γ-氨基丁酸对生菜氮代谢及营养品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着设施蔬菜面积日益扩大,过量施用化肥造成的后果日益严重,已成为蔬菜三大污染源之一,严重影响作物的产量和品质,并且通过食物链最终影响人类健康。叶菜类蔬菜最易富集硝酸盐,生菜(Lactuca sativa L.)作为设施广泛栽培的叶菜类蔬菜之一,在设施生产中生菜产量和品质的提高与施肥的关系非常密切,因此降低生菜体内硝酸盐含量对提高品质具有重要意义。
     γ-氨基丁酸(GABA)是一种四碳非蛋白质氨基酸,近年来有关外源GABA对植物生理代谢的研究主要集中于提高植物的抗逆性,但外源GABA对蔬菜品质影响的研究报道很少。为此,本试验以生菜为试材,采用水培法研究了外源GABA对植株生长和营养品质的影响,明确了外源添加GABA的最适浓度、最适方法、最适时间,并进一步研究了高氮胁迫下GABA影响生菜体内硝酸盐积累的内在机理和营养品质,以探讨生菜氮代谢的内在机理,为寻求降低叶菜类蔬菜硝酸盐含量、提高营养品质的有效措施提供理论依据。
     主要结果如下:
     (1)采用浸种、叶面喷施、营养液添加3种方法,研究了不同浓度GABA对植株生长和营养品质的影响。结果表明:3种施用GABA的方法均可促进生菜的生长,通过提高NR活性降低了体内硝酸盐含量,提高了生菜品质;但不同施用方法均存在浓度效应,其中浸种处理、叶面喷施、营养液添加GABA的浓度分别以5.00 mmol/L、100 mmol/L、2.50 mmol/L效果较好,在最适宜浓度下对生长和品质指标综合分析认为,营养液添加2.50 mmol/L GABA处理的效果最好。
     (2)营养液添加2.50 mmol/L GABA培养3-12 d的生菜生长量和营养品质均有所提高,但是在采收前6 d施用GABA时生菜地上部鲜重、硝酸还原酶(NR)活性以及氨基酸、蛋白质含量最高,而硝酸盐含量最低,其次为采收前9 d、12 d施用GABA,采收前3 d施用GABA效果最差。结果表明营养液外源添加GABA可提高生菜产量和品质,但存在时间效应,以采收前6 d施用GABA效果最佳。
     (3)采用营养液水培法,研究了高氮胁迫下(32 mmol/L)外源GABA对生菜生长和氮代谢及矿质元素含量的影响。结果表明:高氮胁迫下外源添加GABA显著促进生菜的生长,NR、亚硝酸还原酶(NiR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)活性显著提高,亚硝态氮(NO2--N)、铵态氮(NH4+-N)、α-酮戊二酸、氨基酸、可溶性蛋白、总氮含量显著增加,同时K+、Ca2+、Mg2+含量显著升高,根系活力明显提高,而硝态氮(NO3--N)、Mn、Fe含量大幅下降,谷氨酸脱氢酶(GDH)、谷氨酸脱羧酶(GAD)活性显著下降,缓解了高氮胁迫对生长的抑制;而高氮胁迫下同时添加GABA和钼酸钠处理进一步提高了GABA对高氮胁迫的缓解作用,而同时添加GABA和钨酸钠则降低了GABA对高氮胁迫的缓解作用,说明高氮胁迫下添加外源GABA可以通过诱导NR活性的提高促进硝酸盐的吸收和转化,从而缓解高氮胁迫对生菜的伤害。
In recent years, with the development of facility vegetables growing,serious consequence caused by excessive application of fertilizer, has become one of the three major sources of vegetables pollution, seriously affect on crop yield and quality, and eventually affect human health by the food chain.Lettuce widely cultivated as one of the facilities leafy vegetables,the apply fertilizer has a very close relationship with improvement of the production yield and quality of lettuce.Thus reducing the content of lettuce nitrate has important meaning in improving the yield and quality.
     γ-aminobutyric acid (GABA) is a four-carbon non-protein amino acid conserved from bacteria to plants and vertebrates. In recent years,research about the exogenous GABA on metabolism of plant physiology mainly focused on theimprovement of resistance of salt stress , cold stress , hypoxia stress,but few reports about exogenous GABA on the effect of the quality in vegetables.So, a hydroponics experiment investigated that the effect of exogenous GABA on nitrogen metabolism and mineral elements contents of lettuce under different nitrogen level, defined the optimum time,concentration and method for add exogenous GABA,trial to further research to investigate the effect of exogenous GABA on the nitrogen metabolism and mineral elements contents under high nitrogen stress in hydroponics culture, In order to investigate the inner mechanism of the nitrogen metabolism,provide a theoretical basis for seeking a method to reduce the nitrate content of leafy vegetables , and effective measures to improve the quality.
     The paper investigated that the effect of different concentration GABA on growth and quality in lettuce using three different appliction method including soaking, leaf spraying and application GABA in nutrient solution under hydroponics of non-heading lettuce variety‘Dasu’. The results showed that three application method were all promoted the growth of lettuce, decreased the nitrate content and improved the quality through increasing nitrate reductase activity.But there existed the concentration effect under different application methods, among them, the preferable concentration of soaking, leaf spraying and application GABA in nutrient solution were 5.00 mmol/L, 100 mmol/L, 2.50 mmol/L respectively.The result showed that the effect of exogenous application 2.50 mmol/LGABA in nutrient solution was best both in growth and quality improvement
     A hydroponics experiment was conducted to investigate the effect of exogenous application GABA time on nitrate content and quality improvement in non-heading lettuce variety‘Dasu’. The results showed that the growth and quality of lettuce were all increased under the nutrient solution applying GABA 3-12 d. And the fresh weight, activity of nitrate reductase and contents of amino acid and protein were all highest, but the the nitrate content in leaves were the lowest. While the effects of treatment 9 d and 12 d were lower than that of 6 d, and the effect of 3 d was the lowest. The results indicated that application exogenous GABA could increased yield and quality of lettuce, but there existed time effects, and the effect of 6 d was best.
     The lettuce variety‘Dasu’was used to investigate the effect of exogenous GABA on the growth index,nitrogen metabolism and mineral elements contents under high nitrogen stress in hydroponics culture.The results showed that compared with high nitrogen stress,the activities of nitrate reductase (NR), nitrite reductase (NiR) and the contents of nitrite (NO2--N), ammonium (NH4+-N), amino acids, soluble protein,total nitrogen as well as K+, Ca2+, Mg2+ significantly increased,however the contents of nitrate (NO3--N),Mn, Fe obviously decreased, when lettuces were grown in the nutrient solution of GABA under high nitrogen stress.However, exogenous GABA and sodium molybdate application anesis the harm of high nitrogen stress to lettuce,while exogenous GABA and sodium tungstate application had opposite effects.The result indicated that exogenous GABA might alleviate the damage of lettuce from high nitrogen stress via enhanced NR activity and improving nitrate absorption and transformation, meanwhile increased K+, Ca2+, Mg2+contents and decreased Mn, Fe contents.
引文
[1]郭熙盛,朱宏彬,王文军等.不同氮钾水平对结球甘蓝产量和品质的影响.植物营养与肥料学报[J].2004,10(2):161-166.
    [2]刘忠,王朝辉,陈宝明等.菠菜叶片中硝态氮还原与叶柄中硝态氮累积的关系明[J].植物生理学通讯,2004,40(3):281-284. [ 3 ]杨少海,艾绍英,姚建武,等.氮素营养对菜茎生长和硝酸盐累积的影响[J].中国蔬菜,2003(4:)19-21.
    [4]艾绍英,姚建武,柯玉诗,等.氮钾营养对大青菜矿质元素含量的影响初探[J].广东农业科学,2001(3):37-39.
    [5]邹春琴,张福锁,毛达如,等.不同调节措施对对菜豆吸收矿质元素及其在体内分部的影响[J].中国农业大学学报,1997,2(l):37-43.
    [6]高祖明,张耀栋,张道勇,等.氮磷钾对叶菜硝酸盐积累和硝酸还原酶、过氧化物酶活性的影响[J].园艺学报,1989,16(4):293-297.
    [7]李彩凤,马凤鸣,赵越,等.氮素形态对甜菜氮糖代谢酶活性和相关产物的影响[J].作物学报,2003,29(1):128-132.
    [8]吴良欢,陶勤南.水稻氨基酸态氮营养效应及其机理研究[J].土壤学报,2000,37(4):464-473.
    [9]莫良玉,吴良欢,陶勤南.高温胁迫下水稻氨基酸态氮与按态氮营养效应研究[J].植物营养与肥料学报,2002,8(2):157-161.
    [10]戴廷波,曹卫星,孙传范,等.增按营养对小麦光合作用及硝酸还原酶和谷氨酞胺合成酶的影响[J].应用生态学,2003,14(9):1529-1532.
    [11]陈馒,朱保葛,张敬,等.不同氮源对大豆硝酸还原酶和谷氨酞胺合成酶活性及蛋白质含量的影响[J].大豆科学,2004,23(2):143-146.
    [12]张宏纪,马凤鸣,李文华,等.不同形态氮素对甜菜谷氨酞胺合成酶活性的影响[J].黑龙江农业科学,2001(6):7-10.
    [13]赵越,魏自民,马凤鸣.同一氮素水平不同NO3-/NH4+对NRA和GSA的影响[J].东北农业大学学报,2002,33(4):373-376.
    [14]张乃明.施肥对蔬菜中硝酸盐累积量的影响[J].土壤肥料,2001(2):37-38.
    [15]高洪波,李敬蕊,章铁军,等.甘氨酸和谷氨酸与钼配施对生菜品质的影响[J].西北植物学报,2010,30(5):0968-0973.
    [16] Bouche N, Fromm H. GABA in plants:Just a metabolite[J].Trends in Plant Science, 2004, 9:110-115.
    [17] Kimmersley A M, Turano F J. Gamma aminobutyric acid (GABA) and plant responses to stress[J]. Crit Rev Plant Sci, 2000, 19: 479-509.
    [18] Breitkreuz KE, Allan WL, Van Cauwenberghe OR, et al. A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency[J].J Biol Chem, 2003, 278: 41552-41556.
    [19] Alan W B, Kennaway B M, Barry J S. Gamma-hydroxybutyrate: defense against invertebrate pests?[J] Trends Plant Sci, 2006, 11(9): 424-427.
    [20]史宏志,韩锦峰,刘国顺,等.不同氮素营养的烟叶氨基酸含量与香吃味品质的关系[J].河南农业大学学,1997,31(4):319-322.
    [21]王朝辉,李生秀,田霄鸿,等.不同氮肥用量对硝酸盐累积的影响[J].植物营养与肥料学报, 1998, 4(1): 22-28.
    [22]郭熙盛,朱宏彬,王文军,等.不同氮钾水平对结球甘蓝产量和品质的影响[J].植物营养与肥料学,2004,10(2):161-166.
    [23]王健儿,殷钮,王金根.粤优938不同施氮量对产量的影响[J].耕作与栽培,2004(5):48-49.
    [24]万书波,封海胜,左学青,等.不同供氮水平花生的氮素利用效率[J].山东农业科学,2000(1): 31-33.
    [25]卢风刚.氮素对韭菜生长品质及氮代谢关键酶的影响[M].河北农业大学硕士论文,2004.
    [26]李俊良,陈新平,李晓林,等.大白菜氮肥施用的产量效应、品质效应和环境效应[J].土壤学报, 2003, 40(2): 261-266.
    [27]陈新平,邹春琴,刘亚萍,等.菠菜不同品种累积硝酸盐能力的差异及其原因[J].植物营养与肥料学报, 2000, 6(1): 30-34.
    [28]李俊良,张晓晟,张宏彦,等.平衡施肥对甘蓝产量、品质及其生长性状的影响[A].见:李晓林,张福锁,米国华,等编.平衡施肥与可持续优质蔬菜生产[C].北京:中国农业大学出版社, 2000. 345-351.
    [29]王朝辉,田霄鸿,李生秀.土壤水分对蔬菜硝态氮积累的影响[J].西北农业大学学报, 2000, 25(6): 15-20.
    [30]赵居生.氮素对甜菜产量和品质的影响[J].甘肃农业科学,1994(7),17-18.
    [31]陈贵林,高秀瑞.氨基酸和尿素部分替代硝态氮对不结球白菜和生菜硝酸盐含量的影响[J].中国农业科学,2002,35(2):157-191.
    [32]蒋振晖,顾振新.高等植物体内γ-氨基丁酸合成、代谢及其生理作用[J].植物生理学通讯, 2003,39(3), 249-254.
    [33] CHUNG I, BOWN A W, SHELP B J. The production and efflux of 4-aminobutyrate in solated mesophyll cells[J]. Plant Physiology, 1992, 99: 659-664. [ 34 ] TUINL G, SHELP B J.In situation glutamate metabolism by developing soybean cotyledons.I.Metabolic routes [J]. Plant Physiology, 1994, 143: 1-7.
    [35]何生根,黄学林,傅家瑞.植物中的多胺氧化酶[J].植物生理学通讯, 1998, 34(3): 213-218.
    [36] ALAN W B, BARRY J S. The metabolism and function ofγ-Aminobutyric acid[J]. Plant Physiology, 1997, 115: 1-5.
    [37] SHELP B J,WAITON C S, SNEDDEN W A.Gaba shunt in developing soybean seeds is associated with hypoxia[J]. Physiology Plant,1995, 94: 219-228
    [38] BUSCH K B, FROMM H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides[J].Plant Physiology, 1999, 121: 589-597.
    [39] Bown AW,Shelp BJ.The metabolism and functions ofγ-aminobutyric acid[J]. Plant Physiol , 1997,115 :1-5.
    [40] Roberts, J. K. M. eta.Contribution ofmalate and amino acid metabolism to cytoplasmic pHregulation in hypoxic maize root tips studied using magnetic resonance spectroscopy,PlantPhysio. 1992,l98,480-487.
    [41] ALAN M K, FRANK J T. Gamma Aminobutyric (GABA) and plant responses to stress[J]. Critical Reviews in Plant Sciences,2000,19(4):479-509.
    [42] MARTA P,OLGA I,JUAN M R,et al.Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in sediments: An experimental assessment[J]. Environmental and Experimental Botany, 2007, 60(2): 193-201.
    [43] Schwackea R, Grallatha S, Breitkreuza K E, et al. LeProT1, a transporter for proline, glycine betaine, and gamma-aminobutyric acid in tomato pollen[J]. Plant Cell, 1999, 11:377-392.
    [44] Bouche N, Fait A, Moller S G, et al. Mitochondrial succinic-semialdehyde dehydrogenase of the caminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants[J]. Proc Natl Acad Sci USA, 2003, 100: 6843-6848.
    [45]田小磊,吴晓岚,李云,等.盐胁迫条件下γ-氨基丁酸对玉米幼苗SOD、POD及CAT活性的影响[J].实验生物学报, 2005,38:75-79.
    [46] A RUMUGAM K, JACINTHA M, CHINNAPPA D M R.γ-aminobutyric acid promotes stem elongation in Stellarialongipes: the role of ethylene[J]. Plant Growth Regulation, 1998, 26: 131-137.
    [47] ALAN M K, FANG L. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants[J]. Plant Growth Regulation, 2000, 32: 65-76. [ 48 ] SCOTT-TAGGART P C, CAUWENBERGHE O R V, MCLEAN M D. Regulation ofγ-aminobutyric acid synthesis in situ by glutamate availability[J].Physiology Plantarum, 1999, 106: 363-369.
    [49] TUIN J G, SHELP B J. In situglutamate metabolism by developing soybean cotyledons. III. Utilization[J]. Plant Physiology, 1989, 91: 170-174.
    [50]施征,史胜青,钟传飞,等.γ氨基丁酸在植物抗逆生理及调控中的作用[J].2007,11(4): 57-61.
    [51] WANG Y H, GARVIN D F, KOCHIAN L V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium and iron deficiencies in tomato roots: evidence for cross talk and root/rhizosphere-mediated signals[J].Plant Physiology,2002,130: 1361-1370.
    [52] RAEVSKII V, STEVENSON J D. Endogenous dopamine modulates corticopallidal influences via GABA[J]. Neuroscience and Behavioral Physiology, 2003, 33(8): 839-844.
    [53] BOUCHE N, FAIT A, MOLLERO S G, et al. Mitochondrial succinic-semialdehyde dehydrogense of theγ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants[J]. PNAS, 2003, 100: 6843-6848.
    [54] RAVISHANKAR P, LAURA B, DAPHNE P. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell, 2003, 114: 47-59.
    [55] PALANIVELU R, PREUSS D. Pollen tube targeting and axon guidance: parallels in tip growth mechanisms[J]. Trends Cell Biology, 2000, 10: 517-524.
    [56] LANCIEN M, ROBERTS M R. Regulation of Arabidopsis thaliana 14-3-3 gene expression byγ-aminobutyric acid[J]. Plant Cell and Environment, 2006, 29: 1430-1436.
    [57]吕伟仙,葛滢,吴建之,等.植物中硝态氮氨态氮总氮测定方法的比较研究[J].光谱学与光谱分析,2004,24(2):204-206.
    [58] Foyer C H, Valadier M H, Migge A, Becker T W. 1998. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiology, 117:283– 292.
    [59] Takahashi M, Sasaki Y, Ida S, Morikawa H. 2001. Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. Plant Physiology, 126:731– 741.
    [60] Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72:248– 254.
    [61]郝建军.植物生理学实验技术[M].沈阳:辽宁科学技术出版社, 2001.
    [62] Oaks A, Stulen J, Jones K, et al. Enzymes of nitrogen assimilation in maize roots[J]. Planta, 1980, 148: 477-484.
    [63] Singh RD, Srivastava HS. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen[J]. Physion Plant, 1986, 66:413-416.
    [64] Kanamori T, Konishi S, Takahashi E. Inducible formation of glutamate dehydrogenase in rice plant roots by the addition of ammonia to the media[J]. Physiol Plant, 1972, 26: 1-6.
    [65]宋红苗,陶跃之,王慧中.GABA在植物体内的合成代谢及生物学功能[J].浙江农业科学, 2010,2: 225-228.
    [66] Allan W L, Shelp B J. Fluctuations of g-aminobutyrate, ghydroxybutyrate, and related amino acids in Arabidopsis leaves as a function of the light-dark cycle, leaf age, and N stress[J]. Canadian Journal of Botany, 2006, 84: 1339-1346.
    [67]李岩岩,肖雯,魏秀俭.GABA对小麦幼苗耐盐性的影响[J].甘肃农业大学学报,2010,4(2): 53-57.
    [68]周翔.盐胁迫诱导玉米幼苗GABA积累的生理作用[D].北京:中国农业大学, 2004.
    [69]夏庆平,高洪波,李敬蕊.γ-氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗光合作用和叶绿素荧光参数的影响[J].应用生态学报, 2011, 22(4): 999-1006.
    [70]陈贵林,高秀瑞.氨基酸和尿素替代硝态氮对水培不结球白菜和生菜硝酸盐含量的影响[J].中国农业科学, 2002,35(2):187-191.
    [71] PENG Zhi-ping,HUANG Ji-chuan,YU Jun-hong. Effect of Foliar Application of Amino Acid on the Quality and Enzyme Activity of Flowering Chi-nese Cabbage(Brassica parachinensis Bailey) [J].Agricultural Science and Technology, 2011,12(1):50-53,73.
    [72] Allan, W.L. and Shelp, B.J. Fluctuations of g-aminobutyrate, ghydroxybutyrate, and related amino acids in Arabidopsis leaves as a function of the light-dark cycle, leaf age, and N stress. Can J Bot, 2006, 84: 1339-1346.
    [73]王晓冬,解备涛,谭伟明,等.γ-氨基丁酸对冬小麦籽粒灌浆期耐热性及产量和品质的影响[J].麦类作物学报,2009,29(4):623-626.
    [74]郑伟,何萍,高强,等.施氮对不同土壤肥力玉米氮素吸收和利用的影响[J]植物营养与肥料学报,2011,2
    [75]李银水,鲁剑巍,廖星.氮肥用量对油菜产量及氮素利用效率的影响[J]中国油料作物学报,2011,04.
    [76]张英鹏,徐旭军,林咸永.供氮水平对菠菜产量、硝酸盐和草酸累积的影响[J].植物营养与肥料学,2004,10(5):494-498
    [77]闵炬,施卫明.不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响[J].植物营养与肥料学报,2009,01:155-161.
    [78] Miflin B J, Lea P J.Ammonia assimilation[A]. In: Miflin B J ed. The Biochemistry of Plants.Vol.5.Amino Acids and Their Derivatives[M]. New York:Academic Press, 1980:169 -202.
    [79]田纪春,王学臣,刘广田.植物的光合作用与光合氮、碳代谢的祸联及调节[J].生命科学第2001,8( 4):145-147.
    [80] Breitkreuz KE, Allan WL, Van Cauwenberghe OR, et al. A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency[J]. J Biol Chem, 2003, 278: 41552-41556.
    [81] Crawford L A, Bown A W, Breitkreuz K E, Guinel F C. 1994. The synthesis ofγ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiology, 104:865-871.
    [82] Kinnersley A M, Turano F J. 2000. Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Review of Plant Science, 19:479– 509.
    [83] Gulati A, Jaiwal P K.Effect of NaCl on nitrate re-ductitase, glutamate dehydrogenase and glutamate in VignaradiataCalli[J].Bio Plant, 1996,38: 177-183.
    [84] Robin S A, Slade A P, Fore G G, Phillips R, Rad-cliffe R G, Stewart G R. The role of GDH in plant nitrogen metabolism[J].Plant Physiol, 1991,95:509-516.
    [85] Alan M K, Fang L. 2000. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regulation, 32: 65– 76.
    [86]周翔. 2004.盐胁迫诱导玉米幼苗GABA积累的生理作用[D].北京:中国农业大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700