高产优质生菜气雾栽培系统中营养液调控技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气雾栽培(雾培)技术是把植物根系置于空气或者气雾环境中,通过雾化的水气满足植物根系对水肥需求的一种栽培方式。它不仅摆脱了传统土壤栽培对天然土壤的依赖和免受土壤污染、连作障碍、次生盐渍化等对作物生产的限制,而且有效解决普通水培中根系供氧问题,同时具有养分和水分利用率高的特点,不仅可用于蔬菜工厂化生产,而且适用于航天生命保障系统和庭院休闲农业,是一种具有广阔应用前景的新型无土栽培模式。营养液的配置和优化是雾培作物获得高产优质的关键技术。现有的蔬菜雾培大多沿用传统无土栽培的营养液配方,普遍以高浓度的硝态氮作为氮源而导致营养液中氮素浓度过高和形态不当,不仅造成生产成本提高,管理困难,而且引起蔬菜体内硝酸盐的大量积累,严重影响雾培蔬菜的营养品质。因此,阐明雾培营养液中氮素营养对蔬菜作物产量和品质的影响及其机理是协调解决雾培体系中成本-产量-品质的关键技术。但是,关于叶菜雾培的营养液配方及其优化缺乏系统的研究。本论文以生菜(Lactuca sativaL.)为材料,在选择适宜的叶菜雾培营养液配方和比较雾培与水培系统差异的基础上,进一步研究气雾栽培营养液中氮素水平、形态以及收获前氮素供应方式等对生菜产量、抗氧化物质含量及抗氧化活性的影响,旨在为高产优质蔬菜的雾培生产体系中营养液的供应和控制提供理论依据和技术支撑。取得的主要结果如下:
     (1)比较了Hoagland、日本园试、日本山崎、华南农大叶菜B、英国Hewitt等5个生菜常用的水培营养液配方对生菜产量和营养品质的影响。结果表明:华南农大叶菜B的营养液pH值升幅最小,英国Hewitt最大;华南农大叶菜B处理的生菜根系和地上部鲜质量、干质量最高,英国Hewitt或Hoagland处理的最低;华南农大叶菜B处理的生菜叶片还原型抗坏血酸含量、FRAP (ferric reducing/antioxidant power)抗氧化活性和DPPH (1,1-diphenyl-2-picrydrazyl)自由基清除率最高,日本园试次之,日本山崎最低;日本园试处理的生菜类胡萝卜素和谷胱甘肽含量最高,华南农大叶菜B次之,日本山崎最低;华南农大叶菜B处理的生菜可溶性糖含量最高,而可溶性蛋白质含量与日本园试相当,显著高于其他配方;华南农大叶菜B处理的生菜叶片和茎的硝酸盐含量显著低于英国Hewitt和Hoagland,略高于日本园试和日本山崎。说明采用华南农大叶菜B作为生菜气雾栽培的营养液配方,不仅营养液pH波动小,而且生菜具有较高的生物量、抗氧化物质含量和抗氧化活性以及较低的硝酸盐含量,是较为适宜的生菜气雾栽培配方,而英国Hewitt和日本山崎不适合生菜的气雾栽培。
     (2)研究了不同供氮水平(2、8、20mmol/L)下,雾培与水培生菜产量、营养品质及抗氧化活性的差异。结果表明,随着供氮水平的提高,两种栽培方式中生菜叶片和茎中硝酸盐与可溶性蛋白含量均显著增加,而可溶性糖、还原型抗坏血酸和谷胱甘肽含量、FRAP值和DPPH自由基清除率均逐渐降低,但根系形态指标、光合作用参数、地上部和根系鲜重、可溶性蛋白、可溶性糖、还原型抗坏血酸及谷胱甘肽积累量均以8 mmol/L处理最高。同一供氮水平下,雾培生菜根系生长(根系总长、根直径、根表面积、根体积和根系活力)、地上部和根系生物量、生长速率、叶片SPAD值、光合参数(净光合速率、气孔导度、胞间CO2浓度、蒸腾速率)均显著高于水培,而硝酸盐含量显著低于水培;雾培生菜叶片和茎的FRAP值和DPPH自由基清除率与水培相当或高于水培。虽然可溶性蛋白、可溶性糖、还原型抗坏血酸含量在雾培与水培生菜中没有显著差异,谷胱甘肽在水培生菜体内含量较高,但雾培生菜体内可溶性蛋白、可溶性糖、还原型抗坏血酸、谷胱甘肽等物质的积累量均显著高于水培。说明雾培较水培有利于生菜生物量和抗氧化物质的积累及抗氧化活性的提高,且在适宜的供氮水平(8 mmol/L)下上述优势尤其明显。
     (3)研究了不同供氮水平(4、8、12、16、20mmol/L)对雾培生菜的产量、抗氧化物质含量和抗氧化活性的影响。结果表明,氮水平从4 mmol/L提高到8mmol/L,雾培生菜生物量显著增加,体内氮素营养状况明显改善,但提高到12mmol/L没有明显变化,在高氮水平下(16、20mmol/L)反而降低了生物量,并导致硝酸盐的大量积累。随着供氮水平的提高,叶片和茎中可溶性糖含量逐渐降低,可溶性蛋白含量呈先增加后减少的趋势。叶片抗坏血酸、谷胱甘肽、总酚和类黄酮含量、FRAP值和DPPH自由基清除率均随着供氮水平的提高而逐渐下降,但是当供氮水平从4 mmol/L提高到8mmol/L时,除了抗坏血酸和DPPH自由基清除率显著下降外,谷胱甘肽、总酚、类黄酮含量以及FRAP值没有变化。因此,营养液中氮浓度为8mmol/L时,可基本满足雾培生菜对氮素营养的需要,保持较高生物量的同时具有较高的抗氧化物质含量和抗氧化活性以及较低的硝酸盐含量,是生菜雾培营养液中兼顾产量与品质的适宜供氮水平。
     (4)研究了营养液中不同硝铵比(100:0、75:25、50:50、25:75、0:100)对雾培生菜产量、营养品质和抗氧化活性的影响。结果表明,随着营养液中铵态氮比例的提高,雾培生菜生物量、叶片SPAD值、光合参数(净光合速率、气孔导度、胞间CO2浓度、蒸腾速率)、还原型抗坏血酸、谷胱甘肽、总酚、类黄酮和类胡萝卜素积累量均呈现先升高后降低的趋势;硝酸盐与可溶性糖含量逐渐降低,而可溶性蛋白、还原型抗坏血酸、谷胱甘肽、总酚、类黄酮和类胡萝卜素等抗氧化物质含量以及FRAP抗氧化活性和DPPH自由基清除率均逐渐升高。在硝铵比为0:100时,生菜叶片可溶性蛋白、抗氧化物质含量、FRAP抗氧化活性以及DPPH自由基清除率最高,但是全铵营养严重抑制了生物量的积累;而硝铵比为75:25时不仅叶片光合作用强度、生物量和抗氧化物质积累量最高,并维持较高的抗氧化物质浓度和抗氧化活性,同时显著降低硝酸盐含量。因此,综合考虑生物量、营养品质和氮素营养状况,雾培生菜生产中营养液的硝铵比以75:25为宜。
     (5)研究了采收前氮素供应方式(100%NO3-、50%NO3-、0%NO3-、50%NO3"+50%NH4+、50%NH4+)对雾培生菜产量、抗氧化物质含量和抗氧化活性的影响。结果表明,采收前处理3d时,不同供氮方式间雾培生菜的地上部鲜、干重、硝酸盐以及抗氧化物质含量没有显著差异。采收前处理6d以上,与持续供应100%NO3-处理相比,改变供氮方式均可显著降低生菜叶片和茎中硝酸盐含量,但停止供氮(0%NO3-)、硝态氮减半(50%NO3-)或以铵态氮为唯一氮源(50%NH4+)处理均会不同程度地降低生物量,而供应混合氮源(50%NO3-+50%NH4+)可显著提高生物量;除了停止供氮(0%NO3-)处理降低了抗坏血酸、谷胱甘肽含量外,其他供氮方式均显著提高了叶片内抗坏血酸、谷胱甘肽、类黄酮、总酚含量、FPAR值以及DPPH自由基清除率。其中,抗坏血酸、谷胱甘肽含量以50%NH4+处理最高,50%NO3-+50%NH4+处理次之;多酚、类黄酮含量则以0%NO3-处理最高,50%NH4+处理次之。因此,在采收前6d用硝铵混合氮源(50%NO3-+50%NH4+)代替NO3-可在显著提高生菜生物量的同时显著降低生菜的硝酸盐含量,并维持具有较高的抗氧化物质含量与抗氧化能力。
Aeroponics is a soilless culture technique for growing vegetables and other crops in which the roots are suspended in the air and are intermittently sprayed with a nutrient solution to supply the plants with mineral and water. It provides a possible solution to the existing problems of soil-borne diseases, soil salinity in soil-based systems and oxygen deficiency in general hydroponics systems. Aeroponics is considered to be an economical and environmentally friendly modern technology for producing natural and healthy crops. It has been widely used in commercial horticultural production, spacecraft life support system and courtyard agriculture. On the other hand an optimized nutrient solution is a key determining factor of high yield and product quality of vegetable grown in aeroponic systems. Unfortunately, the nutrient solutions with high concentration of nitrate nitrogen are commonly used in present aeroponics, which not only results in raising production costs, enhancing difficulties of management, but also in high nitrate accumulation. Therefore, it is critical to elucidate the mechanism of the effect of nitrogen supply on the yield and quality of aeroponically grown vegetables. Modulating the nutrient solution of leafy vegetables in aeroponic production is scarcely reported at present. The objective of this study is selecting appropriate nutrient formulation and comparing the difference between aeroponic and hydroponic systems, and to investigate the effect of nitrogen nutrient supply on the yield, antioxidant contents and antioxidant activity and finally to determine the optimal nutrient solution management for aeroponically grown lettuce (Lactuca sativa L.), which would provide scientific basis for the production of low-nitrate lettuce with high yield and nutritional quality. The main results obtained from the experiments are summarized as follows:
     1. The effects of five hydroponic nutrient solutions, Hoagland formula, Japanese Yamazaki formula (JY), Japanese Garden formula (JG), South China Agricultural University (SCAU) formula B for leafy vegetables and England Hewitt formula (EH), were compared on the biomass production and nutritional quality of aeroponically grown lettuce. The results showed that the pH levels of five solutions were increased to some extent during the treatment. The highest increase in pH was observed in EH, while the lowest was in SCAU formula B. Plants grown in SCAU formula B solution showed high fresh and dry weight of roots and shoots, compared to the plants grown in other four nutrient solutions. Furthermore, SCAU formula B treated plants showed the highest ascorbic acid content, FRAP (ferric reducing/antioxidant power) value, DPPH (1,1-diphenyl-2-picrydrazyl) radical scavenging rate as well as soluble sugar content in the leaves among all nutrient solution-treated plants. However, the soluble protein content was comparable to that of JG treated plants, while the glutathione content was lower than that of JG treated plants. Furthermore the nitrate content of stems and leaves of SCAU formula B treated plants were significantly lower than those of EH and Hoagland treated plants, but a little higher than those of JG and JY treated plants. These results indicate that aeroponically grown lettuce in SCAU formula B solution produced high biomass yield, high antioxidant content and antioxidant activity, and low nitrate content, suggesting that SCAU formula B is the most ideal nutrient solution for aeroponically grown lettuce, whereas EH and JY formula are unsuitable for aeroponically grown lettuce.
     2. Hydroponic and aeroponic experiments were carried out to study the effects of two different cultures on the biomass production and nutritional quality of lettuce under different nitrogen levels (2,8 and 20 mmol/L). Results showed that with the increased nitrogen level, the contents of nitrate and soluble protein in the leaves and stems increased, while concentration of soluble sugar, ascorbic acid and glutathione, FRAP value and DPPH radical scavenging rate decreased in both hydroponics and aeroponics. Highest root morphology index, photosynthetic index, fresh weight, accumulation of soluble protein, soluble sugar, ascorbic acid and glutathione were observed at the nitrogen level of 8 mmol/L. Under the same nitrogen level, root growth, biomass, relative growth rate, SPAD value and photosynthesis in aeroponics were significantly higher than those in hydroponics, while glutathione and nitrate content in levels and stems in aeroponics were much lower than in hydroponics, and with similar or higher FRAP value and DPPH radical scavenging rate compared with hydroponics. Although there was no significant difference was observed in soluble sugar, soluble protein, ascorbic acid in two culture systems, but the accumulation of soluble protein, soluble sugar, ascorbic acid and glutathione in aeroponics were markedly higher than those in hydroponics. Therefore, aeroponics is beneficial for higher biomass, antioxidant accumulation and antioxidant activity, its especially apparent under the nitrogen level of 8 mmol/L.
     3. An aeroponics was carried out to study the effects of different nitrogen levels (4,8,12,16 and 20 mmol/L) on the biomass, antioxidant contents and antioxidant activity in lettuce. Results showed that because of increased nitrogen level from 4 mmol/L to 8 mmol/L, biomass of lettuce increased markedly, but biomass of lettuce was not affected with nitrogen level further increasing up to 12 mmol/L. When superfluous nitrogen was supplied (16 and 20mmol/L) not only decreased biomass obviously, but it also caused the highest nitrate accumulation. Furthermore, soluble sugar content in the leaves and stems decreased and soluble protein content increased firstly and then decreased slightly with nitrogen levels increasing. The contents of ascorbic acid, glutathione, total phenlics and flavonoids in leaves decreased as nitrogen levels were elevated. But when nitrogen level was increased from 4 mmol/L to 8 mmol/L, except for ascorbic acid and DPPH radical scavenging rate which decreased, there was no significant changes in the contents of glutathione, total phenlics, flavonoids and FRAP value. As biomass and nutritional quality of lettuce were taken into account, nitrogen level of 8 mmol/L might be the optimal nitrogen level for aeroponically grown lettuce.
     4. An aeroponics was conducted to investigate the effects of different NO3-:NH4+ ratio (100:0,75:25,50:50,25:75,0:100) on the biomass, nutritional quality and antioxidant activity in lettuce. Results showed that with the increasing proportion of ammonium in the nutrient solution, the biomasses, SPAD values, photosynthetic index and accumulation of ascorbic acid, glutathione, total phenlics, flavonoids and carotenoid increased markedly and later decreased gradually, nitrate and soluble sugar decreased, while soluble protein, ascorbic acid, glutathione, total phenlics, flavonoids, carotenoid, FRAP value and DPPH radical scavenging rate increased gradually in aeroponically grown lettuce. The highest contents of soluble protein, antioxidant contents and antioxidant activity were observed when nitrate was totally replaced by ammonium, but ammonium inhibited fresh biomass seriously. When NO3-:NH4+ratio of 75:25 was supplied, photosynthesis, fresh biomass and accumulation of antioxidant in leaves were found to be highest. This indicated that appropriate amount of ammonium (25%) could promote the accumulation of biomass and antioxidants, enhance photosynthesis ability and decrease nitrate content. Hence, NO3-:NH4+ratio of 75:25 should be optimal for NO3-:NH4+ratio for the production of both high-yield and high-quality aeroponically grown lettuce.
     5. An aeroponic culture was carried out to investigate the effects of nitrogen supply in the nutrient solution (100% NO3-,50%NO3-,0%NO3-,50%NO3-+50%NH4+ 50%NH4+) before harvest on biomass, antioxidant content and antioxidant activity in lettuce. Results showed that, after 3 days'treatments, there were no significant effects on fresh biomass, dry weight, nitrate and antioxidant content of aeroponically grown lettuce. After more than 6 days'treatments, nitrate content in leaves and stems were significantly reduced by all the nitrogen supply methods, compared to continuous supplying 100%NO3- continually, and biomass were reduced in treatments of 0% NO3-,50%NH4+ and 50%NO3- in a certain extent, but was significantly increased in 50%NO3-+50%NH4+. Except for the treatment of nitrate withdrawal (0%NO3-) in which ascorbic acid and glutathione content were reduced, the other treatments increased antioxidant contents and improved antioxidant activity in leaves of lettuce, and after more than 6 days' treatment, the influence could be more and more remarkable. Highest contents of ascorbic acid and glutathione were obtained in 50% NH4+, and then in 50%NO3-+50%NH4+, and highest contents of total phenlics and flavonoids were obtain in 0% NO3-, and then in 50%NO3-+50%NH4+. It is suggested that the 100% of nitrogen concentration supplied with mixed nitrogen source (50% NO3-+50%NH4+) in the nutrient solutions 6 days prior to harvest may be suitable to produce aeroponically grown lettuce with low nitrate, high yield, antioxidant content and antioxidant activity.
引文
1. Addiscott T M, Benjamin N. Nitrate and human health [J]. Soil Use Manage,2004, 20(2):98-104.
    2. Ahmed A K, Johnson K A. The effect of the ammonium:nitrate ration, total nitrogen, salinity (NaCl) and calcium on the oxalate levels of Tetragonia tetragonioides Pallas. Kunz. J. Hort Sci Biotech,2000,75(5):533-538.
    3. Albaho M, Thomas B, Christopher A. Evaluation of hydroponic techniques on growth and productivity of greenhouse grown bell pepper and strawberry [J]. International Journal of Vegetable Science,2008,14(1):23-40.
    4. Anjana, Umar S, Iqbal M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review [J]. Agronomy for Sustainable Development, 2007,27:45-57.
    5. Anon. Hydroponics? An option for the future [J]. The Harvester,2000,36:3.
    6. Barak P, Smith J D, Krueger A R, Peterson L A. Measurement of short-term nutrient uptake rates in cranberry by aeroponics [J]. Plant, Cell and Environment,1996,19: 237-242.
    7. BassirRad H, Radin J W, Matsuda K. Temperature-dependent water and ion transport properties of barley and sorghum roots. I. Relationship to leaf growth. Plant Physiology, 1991,97(1):426-432.
    8. Bellaloui N, Pilbeam D J. Effects of nitrate withdrawal and resupply on the assimilation of nitrate in leaves of tomato. Journal of Experimental Botany,1991,42(234):81-88.
    9. Benard C, Gautier H, Bourgaud F. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds [J]. Journal of Agricultural and Food Chemistry, 2009,57:4112-4123.
    10. Benzie I F, Strain J J. Ferric reducing/antioxidant power assay:direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration [J]. Methods in Enzymology,1999,299:15-27.
    11. Bjorkman M, Klingen I, Birch A N E, Bones A M, Bruce T J A, Johansen T J, Meadow R, Molmann J, Seljasen R, Smart LE, Stewart D. Phytochemicals of Brassicaceae in plant protection and human health-Influences of climate, environment and agronomic practice [J]. Phytochemistry,2011,72:538-556.
    12. Britto D T, Kronzucker H J. NH4+ toxicity in higher plants:a critical review [J]. Journal of Plant Physiology,2002,159:567-584.
    13. Britto D T, Siddiqi M Y, Glass A D M, et al. Futile transmembrane NH4+ cycling:a cellular hypothesis to explain ammonium toxicity in plants [J]. PNAS,2001,98 (7): 4255-4258.
    14. Carruthers, Steven. Practical Hydroponics and Greenhouses,1992, Issue 5, July/Aug. Article:Aeroponics. http://hydroponics.com.au
    15. Cechin I, Fumis, T D. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse [J]. Plant Science,2004,166:1379-1385.
    16. Chen B M, Wang Z W, Li S X, Wang G X, Song H X, Wang X N. Effect of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables [J]. Plant Science,2004a,167 (3):635-643.
    17. Chen L, Liu S C, Gai J Y, et al. Effects of nitrogen forms on the growth, ascorbate-glutathione cycle and lipid peroxidation in developing seeds of vegetable soybean [J]. African Journal of Agricultural Research,2009,4 (11):1178-1188.
    18. Chen Q, Zhang X S, Zhang H Y, et al. Evaluation of current fertilizer practice and soil fertilizer in vegetable production in the Beijing region [J]. Nutrient Cycling in Agroecosystems,2004b,69:51-58.
    19. Chong S K, Boniak R, Indorante S, et al. Carbon dioxide content in golf green rhizosphere. Crop Science,2004,44:1337-1340.
    20. Christie C B, Nichols M A. Aeroponics-a production system and research tool [J]. Acta Horticulturae, 2004,648:185-190.
    21. Colla G, Saccardo F. Application of systematic variation method for optimizing mineral nutrition of soilless-grown zucchini squash [J]. Journal of Plant Nutrition,2003,26(9): 1859-1872.
    22. Cometti N N, Matias G C S, Zonta E, et al. Nitrogen compounds and soluble sugars in tissues of organic, hydroponic, and conventional lettuce [J]. Horticultura Brasileira,2004, 22(4):748-753.
    23. Cooper D A. Carotenoids in health and disease:Recent scientific evaluations, research recommendations and the consumer [J]. The Journal of Nutrition,2004,134:221S-224S.
    24. Coston, D C, Krewer G W, Owing R C, Denny E G. Air rooting of peach semihardwood cutting [J]. HortScience,1983,18(3):323.
    25. Davey M W, Montagu M V, Inze D, et al. Plant Lascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing [J]. Journal of the Science of Food and Agriculture,2000,80:825-860.
    26. Demsar J, Osvald J, Vodnik D. The Effect of light-dependent application of nitrate on the growth of aeroponically grown lettuce(Lactuca sativa L.)[J]. Journal of the American Society for Hoeticultural Science,2004,129(4):570-575.
    27. Demsar J, Osvald J. Influence of NO3-:NH4+ ratio on growth and nitrate accumulation in lettuce(Lactuca sativa var. capitata. L.) in an aeroponic system [J]. Agrochimica,2003, 47(3-4):112-121.
    28. Domlnguez-Valdivia M D, Aparicio-Tejo P M, Lamsfus C, Cruz C, Martins-Loucxao M A, Moran J F. Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and-sensitive plants [J]. Physiologia Plantarum,2008,132:359-369.
    29. Du Y C, Tachibana S. Effect of supraoptimal root temperature on the growth, root respiration and sugar content of cucumber plants [J]. Scientia Horticulturae,1994,58: 289-301.
    30. Dumas Y, Dadomo M, Lucca G D, et al. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes [J]. Journal of the Science of Food and Agriculture,2003,83:369-382.
    31. Ehret D L, Alsanius B, Wohanka W, Menzies J G, Utkhede R. Disinfestation of recirculating nutrient solutions in greenhouse horticulture [J]. Agronomie,2001,21: 323-339.
    32. Escobar-Gutierrez, A J, Burns I G, Lee A, Edmondson R N. Screening lettuce cultivars for low nitrate content during summer and winter production [J]. Journal of Horticultural Science & Biotechnology,2002,77:232.
    33. Everetta K T, Hawkinsa B J, Mitchell A K. Douglas-fir seeding response to a range of ammonium:nitrate ratios in aeroponic culture [J]. Journal of Plant Nutrition,2010,33: 1638-1657.
    34. Fallovo C, Colla G, Schreiner M, Krumbein A, Schwarz D. Effect of nitrogen form and radiation on growth and mineral concentration of two Brassica species [J]. Scientia Horticulturae,2009a,123:170-177.
    35. Fallovo C, Rouphael Y, Rea E, et al. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture [J]. Journal of the Science of Food and Agriculture,2009b,89:1682-1689.
    36. Fallovo C, Schreiner M, Schwarz D, Colla G, Krumbein A. Phytochemical Changes Induced by Different Nitrogen Supply Forms and Radiation Levels in Two Leafy Brassica Species [J]. Journal of Agricultural and Food Chemistry,2011,59:4198-4207.
    37. Fanasca S, Colla G, Maiani G, et al. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition [J]. Journal of Agricultural and Food Chemistry,2006,54:4319-4325.
    38. Futsaether C M, Oxaal U. A growth chamber for idealized studies of seedling root growth dynamics and structure [J].Plant and Soil,2002,246:221-230.
    39. Germer J, Sauerborn J, at al. Skyfarming an ecological innovation to enhance global food security [J]. Journal fur Verbraucherschutz und Lebensmittelsicherheit,2011,6:237-251.
    40. Giorgi A, Mingozzi M, Madeo M, Speranza G, Cocucci M. Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow(Achillea collina Becker ex Rchb.)[J]. Food Chemistry,2009,114:204-211.
    41. Gorbe E, Calatayud A. Optimization of nutrition in soilless systems:a review [J]. Advances in Botanical Research,2010,53:193-245.
    42. Grenz J H, Grenz J H, Sauerborn J. The potential of organic agriculture to contribute to sustainable crop production and food security in Sub-Saharan Africa [J]. Journal of Agriculture and Rural Development in the Tropics and Subtropics,2007,89:50-84.
    43. Gruda N. Do soilless culture systems have an influence on product quality of vegetables [J]. Journal of Applied Botany and Food Quality,2009,82:141-147.
    44. Grusak M A. Phytochemicals in plants:genomics-assisted plant improvement for nutritional and health benefits [J]. Current Opinion in Biotechnology,2002,13:508-511.
    45. Gunes A, Inal A, Aktas M:Reducing nitrate content of NFT grown winter onion plants (Allium cepa L.) by partial replacement of NO3 with amino acid in nutrient solution [J]. Scientia Horticulturae,1996,65:203-208.
    46. Guo S, Zhou Y, Shen Q, et al. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations [J].Plant Biology,2007,9:21-29.
    47. Hayden A L, Yokelson T N, Giacomelli G A, et al. Aeroponics:an alternative production system for high-value root crops [J]. Acta Horticulturae,2004,629:207-213.
    48. Hayden A. Aeroponic and hydroponic system for medicinal herb, rhizome, and root crops [J]. Horticulturae Science,2006,41(3):536-538.
    49. He F F, Chen Q, Jiang R F, et al. Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in Northern China [J]. Nutrient Cycling in Agroecosystems,2007,77:1-14.
    50. He J, Austin P T, Lee S K. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants [J]. Journal of Experimental Botany,2010,61(14): 3959-3969.
    51. He J, Austin P T, Nichols M A, et al. Effect of rootzone CO2 on productivity and photosysthesis in aeroponically grown lettuce plants [J]. Acta Horticulturae,2004,648: 39-45.
    52. He J, Austin P T, Nichols M A, et al. Elevated rootzone CO2 protects lettuce plants from midday depression of photosynthesis [J]. Environmental and Experimental Botany,2007, 61:94-101.
    53. He J, Lee S K. Growth and photosynthetic characteristics of lettuce under fluctuating hot ambient temperature with the manipulation of cool root-zone temperature [J]. Journal of Plant Physiology,1998,152:387-391.
    54. Heeb A, Lundegardh B, Ericsson T, Savage G P. Effect of nitrate-, ammonium-, organic-nitrogen-based fertilizers on growth and yield of tomatoes [J]. Journal of Plant Nutrition and Soil Science,2005,168:123-129.
    55. Helali S M, Nebli H, Kaddour R, et al. Influence of nitrate-ammonium ratio on growth and nutrition of Arabidopsis thaliana [J]. Plant Soil,2010,336:65-74.
    56. Hessel L, Bialik K, David B, Ella G. Self contained fully automated robotic crop production facility. United States Patent, USA,2003.
    57. Hoffman T K, Kolb F L. Effects of barley yellow dwarf virus on root and shoot growth of winter wheat seedlings grown in aeroponic culture [J]. Plant Disease,1997,81:497-500.
    58. Hohl U, Neubert B, Holger P, Schonhof I, Bohm H. Flavonoid concentrations in the inner leaves of head lettuce genotypes [J]. European Food Research and Technology,2001,213: 205-211.
    59. Hoque M M, Ajwa H A, Smith Richard. Nitrite and ammonium toxicity on lettuce grown under hydroponics [J]. Communications in Soil Science and Plant Analysis,2008,39: 207-216.
    60. Horchani F, Khayati H, Raymond P, et al. Contrast effects of prolonged root hypoxia on tomato root and fruit(Solanum lycopersicum) metabolism [J]. Journal of Agronomy and Crop Science,2009,195:313-318.
    61. http://en.wikipedia.org/wiki/Aeroponics
    62. Johnstone P R, Nichols M A, Fisher K J, Reid J. Nutritional studies with processing tomato grown in aeroponics [J]. Acta Horticulturae,2001,542:143-150.
    63. Jones R B, Imsic A M, Franz A P, et al. High nitrogen during growth reduced glucoraphanin and flavonol content in broccoli (Brassica oleracea var. italica) heads [J]. Australian Journal of Experimental Agriculture,2007,47:1498-1505.
    64. Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain [J]. Environmental Pollution,2007,145:497-506.
    65. Kacjan-Marsic N, Osvald J. Effects of different nitrogen levels on lettuce growth and nitrate accumulation in iceberg lettuce (Lactuca sativa var. capitata L.) grown hydroponically under greenhouse conditions [J]. Gartenbauwissenschaft,2002c,67 (4): S128-S134.
    66. Kacjan-Marsic N, Osvald J. Nitrate content in lettuce(Lactuca sativa L.) grown on aeroponics with different quantities of nitrogen in the nutrient solution[J]. Acta Agronomica Hungarica,2002b,50(4):389-397.
    67. Kacjan-Marsic N, Osvald J. The influence of different concentration of nitrogen in nutrient solution on plant grown and nitrate accumulation in aeroponically grown lettuce (Lactuca sativa L.)[J]. Agronomica XLVI,2002a:56-65.
    68. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidants [J]. Journal of Food Science,2005,70:11-19.
    69. Kang J G. Growth and tuberization of potato(solanum tuberosum L.) eultivars in aeroponies, deep flow teehnique and nutrient film technique culture system [J]. J.Kor.Soe.Hort.Sei,1996,37(1):24-27,29.
    70. Kilinc S S, Ertan E, Seferoglu S. Effects of different nutrient solution formulations on morphological and biochemical characteristics of nursery fig trees grown in substrate culture [J]. Scientia Horticulturae,2007,113:20-27.
    71. Klaring H P. Strategies to control water and nutrient supplies to greenhouse crops. A review [J]. Agronomie,2001,21:311-321.
    72. Konstantopoulou E, Kapotis G, Salachas G, Petropoulos S A, Karapanos I C, Passam H C. Nutritional quality of greenhouse lettuce at harvest and after storage in relation to N application and cultivation season [J]. Scientia Horticulturae,2010,125:93.e1-93.e5.
    73. Kotsiras A, Olympios C M, Passam H C. Effects of nitrogen form and concentration on yield and quality of cucumbers grown on rockwool during spring and winter in southern Greece [J]. Journal of Plant Nutrition,2005,28:2027-2035.
    74. Kovacik J, Backor M. Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants [J]. Plant and Soil,2007,297:255-265.
    75. Kovacik J, Klejdus B, Backor M. Phenylalanine ammonialyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes [J]. Plant Science,2007,172:393-399.
    76. Kratsch H A, Graves W R, Gladon R J. Aeroponic system for control of root-zone atmosphere. Environmental and Experimental Botany,2006,55:70-76.
    77. Laurent D, Stephane T D, Jean R, Marie-H Helene, Andre F. Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce(Lactuca sativa L.), under various conditions of radiation and temperature [J]. Agronomie,2000,20:843-855.
    78. Le Bot J, Jeannequin B, Fabre R. Impacts of N-deprivation on the yield and nitrogen budget of rockwool grown tomatoes [J]. Agronomie,2001,21:341-350.
    79. Lea U S, Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway [J]. Planta,2007,225:1245-1253.
    80. Lee J J, Crosby K M, Pike L M, et al. Impact of genetic and environmental variation on development of flavonoids and carotenoids in pepper(Capsicum spp.) [J]. Scientia Horticulturae,2005,106:341-352.
    81. Lee S K,Kader A A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops [J]. Postharvest Biology and Technology,2000,20:207-220.
    82. Lenucci M S, Caninu D, Taurino M, et al. Antioxidant composition in cherry and high-pigment tomato cultivars [J]. Journal of Agricultural and Food Chemistry,2006,54: 2606-2613.
    83. Li Q, Li B H, Kronzucker H J, Shi W M. Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activitypce [J]. Plant, Cell and Environment,2010,33:1529-1542.
    84. Lichtenstein AH. Nutrient supplements and cardiovascular disease:A heartbreaking story [J]. Journal of Lipid Research,2009,50(Suppl.):S429-S433.
    85. Lillo C, Lea U S, Rouff P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway [J]. Plant, Cell and Environment,2008,31:587-601.
    86. Liu D H, Liu W, Zhu D w, Geng M J, Zhou W B, Yang T W. Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium [J]. Journal of Plant Nutrition and Soil Science,2010,173: 268-274.
    87. Liu W K, Yang Q C, Du L F. Soilless cultivation for high-quality vegetables with biogas manure in China, feasibility and benefit analysis [J]. Renewable Agriculture and Food Systems,2009,24(4):300-307.
    88. Lu Y L, Xu Y C, Shen Q R, Dong C X. Effects of different nitrogen forms on the growth and cytokinin content in xylem sap of tomato (Lycopersicon esculentum Mill.) seedlings [J]. Plant Soil,2009,315:67-77.
    89. Lundberg J O, Weitzberg E, Cole J A, Benjamin N. Nitrate, bacteria and human health [J]. Nature Reviews Microbiology,2004,2:593-602.
    90. Marin A, Rubio J S, Martinez V, et al. Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition [J]. Journal of the Science of Food and Agriculture,2009,89:1352-1359.
    91. Marschner H, Kirkby E A, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrient [J]. Journal of Experimental Botany,1996,47:1225-1263.
    92. Martignon G, Casarotti D, Venezia A, Schiuvi M, Malorgio F. Nitrate accumulation in celery as affected by growing system and N content in the nutrient solution [J]. Acta Horticulturae,1994,361(7):583-589.
    93. Martinez-Ballesta MC, Lopez-Perez L, Hernandez M, Lopez-Berenguer C, et al. Agricultural practices for enhanced human health [J]. Phytochemistry Reviews,2008,7: 251-260.
    94. Matros A, Amme S, Kettig B, Buck-Sorlin G H, Sonnewald U, Mock H P. Growth of elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increases resistance against infection with potato virus Y[J]. Plan, Cell & Environment,2006,29:126-137.
    95. Miao Y X, Stewar B A, Zhang F S. Long-term experiments for sustainable nutrient management in China. A review [J]. Agronomy for Sustainable Development,2011,31: 397-414.
    96. Mission J, Raghothama K G, Jain A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation [J]. PNAS,2005,102:11934-11939.
    97. Mittelstraβ K, Treutter D, Pleβl M, Heller W, Elstner E F, Heiser I. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani [J]. Plant Biology,2006, 8:653-661.
    98. Mozafar A. Nitrogen fertilizers and the amount of vitamins in plants:a review [J]. Journal of Plant Nutrition,1993,16:2479-2506.
    99. Munoz P, Anton A, Paranjpe A, Arino J, Montero J I. High decrease in nitrate leaching by lower N input without reducing greenhouse tomato yield [J]. Agronomy for Sustainable Development,2008,28:489-495.
    100. Muzquiz M, Burbano C, Pedrosa M M, Ciesiolka D, Pilarski R, Gulewicz K. Studies on the influence of different nitrogen forms on the chemical composition of various cultivars of Lupinus albus L [J]. Communications in Soil Science and Plant Analysis,2009,40: 2009-2027.
    101. Nakano Y. Response of tomato root systems to environmental stress under soilless culture [J]. Japan Agricultural Research Quarterly,2007,41:7-15.
    102. Nguyen P M, Niemeyer E D. Effects of Nitrogen fertilization on the phenolic composition and antioxidant properties of basil(Ocimum basilicum L.)[J]. Journal of Agricultural and Food Chemistry,2008,56:8685-8691.
    103. Nhut D T, Nguyen N H, Thuy D T T. Anovel in vitro hydroponic culture system for potato (Solanum tuberosum L.) microtuber production.Scientia Horticulturae,2006,110:230-234.
    104. Ni W Z, Hardter R. Influence of potassium fertilization on yield and quality of foliar vegetable crops [J]. Pedosphere,2001,11(1):77-82.
    105. Nichols M A, Christie C B. Continuous production of greenhouse crops using aeroponics [J]. Acta Horticulturae,2002,578:289-291.
    106. Nichols M A, Woolley D J, Christic C B. Effect of oxygen and carbon dioxide concentration in the root zone on the growth of vegetable [J]. Acta Horticulturae,2002, 578:119-122.
    107. Nichols M A. Aeroponics and potatoes [J]. Acta Horticulturae,2005,670:201-206.
    108. N(?)rbaek R, Aaboer, D B F. Bleeg I S. Christensen B T, Kondo T, Brandt K. Flavone C-glycoside, phenolic acid, and nitrogen contents in leaves of barley subject to organic fertilization treatments [J]. Journal of Agricultural and Food Chemistry,2003,51: 809-813.
    109. Palaniswamy U R, Bible B B, McAvoy R J. Oxalic acid concentrations in purslane (Portulaca oleraceae L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics [J]. Scientia Horticulturae,2004,102(2):267-275.
    110. Papadopoulos I I, Chatzitheodorodis F, Papadopoulos C, Tarelidis V, Gianneli C. Evaluation of hydroponic production of vegetables and ornamental pot-plants in a heated green house in western Macedonia, Greece [J]. American Journal of Agricultural and Biological Science,2008,3:559-565.
    111. Pardossi A. The management of plant mineral nutrition in soilless culture, in:Fernandez M., Minguez P.L., Gomez I.M. (Eds.), Improvement of water use efficiency in protected crops,2005:122.
    112. Parks S E, Huett D O, Campbell L C, Spohr L J. Nitrate and nitrite in Australian leafy vegetables [J]. Australian Journal of Agricultural Research,2008,59:632-638.
    113. Pitman M, Lauchli A,2004. Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttge U (eds)Salinity:environment-plants-molecules. Kluwer, Dordrecht. Accessed 10 Jan 2011.
    114. Podsedek A. Natural antioxidants and antioxidant capacity of Brassica vegetables:a review [J]. LWT-Food Science and Technology,2007,40:1-11.
    115. Premanandh J. Factors affecting food security and contribution ofmodern technologies in food sustainability [J]. Journal of the Science of Food and Agriclture,2011,91(15): 2707-2714.
    116. Qin L, He J, Lee S K, Dodd I C. An assessment of the role of ethylene in mediating lettuce (Lactuca sativa) root growth at high temperatures [J]. Journal of Experimental Botany, 2007,58 (11):3017-3024.
    117. Qiu S J, Ju X T, Ingwersen J, et al. Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production [J]. Soil Tillage Research,2010,107:80-87.
    118. Rahaim C P, D Ph, E P, Czysz P A. A greenhouse for Mars and beyond [J]. American Institute of Physics,2008, (256):468-9458.
    119. Riccioni G. Carotenoids and cardiovascular disease [J]. Current Atherosclerosis Reports, 2009,11:434-439.
    120. Rietveld W J. Evaluation of three root growth potential techniques with tree seedlings [J]. New Forests,1989,3:181-189.
    121. Ritter E, Angulo B, Riga P, Herran C, Relloso J, Sanjose M. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers [J]. Potato Research,2001,44:127-135.
    122. Rouphael Y, Cardarelli M, Rea E, et al. Comparison of the subirrigation and drip-irrigation systems for greenhouse zucchini squash production using saline and non-saline nutrient solutions [J]. Agricultural Water Management,2006,82:99-117.
    123. Sanchez E, Ruiz J M, Romero L. Proline metabolism in response to nitrogen toxicity in fruit of French Bean plants (Phaseolus vulgaris L. cv Strike) [J]. Scientia Horticulturae, 2002,93:225-233.
    124. Sandoval-Villa, Wood C W, Guertal E A. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and nighttime nutrient solution strength [J]. Journal of Plant Nutrition,2002,25(10):2129-2142.
    125. Santamaria P, Elia A, Gonnella M, Serio F. Ways of reducing nitrate content in hydroponically grown leafy vegetables [J]. ISOSC Proceedings, Jersey,1996:437-451.
    126. Santamaria P, Elia A, Parente A, Serio F. Fertilization strategies for lowering nitrate content in leafy vegetables:chicory and rocket salad cases [J]. Journal of Plant Nutrition, 1998,21(9):1791-1803.
    127. Santamaria P, Elia A, Serio F and Todaro E. A survey of nitrate and oxalate content in fresh vegetables [J]. Journal of the Science of Food and Agriculture,1999,79:1882-1888.
    128. Santamaria P, Elia A. Gonnella M. Changes in nitrate accumulation and growth of endive plants during light period as affected by nitrogen level and form [J]. J. Plant Nutrition, 1997,20:1255-1266.
    129. Saparamadu J S, Wijesekera R D, Gunawardhana H D, et al. A low cost nutrient formulation with a buffer for simplified hydroponics systems [J]. Journal of Horticulture and Forestry,2010,2(5):99-103.
    130. Sarkar S, Kiriiwa Y, Endo M, et al. Effect of fertigation management and the composition of nutrient solution on the yield and quality of high soluble solid content tomatoes [J]. Journal of the Japanese Society for Horticultural Science,2008,77(2):143-149.
    131. Savvas D, Karagianni V, Kotsiras A, et al. Interactions between ammonium and pH of the nutrient solution supplied to gerbera (Gerbera jamesonii) grown in pumice [J]. Plant and Soil,2003,254:393-402.
    132. Scaife, A. A pump/leak/buffer model for plant nitrate uptake [J]. Plant and Soil, 1989,114(1):139-141.
    133. Scholberg J, MeNeal B L, Bote K J, Jones J W, Locascio S J, Olsen S M. Nitrogen stress effects on growth and nitrogen accumulation by field-grown tomato [J]. Agronomy Journal,2000,92:159-167.
    134. Schreiner M. Vegetable crop management strategies to increase the quantity of phytochemicals [J]. European Journal of Nutrition,2004:1-10.
    135. Serio F, Elia A, Signore A, Santamaria P. Influence of nitrogen form on yield and nitrate content of subirrigated early potato [J]. Journal of the Science of Food and Agriculture, 2004,84:1428-1432.
    136. Sgherri C, Cecconami S, Pinzino C, Navari-Izzo F, Izzo R. Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil [J]. Food Chemistry,2010,123: 416-422.
    137. Shi W M, Yao J, Yan F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China [J]. Nutrient Cycling in Agroecosystems,2009,83: 73-84.
    138. Silber A, Bar-Tal, A. Nutrition of substrate-grown plants. In:Raviv, M, Lieth, J.H. (Eds.), Soilless Culture:Theory and Practice. Elsevier, Amsterdam,2008:291-340.
    139. Siomos S A, Papadopoulou P P, Dogras C C, Vasiliadis E, Docas A, Georgiou N. Lettuce composition as affected by genotype and leaf position. Acta Hortic.2002,579:635-639.
    140. Souret F F, Weathers P J. The growth of saffron(Crocus sativus L.) in aeroponics and hydroponics [J]. Journal of Herbs, Spices & Medicinal Plants,2000,7(3):25-35.
    141. Stewart A J, Chapman W, Jenkins G I, et al. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues [J]. Plant, Cell and Environment, 2001,24:1189-1197.
    142. Still D W. Lettuce. Genome Mapping and Molecular Breeding in Plants,2007,5:127-140.
    143. Strisse T, Halbwirth H, Hoyer U, et al. Growth-promoting nitrogen nutrition affects flavonoid biosynthesis in young apple(Malus domestica Borkh.) leaves [J]. Plant Biology, 2005,7:677-685.
    144. Susin, J, Kmecl V, Gregorcic A. A survey of nitrate and nitrite content of fruit and vegetables grown in Slovenia during 1996-2002 [J]. Food Additives and Contaminants, 2006,23:385-390.
    145. Tabatabaei S J, Fatemi L S, Fallahi E. Effect of ammonium:nitrate ratio on yield, calcium concentration, and photosynthesis rate in strawberry [J]. Journal of Plant Nutrition,2006, 29:1273-1285.
    146. Tadolino B, Juliano C, Piu L, et al. Resveratrol inhibition of lipid peroxidation [J]. Free radical research,2000,33:105-114.
    147. Takushi H, Watanabe C K, Boom C, Tholen D, Takahara K, et al. Ammonium-dependent respiratory increase is dependent on the cytochrome pathway in Arabidopsis thaliana shoots [J]. Plant, Cell and Environment,2010,33:1888-1897.
    148. Tan L P, He J, Lee S K. Effects of root-zone temperature on the root development and nutrient up take of lactuca satival."Panama" grown in aeroponic system in the tropics [J]. Journal of plant nutrition,2002,25(2):297-314.
    149. Tesi R, Lenzi A, Lombardi P. Effect of salinity and oxygen level on lettuce grown in a floating system [J]. Acta Horticulturae,2003,609:383-387.
    150. Thaipong K, Boonprakob U, Crosby K,Cisneros-Zevallos L, Byrne D H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts [J]. Journal of Food Composition and Analysis,2006,19:669-675.
    151. Treutter D. Managing phenol contents in crop plants by phytochemical farming and breeding—visions and constraints. International Journal of Molecular Sciences,2010, 11:807-857.
    152. Tsukagoshi S, Maruo T, et al. Effects of withdrawal of NO3-N or all nutrient from the NFT system prior to harvest on the growth, NO3 content in the spinach plant and the final mineral concentration in the nutrient solution[J]. Japanese Society for Horticultural Science,1999,68(5):1022-1026. (in Japanese)
    153. Tuncay O, Esiyok D, Yagmur B, Okur B.Yield and quality of garden cress affected by different nitrogen sources and growing period [J]. African Journal of Agricultural Research,2011,6(3):608-617.
    154. Umars A S, Iqbal M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review [J]. Agronomy for Sustainable Development,2007, 27:45-57.
    155. Urrestarazu M, Mazuela P C. Effect of slow-release oxygen supply by fertigation on horticultural crops under soilless culture [J]. Scientia Horticulturae,2005,106:484-490.
    156. Urrestarazu M, Postigo A, Salas M, Sanchez A, Carrasco G. Nitrate accumulation reduction using chloride in the nutrient solution on lettuce growing by NFT in semiarid climate conditions [J]. Journal of Plant Nutrition,1998,21(8):1705-1714.
    157. Van Os E A, Gieling Th H, Ruijs M N A. Equipment for hydroponic installations. In: Hydroponic Production of Vegetables and Ornamentals (Savvas D; Passam HC, eds) [J]. Embryo Publications, Athens, Greece,2002,103-141.
    158. Wang H, Inukai Y, Yamauchi. A. Root development and nutrient uptake [J]. Critical Reviews in Plant Sciences,2006b,25(1):279-301.
    159. Wang H, Yamauchi A. Growth and function of roots under abiotic stress in soils [J].In: Plant-Environment Interactions (3rded). Huang, B. (Ed.).CRC Press. Boca Raton Florida, 2006a:271-320.
    160. Weathers P J, Zobel R W. Aeroponics for the culture of organisms, tissues and cells [J]. Biotechnology Advances,1992(1),10:93-115.
    161. Weber J, Tham F Y, Galiana A, Prin Y, Ducousso M, Lee S K. Effects of nitrogen source on the growth and nodulation of acacia mangium in aeroponic culture [J]. Journal of Tropical Forest Science,2007,19(2):103-112.
    162. Wootton-Beard P C, Moran A, Ryan L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods[J]. Food Research International,2011,44(1):217-224.
    163. Wu M, Kubota C. Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening [J]. Scientia Horticulturae,2008,116(2):122-129.
    164. Zhang F C, Kang S Z, Li F S, Zhang J H. Growth and major nutrient concentrations in Brassica campestris supplied with different NH4+/NO3- ratios [J]. Journal of Integrative Plant Biology,2007,49(4):455-462.
    165. Zhang J, Kirkham M B. Antioxidant responses to drought in sunflower and sorghum seedlings [J]. New Phytologist,1996,132:361-373.
    166. Zhong W K, Hu C M, Wang M J. Nitrate and nitrite in vegetables from north China: content and intake [J]. Food Additives and Contaminants,2002,19:1125-1129.
    167. Zhou Z Y, Fan Y P, Wang M J. Heavy metal contamination in vegetables and their control in China [J]. Food Review International,2000,16:239-255.
    168. Zhu J H, Li X L, Christie P, et al. Environmental implication of low nitrogen use efficiency in excessively fertilized hot pepper(Capsicum frutescens L.) cropping systems [J]. Agriculture, Ecosystems and Environment,2005,111:70-80.
    169. Zobel R W, Tredici P D, Torrey J G. Method for growing plants aeroponically [J]. Plant Physiology,1976,57:344-346.
    170.安娜,须晖,孙周平,等.雾培番茄不同营养液配方的生产效果比较[J].沈阳农业大学学报,2006,37(3):495-497.
    171.鲍士旦.农化分析[M].中国农业出版社,1999.
    172.陈范骏,米国华,曹敏建,等.碳水化合物的分配在玉米杂交种耐低氮中的作用[J].玉米科学,2002,10(4):81-84.
    173.陈巍,罗金葵,姜慧梅,沈其荣.不同形态氮素比例对不同小白菜品种生物量和硝酸盐含量的影响[J].土壤学报,2004,41(3):420-424.
    174.程建峰,潘晓云,刘宜柏.作物根系研究法最新进展[J].江西农业学报,1999,11(4):55-59.
    175.戴廷波,曹卫星,荆奇.氮形态对不同小麦基因型氮素吸收和光合作用的影响[J].应用生态学报,2001,12(6):849-852.
    176.董晓英,李式军.采前营养液处理对水培小白菜硝酸盐积累的影响[J].植物营养与肥料学报,2003,9(4):447-451.
    177.樊怀福,郭世荣,张润花,等.嫁接对低氧胁迫下黄瓜生长和生理代谢的影响[J].园艺学报,2006,33(6):1225-1230.
    178.高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.
    179.郭世荣.无土栽培学[M].北京:中国农业出版社,2003.
    180.胡承孝,邓波儿,刘同仇.氮肥水平对蔬菜品质的影响[J].土壤与肥料,1996,(3):34-37.
    181.姜波,林成永,章永松.杭州市郊典型菜园土壤磷素状况及磷素淋失风险研究[J].浙江大学学报(农业与生命科学版),2008,34(2):207-213.
    182.焦自高,王嵩启,董玉梅,等.嫁接对黄瓜生长及品质的影响[J].山东农业科学,2000,(1):26-26.
    183.孔德工,唐其展,田忠孝.施氮对生菜硝酸盐含量及产量的影响[J].广西农业科学,1999(4):186-187.
    184.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    185.李胜利,齐子杰,王建辉,孙治强,于进步.根际通气环境对盆栽黄瓜生长的影响[J].河南农业大学学报,2008,42(3):281-283.
    186.李永胜,杜建军,谢勇.无土栽培技术对蔬菜品质的影响[J].安徽农学通报,2006, 12(8):187-190.
    187.凌关庭.抗氧化食品与健康[M].北京:化学工业出版社,2004.
    188.刘广晶,孙周平,包美丽,赵乐,薛东东.雾培与液培对黄瓜根系氮代谢相关酶活性的影响[J].西北农业学报,2011,20(3):132-137.
    189.刘玉梅,于贤昌,姜建辉.不同施氮水平对嫁接和自根黄瓜品质的影响[J].植物营养与肥料学报,2006,12(5):706-710.
    190.卢泳全.气雾法生产马铃薯脱毒小薯效果的研究[J].东北农业大学学报,2001,22(3):68-72.
    191.潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995:76-77.
    192.沈明珠,翟宝杰,东惠茹,等.蔬菜硝酸盐累积的研究.Ⅰ.不同蔬菜硝酸盐、亚硝酸盐含量评价.园艺学报[J].园艺学报,1982,9(4):41-48.
    193.沈宝宇,刘广晶,赵晓丹,杜哲.营养液不同硝铵比对雾培黄瓜果实产量与品质的影响[J].安徽农学通报,2011,17(09):90-93.
    194.寿森炎,杨信延,朱祝军,吴韩英.氮素形态和光照强度对番茄生长及抗氧化酶活性的影响[J].浙江大学学报(农业与生命科学版),2000,26(5):500-504.
    195.孙小凤.不同供氮水平对油白菜产量和品质的影响[J].土壤肥料,2005,(4):11-14.
    196.孙兴祥,王健,周毅,沈其荣.不同氮素水平对菠菜生长和品质的影响[J].南京农业大学学报,2005,28(3):126-128.
    197.孙旭霞,薛玉花,伍晓华.氮肥水平对生菜产量及品质的影响研究[J].北方园艺,2009,(8):100-101.
    198.孙艳军,郭世荣,胡晓辉.高洪波根际低氧逆境对网纹甜瓜幼苗生长及根系呼吸代谢途径的影响[J].植物生态学报,2006,30(1):112-117.
    199.孙园园,林咸永,金崇伟,等.氮素形态对菠菜体内抗坏血酸含量及其代谢的影响[J].浙江大学学报(农业与生命科学版),2009,35(3):292-298.
    200.孙周平,李天来,姚莉,邹红藜.雾培法根际CO2对马铃薯生长和光合作用的影响[J].园艺学报,2004,31(1):59-63.
    201.孙周平,刘涛,蔺姗姗,李天来.雾培对番茄植株生长、产量和品质的影响[J].沈阳农业大学学报,2006,37(3):488-490.
    202.万军.国内外无土栽培技术现状及发展趋势[J].科技创新导报,2011,(3):11.
    203.汪建飞,董彩霞,沈其荣.氮素不同形态配比对菠菜体内游离氨基酸含量和相关酶活性的影响[J].植物营养与肥料学报,2007,13(4):664-670.
    204.王波,王梅农,赖涛,沈其荣.不同形态氮素营养对生菜光合特性的影响[J].南京农业大学学报,2007a,30(4):74-77.
    205.王波,沈其荣,赖涛,等.不同硝铵比营养液对生菜生长发育影响的研究[J].土壤学报, 2007b,44(3):561-565.
    206.王季春,唐道彬,吕长文,何凤发,何庆学.营养与株型调控对雾培马铃薯的结束生理影响[J].中国生态农业学报,2007,15(3):104-107.
    207.王珺玲,刘广晶,孙周平.雾培对黄瓜植株生长、产量和品质的影响[J].江苏农业科学,2009b,(1):174-176.
    208.王珺玲,孙周平,陈红波,刘广晶.雾培对黄瓜植株生长的影响[J].西北农业学报,2009a,18(2):184-187.
    209.王明霞,周志峰,袁玲.硝态氮对不同品种生菜产量和品质的影响[J].西南师范大学学报(自然科学版),2007,32(4):43-46.
    210.王玉军,张本华.温室技术的现状及发展趋势[J].农机化研究,2008,(1):249-251.
    211.吴朝晖,周建群,青先国.水稻根系分布形态研究法现状及展望[J].湖南农业科学,2008,(5):11-14.
    212.肖凯,张树华,邹定辉,等.不同形态氮素营养对小麦光合特性的影响[J].作物学报,2000,26(1):53-58.
    213.熊国华,林咸永,章永松,郑绍建,周根娣.环境因素对蔬菜累积硝酸盐影响的研究进展[J].土壤通报,2004,35(3):363-365.
    214.徐坤范,艾希珍,张晓慧,徐康乐.氮素水平对日光温室黄瓜品质的影响[J].西北农业学报,2005,14(1):162-166.
    215.徐卫红,王正银,林春云.液培条件下养分组成对叶菜硝酸盐及营养品质的影响[J].农业环境保护,2002,21(4):322-324.
    216.许淑娟,孙周平,王志鑫.烯效唑对雾培马铃薯光合特性及荧光的影响[J].西北农业学报,2009,18(3):127-130.
    217.杨旭,邹志荣,贺忠群,李军,冯嘉玥.蔬菜无土栽培营养液中的氮素及其调控[J].西北植物学报,2003,23(9):1644-1649.
    218.杨元军,孙慧生,王培伦,马伟青,等.雾培与基质栽培马铃薯脱毒小薯继代产量比较[J].山东农业科学,2002,(1):29-30.
    219.于曼曼,刘丽,郭巧生,等.氮素不同形态配比对夏枯草苗期生长及光合特性的影响[J].中国中药杂志,2011,36(5):530-534.
    220.张成良,尹富强,陈大洲,黄英金,肖叶青,邬文昌.水稻根系研究法的现状[J].江西农业学报,2006,18(2):34-36.
    221.张英鹏,林咸永,章永松.供氮水平对菠菜营养品质和体内抗氧化酶活性的影响[J].应用生态学报,2005,16(3):519-523.
    222.张英鹏,徐旭军,林咸永,章永松,等.供氮水平对菠菜产量、硝酸盐和草酸累积的影响[J].植物营养与肥料学报,2004,10(5):494-498.
    223.赵长盛,苏欣,胡承孝,黄魏,等.小白菜高产优质高效施用氮肥的研究[J].长江蔬菜(学术版),2009,(14):70-75.
    224.赵旭,李天来,孙周平.番茄基质通气栽培模式的效果[J].应用生态学报,2010,21(1):74-78.
    225.朱伟锋,林咸永,金崇伟,章永松,方萍.氮肥对不同白菜品种抗氧化物质含量和抗氧化活性的影响[J].浙江大学学报(农业与生命科学版),2009,35(3):299-306.
    226.朱小梅,王正银,叶学见,吴家旺.氮素形态对蔬菜品质元素吸收的影响[J].吉林蔬菜,2006,2:53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700