆盖栽培技术—缓解当前夏淡季蔬菜供应的有效途径,《全国菜蓝子工程科技交流会论文集》,中国科技出版社,P588。
    138. Sitton, D. C. Itai et al. , 1967, Planta, 73: 296.
    139. Itai, C. Benzioni A., 1974. Regulation of palnt response to high temperature treatments. In: Mechanisms of regulation of palnt growth Roy. Soc. New. Zealand 12: 477~482.
    140. Itai C. and Y. Vaadia, 1965. Physiol Plant. 18: 941.
    141. Shah, C. B. and R. S Loomis, 1965, Physiol Palnt 18: 240.
    142. Rameshwar A 1971, High temperature injury in higher plants, Academic press New york. 255~274.
    143. Livne A. et al. , 1965. Physiol Plant. 18: 658.
    144. Luke H. H. et al., 1963. Nature, 198: 710.
    145. Clark, M. F. et al., 1964. Biochim. Biophys. Acta. 91: 281.
    146. Srivastava, B. I. S. et al., 1965. Plant Physiol. 40: 62.
    147. Leopold, A. C. 1982. Hormonal regulation systems in plant. Science: (S. M. Sircar Mencrial Volume) 43~52.
    148. Marschner H. 1983. Effect of mineral nutrition on phytohormone balances in plants. Commonwealth Agricultural Bureax. 354~359.
    149. Chen HH. Li Ph. In Li. Ph. Sakai A (ed) 1982, Plant cold hardiness and Freezing stress, Academic press. 5.
    150. Davies, WI, et al. , 1986, Plant growth substances and the regulation of growth under drought, Aust. J. Plant Physiol. 13: 105~125.
    151. Muns. R. Termat. A. 1986. Whole plant responses to salinity Aust. J. Plant. Physiol. 13: 140~160.
    152.汪良驹,盐渍下无花果叶片中ABA和Proline积累机理初探,南京农业大学1988年硕士论文。
    153. Irving, R. M. et al., 1968, Plant Physiol 43: 91.
    154. Johnson—Flanagan, A. M. et al. , 1987. Plant cold hardiness pages. Alan. R. Liss. Inc. 29.
    155. Nordin K. et al. , 1990, Plant Mol. Biol. 16: 1061~1071.
    156.毛才良,盐逆境下大麦体内Na~+、K~+分配及外源ABA盐锻炼的效应,南京农业大学1989年硕士论文。
    157. Smith TA. 1985. Ann Rev. Plant Physiol. 36: 117.
    158. Slocum RC. et al. , 1984. Archivers of Biochem and Biophys. 235: 283.
    159. Wang C. Y. et al. , 1985. Phytochemistry, 24: 2185.
    160. Young N. D. et al., 1983, Plant Physiol, 71: 767.
    161. Wang C. Y. et al. , 1987. Physiol Plantarum, 69: 253.
    162.韩锦锋等,1992,多胺对烟草抗渍性的生理效应,植物生理学通讯,28(4):271~272。
    163.沈惠娟等,1993,多胺与胁迫,江苏省植物生理学会1993年学术报告论文摘要汇编,PP56。
    164.林定波等,1993,内外源多胺与柑桔的抗寒性,江苏省植物生理学会1993年学术报告论文摘要汇编,P60。
    165.黄维玉等,1990,多胺对小麦离体叶片衰老的调节,植物学报,32(2):125~132。
    166.余叔文等,1980,二氧化硫对植物的伤害机理的研究,科学通报,(24):1145~1147。
    167. Sakaki T. et al. , 1983, Breakdown of photosynthetic pigments and lipid in spinach leaves with ozone fumigation: role of active oxygens. Physiol Plant 59: 28~34.
    168. Ohindsa, R. S. et al., 1981. Drought tolerance in two mosses: Correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32: 79~91.
    169. Kalir, A. Poijakoff-Mayber A (1981) Changes in activity of malate dahydrogenase catalase, peroxidase and superoxide dismutase in leaves of halimione protulasides L. Aellen exposed to high-sodium chloride concentration Ann Bot. 47: 75~85.
    170.谭常等,1981,环境科学学报,1(3):197~205。
    171. Lee, E. H. Bennett, J. H. (1982). Superoxide dismutase: An enzymic funciton for erythrocuprein (Hemocuprein). J. Bilo. Chem. 224: 6049~6055.
    172. Tanaka, K. Sugahara K (1980). Role of superoxide dismutase in defence against SO_2 toxicity and increase in superoxide dismutase activity with SO_2 fumigation Plant Cell Physiol 21: 601~611.
    173.武宝轩、格林·托德,1985,小麦幼苗中超氧物歧化酶活性与幼苗脱水忍耐力相关性的研究,植物学报,27:152~160。
    174.蒋明义等,1991,渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响,植物生理学报,19(1):80~84。
    175.季成等,1989,凤眼莲超氧物歧化酶活性与抗寒性的关系,植物生理学报,15(2):133~137。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700