不同品种蔬菜对镉的吸收及根系形态特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题已经成为当今世界最受公众关注的问题之一,而土壤重金属污染是全球面临的重大环境问题之一。土壤重金属因其特有的生物毒性和易积累性,对生态系统和人类健康构成了严重的威胁,其中镉更易被作物吸收并通过食物链富集,进而威胁食品安全并影响人类健康。目前应对土壤重金属污染的策略主要包括物理、化学和生物的方法,其中植物修复的方法具有更多的优点,但这种方法对功能植物筛选的依赖性很强。植物吸收和累积重金属存在显著的植物种间和种内差异,从而为功能物种的筛选提供了可能。本研究采用盆栽实验的方法,利用方差分析和聚类分析比较了71种叶菜类蔬菜对土壤镉的吸收积累差异性,利用靶标危害系数法评价了镉通过食物链积累对人类健康产生的生态风险,以及利用镉污染土壤上蔬菜根系形态特征进行产地环境安全性评价,得出主要结论如下:
     1.镉污染土壤(1.6mg kg-1)上空心菜(Ipomoea aquatica Forsk.)、油麦菜(Lactuca sativa L.)和生菜(Lactuca sativa L.var.capitata L.)在营养生长期其地上部隔含量变化规律是升高(8叶期)——平衡(12叶期)——升高(16叶期)——平衡(20叶期),最高浓度出现在营养生长期后期(本试验中为16叶期)。
     2.同一科属不同品种以及同一品种不同基因型蔬菜地上部生物量对镉的反应均不同,按差异情况可以将其分成高敏感、敏感、高耐受、耐受和其他等5类。
     3.同一科属不同品种以及同一品种不同基因型蔬菜对Cd的吸收能力也有较大差异,71种叶菜类蔬菜按地上部(烘干样)Cd含量根据聚类结果可分为低、中、高、较高、最高等五个级别,在土壤Cd为2.12mg kg-1时各级别蔬菜地上部Cd含量范围:低0.45-1.16mg kg-1、中1.27-2.29mg kg-1、高2.36-2.66mg kg-1、较高1.49-4.11mg kg-1和最高4.69-5.04mg kg-1。71种蔬菜地上部对Cd的生物富集系数可分为低、中、高三大类,结果还表明不同浓度Cd对同一种蔬菜的转运系数能产生显著影响,在土壤Cd为0.31、1.20和2.12mg kg-1时蔬菜转运系数的变化有依次递减、依次递增、先增后减、先减后增和无影响等5种类型,具体情况又因不同蔬菜品种而异。
     4.本实验中叶菜类蔬菜对低Cd污染土壤的植物修复潜力不大,71种叶菜类蔬菜茎叶中最高Cd含量仅为5.04 mg kg-1,最高Cd累积量仅为7.81μg pot-1,土壤中Cd的最高净化率为0.74%(土壤Cd为2.12mg kg-1时)。
     5.在土壤Cd含量为2.12mg kg-1时,叶菜类蔬菜地上部镉平均含量依次为油麦菜>生菜>菜薹(Brassica campestris L. ssp.chinensis var.utilis Tsen et Lee)>莴苣(Lactvca saiva L.lettuce)>空心菜>芹菜(Apium graveolens L.celery)>小白菜(Brassica campestris L. var. communis Tsen et Lee)>大白菜(Brassica campestris L. ssp. Pekinensis (Lour.) Olsson)>芥菜(Brassica juncea)>香菜(Herba Coriandri Sativi)>苦苣(Cichorium endiviaL.common)>香葱(Allium porrum L.leek)>甘蓝(Brassicaoleracea var.capitata f.rubra)>木耳菜(Gynura cusimbua (D. Don) S. Moore)>茼蒿(Chrysanthemum soronarium L.garland chrysanthemum)>苋菜(Amaranthus mangostanus L.edible amaranth)>韭菜(A. tuberosum Rott, ex Spr. Chinese chive)。
     蔬菜对土壤Cd吸收能力按科属分类结果表明,莴苣属蔬菜对Cd的吸收能力最强,甘薯属、云姜属、芹属、菊苣属为中等吸收能力,而茼蒿属、葱属、落葵薯、苋属对Cd吸收能力最低。
     6.不同蔬菜对人体产生的健康风险因品种而异,试验中叶菜类蔬菜对城区居民的风险性高于郊区居民。土壤Cd含量≤2.12mg kg-1时,油麦菜、生菜、莴苣、芹菜、香菜和空心菜表现出高的风险性,甘蓝、茼蒿、韭菜、木耳菜和苋菜表现最为安全。
     7.镉对不同蔬菜总根长、根总表面积、根总体积、根平均直径和根尖数等形态指标能产生显著影响,有刺激作用也有抑制作用,影响程度因品种和土壤Cd含量不同而异,利用产地环境安全性辅助决策系统对产地环境安全性进行评估具有一定的可行性,但仍需在原始数据积累和限制条件等方面进一步完善。
     上述研究结果对中轻度污染土壤初级农产品安全生产、产地环境重金属污染评价、植物修复等都具有一定的指导意义。
Environmental issue has become one of the greatest concerns in this world today. Moreover, heavy metal contamination in soil is one of the most serious global environment problems. As their unique biological toxicity and easy accumulation, heavy metals pose a serious threat to ecosystem and human health, cadmium is more easily to be absorbed by crops and enriched by food chain, and then threaten food security and affect human health. There are two strategies to solve heavy metal pollution problems. One is remediation and the other is selection and breeding of heavy metal pollution-safe cultivars. As plants uptake and accumulate heavy metals present significant differences among and within species, it provides the possibility of species selection. In this study a pot experiment was used to study the influence of three degrees of Cd to 71 usual vegetables'growth, and differences of absorption and accumulation of cadmium and vegetable root morphology characters. Statistical analysis was carried out by Anova and Cluster analysis. Meanwhile, Target Hazard Quotient (THQ) was used to evaluate the health risks of Cd in these vegetables, and Environmental Security Decision Assistant System was build to evaluate field Environmental security. The pot experiment results show that:
     1. Cd concentration in the shoots of Ipomoea aquatica(Ipomoea aquatica Forsk.)、Leaf-used lettuce(Lactuca sativa L.) and Romaine (Lactuca sativa L.var.capitata L.) changes during their vegetative growth generally followed the order:increased (8 leaves stage)——stabilized (12 leaves stage)——increased (16 leaves stage)——stabilized (20 leaves stage),the highest concentration appears in the late vegetative stage (16 leaves stage in this study), no obvious injured symptom was observed.
     2. Effects of Cd on the vegetable biomass showed significant differences within and among species,differences in the situation can be classified into highly sensitive, sensitive, high tolerant, tolerant, and the other.
     3. It could be concluded that different vegetables had different accumulation abilities for Cd. According to the concentration of Cd in the shoots, these 71 leafy vegetables can be classified into low, medium, high, higher and highest clusters.Under 2.12 mg kg-1Cd exposure,concentrations of Cd in Low-level was in a range of 0.45-1.16 mg kg-1, medium-leve 11.27~2.29 mg kg-1, high-level 2.36-2.66 mg kg-1, higher-level 1.49~4.11 mg kg-1 and highest-level 4.69-5.04 mg kg-1. The bioconcentration factors of these 71 vegetables can be divided into low, medium and high categories.we also find that Cd can significantly affect the transfer coefficient of the same vegetable. When exposure to 0.31,1.20 and 2.12 mg kg-1 of Cd, the transfer coefficient of various vegetables has decreased in turn, ascended in turn, first increased and then decreased, first decreased and then increased, and no effect totally 5 types, Circumstances vary for different varieties of vegetables.
     4. In this study, it was concluded that leafy vegetables have little potential on the phytoremediation of cadmium contaminated soil,the highest concentration of Cd in shoots of vegetables is 5.04 mg kg-1, the highest intake of Cd by vegetable cultivars was 7.81μgpot-1, the highest purification ratio of cadmium in soil was 0.74% (soil Cd:2.12 mg kg-1).
     5. Under 2.12 mg kg-1 Cd exposure, Cd concentration in shoots of these vegetables were weakening followed the order:Leaf-used lettuce>Romaine> Flowering chinese cabbage(Brassica campestris L. ssp.chinensis var.utilis Tsen et Lee)> Lettuce (Lactvca saiva L. lettuce)> Ipomoea aquatica> Celery(Apium graveolens L. celery)> Cole (Brassica campestris L. var. communis Tsen et Lee)> Chinese cabbage(Brassica campestris L. ssp. Pekinensis(Lour.) Olsson)> Shepherd's purse(Brassica juncea)> Coriander(Herba Coriandri Sativi)>Common sowthistle(Cichorium endiviaL. common) >Chive(Allium porrum L.leek)>Kale(Brassica oleracea var.capitata f.rubra)> Malabar spinach(Gynura cusimbua(D. Don) S. Moore)> Chrysanthemum (Chrysanthemum soronarium L.garland chrysanthemum)> Amaranth(Amaranthus mangostanus L. edible amaranth)>Leek(A.tuberosum Rott, ex Spr. Chinese chive)。
     6. Different vegetables have different risks due to different cultivars, urban residents have higher risks than rural residents by eating the same vegetables. Under 2.12 mg kg-1 Cd exposure, leaf-used lettuce, romaine, lettuce, celery, coriander and ipomoea aquatica showed high risks to human health, however, kale, chrysanthemum, leek, malabar spinach and amaranth were safer than others.
     7. Root volume, length, surface area, tip numbers were significantly effected by the presence of Cd. they were inhibited or stimulated, determined by cultivars and soil Cd concentration. It was feasible to assess field environmental by Environmental Security Decision Assistant System, But it's further application need more raw data accumulation and improvement of restricted conditions.
     The results of this study can provide detailed information to the primary production of agricultural soils, assessment of environmental heavy metal pollution and phytoremediation.
引文
1.曹仁林,张建顺.镉污染水稻土防治研究.天津农林科技.1999,(6):12-17
    2.陈桂珠.重金属对黄瓜籽苗发育影响的研究.植物学通报.1990,7(1):34-39
    3.陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社.1996:5-9
    4.陈瑛,李廷强,杨肖娥.镉对不同基因型小白菜根系生长特性的影响.植物营养与肥料学报.2009,(01):170-176
    5.迟爱民,徐忠林.呼和浩特市蔬菜中重金属污染的研究.干旱区资源与环境.1995,9(1):86-94
    6.刁维萍,倪吾钟,杨肖娥.利用植物生物技术和农艺措施控制镉在食物链中的迁移.广东微量元素科学.2003,10(2):1-5
    7.丁园,宗良纲,徐晓炎等.镉污染对水稻不同生育期生长和品质的影响.生态环境学报.2009,18(1):183-186
    8.段昌群,王焕.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨.植物学报.1995,37(1):14-24
    9.段敏,马往校等.17种蔬菜中铅铬镉元素含量分析研究.干旱区资源与环境.1999,13(4):74-80
    10.方学智,朱祝军,孙光闻.不同浓度Cd对小白菜生长及抗氧化系统的影响.农业环境科学学报.2004,23(5):877-880
    11.付万军,李勇,何翔.广州市郊区蔬菜中铅的含量特征及其健康风险评估.农业环境科学学报.2010,29(5):875-880
    12.郭海涛.不同蔬菜吸收积累镉的差异研究.首都师范大学,2009.
    13.郭燕梅,王昌全,李冰.重金属镉对植物的毒害研究进展.陕西农业科学.2008,54(3):122-125
    14.何昌福,蔡焕杰,王健.小白菜在不同生长阶段对重金属Cd的敏感性研究.灌溉排水学报.2008,27(2):14-17
    15.何江华,王少毅,等.广州市蔬菜地土壤—蔬菜中重金属Hg的含量及变化趋势.土壤与环境.2001,10(4):267-269
    16.何俊瑜,任艳芳等.镉胁迫对不同水稻品种种子萌发、幼苗生长和淀粉酶活性的影响.中国水稻科学(ChineseJRiceSci).2008,22(4):399-404
    17.何俊瑜,王阳阳,任艳芳等.镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响.生态环境学报.2009,18(5):1863-1868
    18.胡超,付庆灵.土壤重金属污染对蔬菜发育及品质的影响之研究进展.中国农学通报.2007,23(6):519-523
    19.黄雅琴,杨在中.蔬菜对重金属的吸收累积特点.内蒙古大学学报(自然科学版). 1995,(05):608-615
    20.井彩巧.不同基因型大白菜镉和铅含量差异研究.园艺学报.2006,33(2):402-404
    21.李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制.应用生态学报.2003,14(4):627-631
    22.刘海亮,李强.镉对作物种子萌发,幼苗生长及氧化酶同工酶的影响.环境科学.1991,12(6):29-31
    23.刘维涛,周启星,孙约兵等.大白菜(Brassica pekinensis L.)对镉富集基因型差异的研究.应用基础与工程科学学报.2010,18(2):226-235
    24.陆景陵.植物营养学(上).北京:中国农业大学出版社,2003
    25.欧阳喜辉,赵玉杰,刘凤枝等.不同种类蔬菜对土壤镉吸收能力的研究.农业环境科学学报.2008,27(1):67-70
    26.潘洁,陆文龙.天津市郊蔬菜污染状况及对策.农业环境与发展.1997,14(4):21-22
    27.潘静娴,张莹,夏志华等.Cd污染下蒌蒿生长和Cd积累的阶段特征.云南农业大学学报.2007,22(4):577-581
    28.彭鸣,王焕,吴玉树.镉,铅诱导的玉米幼苗细胞超微结构的变化.中国环境科学.1991,11(6):426-431
    29.秦天才,吴玉树,王焕.镉,铅及其相互作用对小白菜生理生化特性的影响.生态学报.1994,14(1):46-50
    30.邱孝煊,陈锋.福州蔬菜污染及污染源调查和治理研究.福建农业学报.2000,15(1):16-21
    31.任继凯,陈清朗,陈灵芝等.土壤镉污染与作物.植物生态学与地植物学丛刊.1982,6(2):131-141
    32.宋波,陈同斌,郑袁明等.北京市菜地土壤和蔬菜镉含量及其健康风险分析.环境科学学报.2006,26(8):1343-1353
    33.宋玉芳,许华夏等.土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应.环境科学.2002,23(1):103-107
    34.宋玉芳,许华夏,任丽萍等.重金属对土壤中萝卜种子发芽与根伸长抑制的生态毒性CHINESE JOURNAL OF ECOLOGY.2001,20(3)
    35.孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究.农业环境科学学报.2003,22(2):248-251
    36.孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究.植物生态学报.2005,29(3):497-504
    37.唐世荣.污染环境植物修复的原理与方法.科学出版社,2006
    38.唐世荣,高尚宾,丁永祯等.我国农业环境研究中值得关注的几个科学问题.农 业环境科学学报.2009,28(1):1-7
    39.汪雅谷,章国强.蔬菜区土壤镉污染及蔬菜种类选择.农业环境保护.1985,4:7-10
    40.韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报.2001,21(7):1196-1203
    41.魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志.2004,23(1):65-72
    42.肖玉苹,张国平.镉诱导麦类作物氧化胁迫及其缓解途径.大麦科学.2004,(1):23-26
    43.夏增禄.中国土壤环境容量.地震出版社,1992
    44.谢建治,刘树庆等.保定市郊土壤重金属污染对蔬菜营养品质的影响.农业环境保护.2002,21(4):325-327
    45.熊愈辉,杨肖娥.镉对植物毒害与植物耐镉机理研究进展.安徽农业科学.2006,34(13):2969-2971
    46.徐红霞,翁晓燕,毛伟华等.镉胁迫对水稻光合,叶绿素荧光特性和能量分配的影响.中国水稻科学(Chinese J Rice Sci).2005,19(4):338-342
    47.徐应明,孙国红.新型功能膜材料对污染土壤铅汞镉钝化作用研究.农业环境科学学报.2003,22(1):86-89
    48.许嘉琳,宋文昌.农作物体内铅,镉,铜的化学形态研究.应用生态学报.1991,2(3):244-248
    49.薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异与机理.土壤.2005,37(1):32-36
    50.杨居荣,鲍子平,张素芹.镉,铅在植物体细胞内的分布和可溶性结合形态.中国环境科学.1993,13(4):263-268
    51.杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展.安徽农业科学.2006,34(3):549-552
    52.杨肖娥,李廷强.我国农业环境质量和农产品污染剖析FOOD AND NUTRITION.2003
    53.杨志艺,万书波,范仲学等.镉胁迫对不同类型花生品种籽仁品质和镉含量的影响.山东农业科学.2009(3):63-66
    54.余国莹,吴玉树,王焕.不同化合形态镉,锌及其复合污染对小麦生理的影响.生态学报.1992,12(1):93-96
    55.张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报.1997,17(2):199-205
    56.周根,汪雅谷.上海市农畜产品有害物质残留调查.上海农业学报.1994,10(2):45-48
    57.周启星,宋玉芳.污染土壤修复原理与方法.科学出版社,2004
    58.邹晓锦,仇荣亮,周小勇等.蔬菜重金属暴露接触对大宝山矿区及周边居民的健康风险.地理研究.2008,27(4):855-862
    59. Acar Y B, Alshawabkeh A N. Principles of electrokinetic remediation. Environmental Science & Technology.1993,27(13):2638-2647
    60. Alcantara E, Romera F J, Ca Ete M, et al. Effects of heavy metals on both induction and function of root Fe (111) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of experimental botany.1994,45(12):1893
    61. Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution.2006,144(3):736-745
    62. Arao T, Ae N, Sugiyama M, et al. Genotypic differences in cadmium uptake and distribution in soybeans. Plant and Soil.2003,251(2):247-253
    63. Arthur E, Crews H, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. International Journal of Phytoremediation.2000,2(1):1-21
    64. Benavides M P, Gallego S M, Tomaro M L. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology.2005,17(1):21-34
    65. Bernal M P, Mcgrath S P. Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale andRaphanus sativus L. Plant and soil.1994,166(1):83-92
    66. Burger J. Assessment and management of risk to wildlife from cadmium. Science of the Total Environment.2008,389(1):37-45
    67. Cataldo D A, Garland T R, Wildung R E. Cadmium distribution and chemical fate in soybean plants. Plant Physiology.1981,68(4):835
    68. Das P, Samantaray S, Rout G R. Studies on cadmium toxicity in plants:a review. Environmental Pollution.1997,98(1):29-36
    69. Dunbar K R, Mclaughlin M J, Reid R J. The uptake and partitioning of cadmium in two cultivars of potato (Solarium tuberosum L.). Journal of Experimental Botany. 2003,54(381):349
    70. Fazeli M S, Khosravan F, Hossini M, et al. Enrichment of heavy metals in paddy crops irrigated by paper mill effluents near Nanjangud, Mysore District, Karnatake, India. Environmental Geology.1998,34(4):297-302
    71. Finger-Teixeira A, Lucio Ferrarese M L, Ricardo Soares A, et al. Cadmium-induced lignification restricts soybean root growth. Ecotoxicology and Environmental Safety. 2010
    72. Florijn P J, Beusichem M L. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil.1993,150(1):25-32
    73. Fytianos K, Katsianis G, Triantafyllou P, et al. Accumulation of heavy metals in vegetables grown in an industrial area in relation to soil. Bulletin of Environmental Contamination and Toxicology.2001,67(3):423-430
    74. Grant C A, Clarke J M, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of The Total Environment.2008,390(2-3): 301-310
    75. Guo Y, George E, Marschner H. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant and Soil.1996, 184(2):195-205
    76. Gupta U C, Gupta S C. Trace element toxicity relationships to crop production and livestock and human health:implications for management. Communications in Soil Science and Plant Analysis (USA).1998
    77. Harris M R, Harrison S J, Wilson N J, et al. Varietal differences in trace metal partitioning by six potato cultivars grown on contaminated soil.1981
    78. Harris N S, Taylor G J. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. Journal of Experimental Botany.2001,52(360):1473
    79. Jinadasa K, Milham P J, Hawkins C A, et al. Survey of cadmium levels in vegetables and soils of Greater Sydney, Australia. Journal of Environmental Quality.1997,26(4): 924
    80. Jones D L, Darah P R, Kochian L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil. 1996,180(1):57-66
    81. Kahle H. Response of roots of trees to heavy metals. Environmental and Experimental Botany.1993,33(1):99-119
    82. Kawai S, Takagi S, Sato Y. Mugineic acid-family phytosiderophores in root-secretions of barley, corn and sorghum varieties. Journal of plant nutrition.1988, 11(6):633-642
    83. Kawashima C G, Noji M, Nakamura M, et al. Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnology letters.2004,26(2): 153-157
    84. Kim S J, Chang A C, Page A L, et al. Relative concentrations of cadmium and zinc in tissue of selected food plants grown on sludge-treated soils. Journal of Environmental Quality (USA).1988
    85. Kozhevnikova A D, Seregin I V, Bystrova E I, et al. Effects of heavy metals and strontium on division of root cap cells and meristem structural organization. Russian Journal of Plant Physiology.2007,54(2):257-266
    86. Krishnamurti G S R, Mcarthur D F E, Wang M K, et al. Biogeochemistry of soil cadmium and the impact on terrestrial foodchain contamination. Biogeochemistry of Trace Elements in the Rhizosphere.2005,91(2):197-257
    87. Kuboi T, Noguchi A, Yazaki J. Family-dependent cadmium accumulation characteristics in higher plants. Plant and Soil.1986,92(3):405-415
    88. Kurz H, Schulz R, R Mheld V. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. Journal of Plant Nutrition and Soil Science.1999,162(3):323-328
    89. Larsson E H, Bornman J F, Asp H. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany.1998,49(323):1031
    90. Lehoczky E, Szabo L, Horvath S, et al. Cadmium uptake by lettuce in different soils. Communications in Soil Science and Plant Analysis.1998,29(11):1903-1912
    91. Lin C C, Kao C H. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation.2000,30(2):151-155
    92. Liu J, Qian M, Cai G, et al. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. Journal of Hazardous Materials. 2007,143(1-2):443-447
    93. Liu W, Zhou Q, Sun Y, et al. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environmental Pollution.2009,157(6): 1961-1967
    94. Lund L J, Betty E E, Page A L, et al. Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation. Journal of Environmental Quality.1981, 10(4):551
    95. Mclaughlin M J, Bell M J, Wright G C, et al. Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L). Plant and Soil.2000,222(1):51-58
    96. Moral R, Gomez I, Pedreno J N, et al. Effects of cadmium on nutrient distribution, yield, and growth of tomato grown in soilless culture. Journal of plant nutrition.1994, 17(6):953-962
    97. Moreno-Caselles J, Moral R, Perez-Espinosa A, et al. Cadmium accumulation and distribution in cucumber plant. Journal of Plant Nutrition.2000,23(2):243-250
    98. Ni W Z, Yang X E, Long X X. Differences of cadmium absorption and accumulation in selected vegetable crops. J Environ Sci (China).2002,14(3):399-405
    99. Ostonen I, Puttsepp U, Biel C, et al. Specific root length as an indicator of environmental change. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology.2007,141(3):426-442
    100.Patra J, Lenka M, Panda B B. Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc. New phytologist.1994,128(1):165-171
    101.Peer W, Baxter I, Richards E, et al. Phytoremediation and hyperaccumulator plants. Molecular Biology of Metal Homeostasis and Detoxification.2006:299-340
    102.Peralta-Videa J R, De La Rosa G, Gonzalez J H, et al. Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Advances in Environmental Research. 2004,8(3-4):679-685
    103.Riesen O, Feller U. Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. Journal of Plant Nutrition.2005,28(3): 421-430
    104.Sanita Di Toppi L, Lambardi M, Pazzagli L, et al. Response to cadmium in carrot in vitro plants and cell suspension cultures. Plant Science.1998,137(2):119-129
    105.Sanita Di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environmental and Experimental Botany.1999,41(2):105-130
    106.Song B, Lei M, Chen T, et al. Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. Journal of Environmental Sciences.2009, 21(12):1702-1709
    107.Sridhara Chary N, Kamala C T, Samuel Suman Raj D. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety.2008,69(3):513-524
    108.Stobart A K, Griffiths W T, Ameen Bukhari I, et al. The effect of Cd2+on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum.1985,63(3): 293-298
    109.Stolt J P, Sneller F, Bryngelsson T, et al. Phytochelatin and cadmium accumulation in wheat. Environmental and Experimental Botany.2003,49(1):21-28
    110.Sun Y, Zhou Q, Wang L, et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials.2009,161(2-3):808-814
    111.Varanini Z. Root Membrane Activities Relevant to Plant-Soil Interactions.2004
    112. Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy.1993,51:173-212
    113.Wang X, Sato T, Xing B, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the Total Environment.2005,350(1-3):28-37
    114.WiCKliff C, Evans H J, Carter K R, et al. Cadmium effects on the nitrogen fixation system of red alder. J. Environ. Qual.;(United States).1980,9(2)
    115.Yang Y, Zhang F, Li H, et al. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. Journal of Environmental Management.2009,90(2):1117-1122
    116.Yargholi B, Azimi A A. Investigation of Cadmium absorbtion and accumulation in different parts of some vegetables. American Eurasian J. Agric and Environ. Sci. 2008,3(3):357-364
    117.Zeng F, Mao Y, Cheng W, et al. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environmental Pollution.2008,153(2): 309-314
    118.Zeng X, Li L, Mei X. Heavy metal content in chinese vegetable plantation land soils and related source analysis. Agricultural Sciences in China.2008,7(9):1115-1126
    119.Zhang G, Fukami M, Sekimoto H. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. Journal of Plant Nutrition.2000,23(9): 1337-1350
    120.Zhang G, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research.2002,77(2-3):93-98
    121.Zhang Y, Yang X. The toxic effects of cadmium on cell division and chromosomal morphology of Hordeum vulgare. Mutation Research/Environmental Mutagenesis and Related Subjects.1994,312(2):121-126
    122.Zhuang P, Mcbride M B, Xia H, et al. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of The Total Environment.2009,407(5):1551-1561

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700