云南个旧乍甸农作物重金属污染现状及土壤改良
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着采矿、选矿和冶炼行业的发展,农药、化肥和污灌的使用,使本已稀缺的耕地资源因土壤重金属污染而日益紧缺,土壤重金属污染已经严重制约污染区的农业发展,危及到农作物食品安全和人体健康。在土壤重金属难以快速、安全、经济去除的客观事实下,探寻低吸收作物种类或者品种在污染区推广种植,并通过土壤改良措施抑制土壤重金属向植物体迁移,是一条在污染区发展可持续农业生产的现实途径。
     本研究首先对云南个旧乍甸农田土壤和农作物进行野外调查,初步探明研究地点土壤基本理化性质以及农田土壤和农作物重金属污染现状,并根据不同作物对重金属的转移系数,筛选出低吸收品种或种类;然后在室内土培条件下,通过三因素四水平正交设计L16(43),研究外源As-Pb-Cd复合污染对甘蓝(Brassica oleracea L.)、芫荽(Coriandrum sativum L.)、油菜(Brassica napus L.)3种农作物的生物量、营养品质和可食部分重金属含量的影响;最后在室内土培条件下,以油菜(B. napus L.)为供试植物,直接以污染区农田土壤为供试土壤,通过添加不同浓度有机肥(鸡粪)、磷肥(NaH2PO4·2H2O)和有机肥与磷肥混施,研究不同改良剂对供试土壤基本理化性质、土壤酶活性、油菜可食部分As、Pb、Cd含量和营养品质的影响。研究的主要结果表明:
     (1)研究地点农田土壤Pb、Zn、Cu,、Cd、 As含量均超出《土壤环境质量标准》(GB15618-1995)二级标准,Hg未检出,该地区农田呈以As、Cd为主多种重金属复合污染。Pb、Zn、Cu、Cd、As土壤有效态含量与土壤全量呈极显著正相关(P<0.01)。农作物中Cu、As含量与土壤有效态Cu、As含量无显著相关,Zn含量与土壤有效态Zn呈极显著负相关(P<0.01),Cd、Pb含量与土壤有效态Cd、Pb呈显著正相关(P<0.05)。
     (2)89%的农作物As超标,其中油菜籽(B. napus L.) As含量最高,均值达23.04±14.33mg·kg-1(鲜重,下同);Pb超标率达72%,油菜籽Pb含量最高,平均为5.55±2.53mg·kg-1; Zn、Cd超标率均为11.11%,超标最严重的油菜籽Zn含量为46.65±13.61mg·kg-1,Cd含量为0.24±0.10mg·kg-1;Cu超标率为5.55%,油菜籽Cu含量最高,达16.02±2.75mg·kg-1。油菜籽对As、Pb、Zn、Cu、Cd的转移系数[农作物可食部分重金属含量(鲜重)与土壤重金属含量的比值]远高于其他作物。农作物对Pb、Zn、Cd和As的转移顺序为果实类>叶菜类>根茎类,对Cu的转移顺序是果实类>根茎类>叶菜类。农作物以As、Pb污染为主,总体属重度污染。聚类分析得出油菜籽、青蒜(Allium ampeloprasum L.)和生菜(Lactuca sativa L. var. ramosa Hort.)重金属污染严重,不适合在该地区继续种植和食用。
     (3) As-Pb-Cd复合污染条件下,As低污染(50mg·kg-1)及Cd中污染(10mg·kg-1)刺激芫荽生长,重金属高污染均严重抑制3种作物的生长。16个浓度设置中,甘蓝、芫荽、油菜分别有18.75%、43.75%和50%3种元素同时超标。复合污染下重金属联合作用的类型因植物和元素种类而异。甘蓝对As、Cd的吸收,芫荽对Pb、Cd的吸收,油菜对As、Pb的吸收,表现为独立作用;As高污染(200mg·kg-1)促进了甘蓝Pb的吸收,As中污染(100mg·kg-1)促进了油菜Cd的吸收,表现为协同作用;As高污染(200mg·kg-1)抑制了油菜对Cd的吸收,表现为拮抗作用。As-Pb-Cd复合污染对3种植物可食部分维生素C、可溶性蛋白、游离氨基酸含量未有显著影响(P>0.05),唯有As显著增加甘蓝可溶性糖含量(P<0.05),但所设As浓度间无显著差异。本研究表明农作物的生物量、品质和重金属含量受作物种类、重金属组合及其浓度的影响。
     (4)土壤改良实验结果表明,所有改良处理均提高土壤pH值,供试土壤由中性变为碱性;土壤全氮和速效磷含量均大幅提升,土壤全氮由国家标准第五等级变为第三等级,土壤缺氮情况明显改善;除磷肥50mg·kg-1处理外,其余处理均增加土壤有机质含量;改良处理对阳离子交换量(CEC)无显著影响。所有处理均降低了土壤As有效态含量,当磷肥为200mg·kg-1时土壤As有效态含量最低,为90.42±1.21mg·kg-1;2/3的处理组显著降低了Cd有效态含量,其中磷肥和有机肥混施(50mg·kg-1+50g·kg-1)效果最佳;改良处理对降低土壤Pb有效态含量无显著差异。
     (5)所有处理均提高了土壤蔗糖酶和脲酶的活性,当磷肥和有机肥混施(200mg·kg-1+50g·kg-1)时,蔗糖酶和脲酶活性最高;当磷肥和有机肥混施(50mg·kg-1+50g·kg-1)时,显著增加过氧化氢酶活性;当有机肥75g·kg-1时,显著增加过氧化物酶活性。改良处理对降低油菜可食部分As含量作用明显,其次是Cd含量,油菜As、Cd含量均低于国家重金属限量标准,但对抑制Pb含量效果不佳。所有改良处理均增加油菜可食部分可溶性蛋白含量,当有机肥75g·kg-1、磷肥与有机肥混施(50mg·kg-1+50g·kg-1)时效果最佳;当有机肥75g·kg-1时,油菜可溶性糖含量最高;油菜可食部分维生素C含量无显著差异。本研究表明,施用改良剂能极大地改善土壤基本理化性质,不同程度地减少土壤As、Cd有效态含量,增加土壤酶活性,有效降低油菜可食部分As、Cd含量,提高油菜可溶性蛋白和可溶性糖含量。
The scarce cultivated land is facing with severe reduction due to the development of mining, mineral separation and smelting as well as the usage of pesticides, chemical fertilizer and sewage irrigation. Heavy metal pollution of soil becomes a restraint of agricultural development and threat to food safety and physical health. Based on the fact of the difficulties of rapid, safe and economic removal of heavy metals, promoting the plantation of crops with low absorption in the polluted areas seems to a safe and practical way for the sustainable development of agriculture.
     The present paper took Zhadian Town, Gejiu City, Yunnan, as a case study sample for investigation and assessment of the heavy-metal pollution in farming crop-soil system in the multi-metal mining area. According to heavy metal transfer coefficient of various species of crops, we selected the breeds with low metal absorption. Through the way of the three factors and four levels orthogonal design L16(43), we conducted a research on the effect of As-Pb-Cd compounded pollution on the growth, biomass, quality and heavy metal concentrations in edible parts of Brassica oleracea L., Coriandrum sativum L. and Brassica napus L. under the laboratory condition. In addition, we also studied the basic physical and chemical properties, soil enzyme activity as well as the contents of As, Pb and Cd in plants by cultivating B. napus L. in the polluted soil with appliance of organic fertilizer (fowl dung), phosphatic fertilizer (NaH2PO4·2H2O) and the mixture of them. The main results are listed as follows:
     (1) The soil concentrations of heavy metals, including lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd) and arsenic (As), all exceeded the Environmental Quality Standard for Soils (GB15618-1995)(Grade Ⅱ). Among them, mercury (Hg) could not be detected and the soil was mainly polluted by As and Cd. The concentrations of soil bioavailable Pb, Zn, Cu, Cd and As were significantly positively correlated with their total concentrations, respectively (P<0.01), but no significant correlation could be found between Cu and As concentrations in crops and those in soil's crop-growing availability. A significant correlation was found among the crop Zn (negative), Cd (positive), Pb (positive) and soil bioavailable Zn, Cd and Pb, respectively.
     (2) The concentrations of As in89%of crops exceeded the maximal limit of contaminants in food. The higher concentrations of As was found in B. napus L., with an average of23.04±14.33mg·kg-1(fresh weight, the same as seen below). The exceeding rate of Pb was72%, and B. napus L. also had the highest concentration of Pb, with an average of5.55±2.53mg·kg-1. The exceeding rate of Zn or Cd was11.11%, whereas the maximum concentrations of Zn and Cd were observed in B. napus L., with an average of46.65±13.61mg·kg-1and0.24±0.10mg·kg-1, respectively. At the same time, the total exceeding rate of Cu was5.55%and the highest concentrations was detected in B. napus L., with an average of16.02±2.75mg·kg-1. The transfer ability of Pb, Zn, Cd and As in crops followed an order of fruit>leaf> root vegetables, whereas Cu was fruit>root> leaf vegetables. The crops were mainly polluted by As and Pb, and presented as severe pollution. The results of cluster analysis indicated that B. napus L., Allium ampeloprasum L. and Lactuca sativa L. var. ramosa Hort. were not fit for planting and/or used as human-consumptive crops because of their high-level metal translocation coefficients.
     (3) The results of orthogonal test showed that low pollution of As (50mg·kg-1) and Cd pollution (10mg·kg-1) stimulated the growth of C. sativum L., but the growth of three crops were severely inhibited when their concentrations increased. The exceeding rates of three heavy metals in the three crops were18.75%,43.75%and50%, respectively. The types of combined action of metals under compounded pollution differed from the plant species and metal elements. The absorption of As and Cd in B. oleracea L., Pb and Cd in C. sativum L. as well as As and Pb in B. napus L proved to be independent. On the contrary, a synergistic action was found in Pb and Cd absorption of B. oleracea L and B. napus L. when high (200mg·kg-1) and medium (100mg·kg-1) As was added, respectively. In addition, high concentration of As (200mg·kg-1) suppressed Cd absorption of B. napus L., showing an antagonism action. The As-Pb-Cd compounded pollution had no remarkable effects on the concentrations of vitamin C, soluble protein and free amino acids in edible parts of three crops (P>0.05). Arsenic could increase content of soluble sugar in B. oleracea L. remarkably (P<0.05) and there was no significant difference among different As concentrations. Therefore, the biomass, quality and contents of heavy metals in crops were affected by plant species, metal composition and their concentrations.
     (4) The results of soil ameliorative experiment showed that all of ameliorations enhanced pH value of soil and turned neutral to alkaline. The contents of total N and available P increased, and total N ranked from the third to the fifth national level. Therefore, deficiency of N was remarkably improved. The content of soil organic matter increased in all treatments except50mg·kg-1additon of phosphate fertilizer. The cation exchange capacity (CEC) was not significantly affected by ameliorative treatments. All the treatments decreased the content of available As and it got the lowest (90.42±1.21mg·kg-1) when the concentration of phosphate fertilizer was200mg·kg-1Furthermore, two third of treated groups significantly decreased the contents of bioavailabel Cd, and the combined addition of phosphate fertilizer (50mg·kg-1+50g·kg-1) and organic fertilizer (50g·kg-1) achieved the best results. The ameliorative treatments had no significance effect on reducing bioavailable Pb in soil.
     (5) All ameliorative treatments increased the activities of sucrase and urease and they reached the highest level under the combined treatments of phosphate fertilizer and organic fertilizer (200mg·kg-1+50g·kg-1). At the same time, the activities of catalase in soil increased significantly by combined addition of phosphate fertilizer and organic fertilizer (50mg·kg-1+50g·kg-1). The activities of peroxidase significantly increased when the organic fertilizer concentration was75g·kg-1. The ameliorative treatments significantly decreased the concentrations of As and Cd in edible parts of B. napus L., but not the concentrations of Pb. In addition, all of ameliorative treatments increased the content of soluble protein in edible part of B. napus L, and it became very effective when the concentration of organic fertilizer was75g·kg-1or combined addition of the phosphate fertilizer and organic fertilizer together (50mg-·kg-1+50g·kg-1). Meanwhile, soluble sugar content reached the highest level when the addition of organic fertilizer was75g·kg-1. No significant difference was observed in contents of vitamin C in edible part of B. napus L.. The present research showed that the application of soil amelioration materials could improve soil physical and chemical properties, decrease the concentrations of bioavailable As and Cd, increase the activities of soil enzymes, decrease the concentrations of As and Cd in edible parts of B. napus L. and increase the contents of soluble protein and soluble sugar of this plant.
引文
[1]赵其国.发展与创新现代土壤科学[J].土壤学报,2003,40(3):321-327.
    [2]陈怀满,陈能场,陈英旭.土壤-植物系统中的重金属污染[M].北京:科技出版社,1996.
    [3]Piechalak A, Tomaszweska B, Baralkiwicz D, et al. Accumulation and detoxification of lead ions in legumes[J]. Phytochemistry,2002,60:153-162.
    [4]Deba P S S. Arsenic poisoning in West Bengal[J]. Science,1996,274:1285-1289.
    [5]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000.
    [6]孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(2):248-251.
    [7]张珍,陆开形,,孟秋峰.蔬菜重金属污染研究进展与防治措施[J].宁波大学学报(理工版),2010,23(3):22-26.
    [8]赵荣钦,刘英.我国耕地资源开发利用现状及研究进展[J].水土保持学报,2006,13(1):108-110.
    [9]田光进,张增祥,赵晓丽,等.中国耕地土壤侵蚀空间分布特征及生态背景[J].生态学报,2002,22(1):10-16.
    [10]何强,井文涌,王翊亭.环境学导论(第三版)[M].北京:清华大学出版社,2006.
    [11]李桂,丽苏红,霞段敏,等.西安市蔬菜中重金属污染分析评价[J].西北植物学报,2008,28(9):1904-1909.
    [12]车飞,于云江,胡成,等.沈抚灌区土壤重金属污染健康风险初步评价[J].农业环境科学学报,2009,28(7):1439-1443.
    [13]Li R Y, Zhou Z G, Lu J J, et al. Fractionation of Heavy metals in sediments from Dianchi Lake, China[J]. Pedosphere,2007,17(2):265-272.
    [14]Nanthi S B, Domy C A, Curtin D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability[J].Avances in Agronomy,2003,78:215-272.
    [15]Chen C W, Wu M M, Kuo T L. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water[J]. Cancer,1992,66:888-892.
    [16]刘洪莲,李恋卿,潘根兴.苏南某些水稻土中Cu, Pb, Hg, As的剖面分布及其影响因素[J].农业环境科学学报,2006,25(5):1221-1227.
    [17]宋雁辉,钟正燕,李红梅,等.云南个旧多金属矿区农田土壤-作物系统重金属污染现状——以乍甸为例[J].安全与环境学报,2012,12(1):138-146.
    [18]Yang Y, Zhang F S, Li H F, et al. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils[J]. Journal of Environmental Management, 2009,90:1117-1122.
    [19]Muhammad K J, Tasneem G K, Muhammad B A, et al. Heavy metals accumulation in different varieties of wheat(Triticum aestivum L.) grown in soil amended with domestic swage sludge[J]. Journal of Hazardous Materials,2009,164:1386-1391.
    [20]肖青青,王宏镔,赵宾,等.云南个旧市郊农作物重金属污染现状及健康风险[J].农业环境科学学报,2011,30(2):271-281.
    [21]周青,张辉.铜对Cd胁迫下菜豆幼苗生长的影响[J].环境科学,2003,24(4):48-52.
    [22]Kumar S H, Madhool L A, Fiona M S. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi[J]. India Rajesh Ecotoxicology and Environmental Safety,2007,66: 258-266.
    [23]Na Zheng, Qichao Wang, Dongmei Zheng. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables[J]. Science of the Total Environment,2007,383:81-89.
    [24]Dahiya D J. Nitrogen uptake in wheat as influenced by the presence of nickel[J]. Arid Soil Research and Rehabilitation,1994,8:51-58.
    [25]Gussarsson M, Jensen P. Effects of copper and cadmium on uptake and leakage of K+ in birch (Betula pendula) roots[J]. Tree Physiology,1992,11(3):305-313.
    [26]Narwal R P. Cadmium-Zinc interaction in maize grown on sewer water irrigated soil[J]. Arid Soil Research and Rehabilitation,1993,7:125-131.
    [27]李铭心.重金属镉对莲藕生长发育的影响[M].武汉:华中农业大学,2005.
    [28]谢建治,张书廷,刘树庆,等.潮褐土重金属Cd污染对小白菜营养品质指标的影响[J].农业环境科学学报,2004,23(4):678-682.
    [29]Lee S K, Kader A A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops[J]. Postharvest Biology and Technology,2000,20(3):207-220.
    [30]孙春燕,石学根,魏幼璋,等.汞污染对植物品质指标的影响[J].浙江大学学报(工学版),2007,41(12):2087-2092.
    [31]郝玉坡.砷对玉米产量、品质及生理特性的影响[D].山东:山东农业大学,2008.
    [32]谢建治,刘树庆,刘玉柱,等.保定市郊土壤重金属污染对蔬菜营养品质的影响[J].农业环境保护,2002,21(4):325-327.
    [33]Lombi E, Sletten R S, Wenzel W W. Sequentially extracted arsenic from different size fractions of contaminated soils[J]. Water, Air, Soil Pollution,2000,124:319-332.
    [33]Mulligan C N. Metal removal from contaminated soil and sediments by the biosurfactant Surfactin[J]. Environment Science and Technology,1999,33(21):3812-3820.
    [35]肖青青,王宏镔,王海娟,等.滇白前(silene viscidula)对铅,锌,镉的共超富集特征[J].生态环境学报,2009,18(4):1299-1306.
    [36]王宏镔.凤尾蕨植物对砷的富集特征及有关机理探讨[D].广州:中山大学,2005.
    [37]朱永官,陈宝东,林爱军,等.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J].环境科学学报,2005,25(12):1575-1579.
    [38]Young S R, Black A S, Conyere M K. Distribution of nitrogen with in surface soils under pasture[J]. Communications in Soil Science and Plant Analysis,2002,33(910):1507-1518.
    [39]王凯荣,张玉烛,胡荣桂.不同土壤改良剂对降低重金属污染土地上水稻糙米铅镉含量的作用[J].农业环境科学学报,2007,26(2):476-481.
    [40]王树会,张红艳.不同腐植酸用量对烤烟生长及产质的影响[J].中国农业学报,2007,23(1):288-291.
    [41]孙志梅,薛世川,王国旗,等.不同腐植酸复合肥用量对辣椒产量及其养分利用率的影响[J].中国生态农业学报,2004,12(3):118-121.
    [42]赵明,蔡葵,孙永红,等.不同施肥处理对番茄产量品质及土壤有效态重金属含量的影响[J].农业环境科学学报,2010,29(6):1072-1078.
    [43]丁凌云,蓝崇钰,林建平,等.不同改良剂对重金属污染农田水稻产量和重金属吸收的影响[J].生态环境,2006,15(6):1204-1208.
    [44]George K A, Singh B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia[J]. Water, Air and soil Pollution,2006,169: 101-123.
    [45]Klocke A. Soil contamination by heavy metals[C]. Proceedings of International Workshop on Risk Assessment of Contaminated Soil. Deventer, Netherlands,1986:42-54.
    [46]Huang R Q, Gao S F, Wang W L, et. al. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China[J]. Science of the Total Environment,2006,368:531-541.
    [47]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [48]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [49]谢娟,成玉祥,王莉平,等.某金矿区不同品种蔬菜中重金属分析及评价[J].地球科学与环境学报,2008,30(4):425-428.
    [50]马成玲,王火焰,周健民,等.长江三角洲典型县级市农田土壤重金属污染状况调查与评价[J].农业环境科学学报,2006,25(3):751-755.
    [51]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [52]刘小红,周东美,郝秀珍,等.九华铜矿重金属环境污染状况研究[J].土壤,2007,39(4):551-555.
    [53]陈旭英,朱祖祥,何增耀.土壤中铬的有效性与污染生态效应[J].生态学报,1995,15(1):79-84.
    [54]Ismail B S, Farihah K, Khairian J. Bioaccumulation of heavy metals in vegetables from selected agricultural areas[J]. Environmental Contamination and Toxicology,2005,74: 320-327.
    [55]Burlando B, Evangelisti V, Dondero F, et al. Occurrence of Cu-ATPase in Dictyostelium: Possible Role in Resistance to Copper[J]. Biochemical and Biophysical Research Communications,2002,291:476-483.
    [56]王星,周启星,贾永峰.Cd和Cu在草甸棕壤-植物系统中行为特性的研究[J].生态环境,2005,14(6):838-842.
    [57]Vallee B L, Auld D S. Zinc coordination, function and structure of enzymes and other proteins[J]. Biochemistry,1990,29:5647-5659.
    [58]Zago M P, Oteiza P I. The antioxidant properties of zinc:Interactions with iron and antioxidants[J]. Free Radical Biology and Medicine,2001,31(2):266-274.
    [59]龙心宪,倪吾钟,叶正钱,等.超积累生态型东南景天吸收锌的特征[J].生态学报,2006,26(2):334-430.
    [60]烫叶涛,吴好都,仇荣亮,等.滇苦菜(Picris divaricata Vant.)对锌的吸收和富集特性[J].生态学报,2009,29(4):1824-1831.
    [61]王吉秀,祖艳群,李元.镉锌交互作用及生态学效应研究进展[J].农业环境科学学报, 2010,29(增刊):256-260.
    [62]Mekenna I M, Chaney R L, Williams FM. The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach [J]. Environmental pollution,1993,79:113-120.
    [63]Uchion T, Roychowdhury T, Ando M, et al. Intake of arsenic from water, food composites and excretion through urine, hair from a studied population in West Bengal, India[J]. Food and Chemical Toxicology,2006,44:455-461.
    [64]Kabata P A, Pendials H. Trace elements in soil and plants[M]. Florida:CRC Press Inc., 1984:171-177.
    [65]陈宏,陈玉成,杨学春.土壤中铅的植物可利用性化学调控探究[J].生态环境,2004,13(1):9-11.
    [66]李梅,吴启堂,李锐,等.佛山市郊污灌菜地土壤和蔬菜的重金属污染状况与评价[J].华南农业大学学报,2009,30(2):19-21.
    [67]蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,2004,24(4):711-717.
    [68]Cao H B, Chen J J, Zhang J, et al. Heavy metals in rice and garden vegetables and their potential health risk to inhabitants in the vicinity of an industrial zone in Jiangsu, China[J]. Journal of Environmental Sciences,2010,22(11):1792-1799.
    [69]Athur E, Crews I J, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain[J]. International Journal of Phytoremediation, 2000,2(1):1-21.
    [70]李博文,谢建治,郝晋珉.不同蔬菜对潮褐土镉铅锌复合污染的吸收效应研究[J].农业环境科学学报,2003,22(3):286-288.
    [71]Ebbs S D, Kochian L V. Toxcitity of zinc and copper to Brassica species:Implications for phytoremediation[J]. Journal of Environmental Quality,1997,26:776-781.
    [72]Wong J W C, Lai K M. Available ability of heavy metals for Brassica chinensis growth in an acidic loamy soil amended with a domestic and an industrial sewage sludge[J]. Water, Air, and Soil Pollution,2001,128:339-353.
    [73]刘全吉.冬小麦、油菜对砷污染反应的比较研究[D].博士学位论文.武汉:华中农业大学,2008.
    [74]Liu W T, Zhou Q X, Sun Y B, et al. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety[J]. Environmental Pollution,2009,157:1961-1967.
    [75]Xu Z Q, Zhou Q X, Liu W T. Joint effects of cadmium and lead on seedings of four Chinese cabbage cultivars in northeastern China[J]. Journal of Environmental Sciences,2009,21: 1598-1606.
    [76]Baker A J M. Accumulators and excluders—strategies in the responses of plants to heavy metals[J]. Journal of Plant Nutrition,1981,3:643-654.
    [77]宋波,陈同斌,郑袁明,等.北京市菜地土壤和蔬菜镉含量及其健康风险分析[J].环境科学学报,2006,26(8):1342-1353.
    [78]陈瑛,李延强,杨肖娥,等.不同品种小白菜对镉的吸收积累差异[J].应用生态学报,2009,20(3):736-740.
    [79]John O. Agbenin, M Danko, Gerphard Welp. Soil and vegetable compositional relationships of eight potentially toxic metals in urban garden fields from northern Nigeria[J]. Journal of the Science of Food and Agriculture,2009,89:49-54.
    [80]Anita S, Rajesh K S, Madhoolika A, et al. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India[J]. Food and Chemical Toxicology,2010,48:611-619.
    [81]Ranieri A, Castagna A, Scebba F, et al. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess[J]. Plant Physiology and Biochemistry,2005,43: 45-54.
    [82]Zhou Q X. Interaction between heavy metals and nitrogen fertilizers applied in soil-vegetable systems[J]. Bulletin of Environmental Contamination and Toxicology,2003,71(2):338-344.
    [83]Wallace A. Additive, protective and synergistic effects on plants with excess trace elements[J]. Soil Science,1982,133:319-323.
    [84]Liu W T, Zhou Q X, Sun Y B, et al. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety[J]. Environmental Pollution,2009,157:1961-1967.
    [85]张立军,樊金娟.植物生理学实验教程[M].北京:中国农业大学出版社,2007.
    [86]王泽港,葛才林,万定珍,等.1,2,4-三氯苯和萘对水稻幼苗生长的影响[J].农业环境科学学报,2006,25(6):1402-1407.
    [87]Jhaab, Dubeyrs. Carbohydrate metabolism in grow in grie seedling under arsenic toxicity[J]. Plant Physiology,2004,16(7):867-872.
    [88]郭再华,孟萌,侯彦琳.磷、砷双重胁迫对不同耐低磷水稻苗期生长及磷、砷吸收的影响[J].应用与环境生物学报,2009,15(5):596-601.
    [89]Yang Y M, Nan Z R, Zhao Z J, et al. Bioaccumulation and translocation of cadmium in cole (Brassica campestris L.) and celery(Apium graveolens) grown in the polluted oasis soil, Northwest of China[J]. Journal of Environmental Sciences-China,2011,23(8):1368-1374.
    [90]Haag-Kerwer A, Schafer H J, Heiss S, et al. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis[J]. Journal of Experimental Botany,1999,341:1827-1835.
    [91]Cox MS, Kovar JL. Soil arsenic effect on canola seedling growth and ion uptake[J]. Communications in Soil Science and Plant Analysis,2001,32(1-2):107-117.
    [92]Meharg A A, Macnair M R. Suppression of the high affinity phosphate uptake system:A mechanism of arsenate tolerance in Holcus lanatus L.[J]. Journal of Experimental Botany,1992,43:524-529.
    [93]Wong J W C, Lai K M. Available ability of heavy metals for Brassica chinensis growth in an acidic loamy soil amended with a domestic and an industrial sewage sludge[J]. Water, Air, and Soil Pollution,2001,128:339-353.
    [94]Marchio L, Socco P, Assolari S, et al. Reclamation of polluted soil:Phytoremediation potential of crop-related brassica species[J]. Water, Air, and Soil Pollution,2004,158: 345-356.
    [95]Kumar P B A N, Dushenkov V, Motto H, et al. Phytoextration:the use of plant to remove heavy metals from soils[J]. Environmental Science and Technology,1995,29:1232-1238.
    [96]Wu F B, Zhang G P, Yu J S. Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes[J]. Communications in Soil Science and Plant Analysis,2003,34(14):2003-2020.
    [97]陈同斌,宋波,郑袁明,等.北京市蔬菜和菜地土壤砷含量及其健康风险分析[J].地理学报,2006,61(3):297-310.
    [98]姚会敏,杜婷婷,苏德纯.不同品种芸薹属蔬菜吸收累积镉的差异[J].中国农学通报,2006,22(1):291-294.
    [99]赵转军,南忠仁,王胜利,等Cd/Zn及Cd/Zn/Ni复合污染对胡萝卜生长吸收特征的影 响[J].农业环境科学学报,2010,29(4):642-647.
    [100]Abdel-Sablur M F, Mortvedt J J, Kelsoe J J. Cadmium-Zinc interaction in plants and extractable cadmium and zinc fraction in soil[J]. Soil Science,1988,145(6):424-431.
    [101]Nan Z R, Li J J, Zhang J M. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions[J]. The science of the total Environment,2002,285: 187-195.
    [102]Jalil A, Selles F, Clarke J M. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat[J]. Journal of Plant Nutrition,1994,17:1839-1858.
    [103]Rosselli W, Keller C, Boschi K. Phytoextraction capacity of trees growing on metal contaminated[J]. Plant Soil,2003,72:256-265.
    [104]张义贤,张丽萍.重金属对大麦幼苗膜脂过氧化及脯氨酸和可溶性糖含量的影响[J].农业环境科学学报,2006,25(4):857-860.
    [105]Pietrini F, lannelli MA, Pasqualini S, et al. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis(Cav.) Trin. ex Steudel[J]. Plant Physiology,2003,133:829-837.
    [106]Perfus-Barbeoch L, Leonhardt N, Vavasseur A, et al. Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status[J]. The Plant journal, 2002,32:539-548.
    [107]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):598-605.
    [108]陈茂铨,陈兵红,刘术新,等.铅对芫荽种子萌发及幼苗生长的影响[J].热带作物学报,2010,31(3):393-396.
    [109]Nalini P, Chandra P S. Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage[J]. Plant Science,2002,163:753-758.
    [110]Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany,1999,41:105-130.
    [111]Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard[J]. Plant Physiology.1995,109(4):1427-1433.
    [112]Schmoger M E V, Oven M, Grill E. Detoxification of arsenic by phytochelation in plant[J]. Plant Physiology,2000,122:793-803.
    [113]Duxbury T, Bicknell B. Metal-tolernat bacterial bacterial populations from natural and metal-polluted soils[J]. Soil Biology and Biochemistery,1983,15:243-250.
    [114]尹军霞,陈瑛,郑丽.Cd胁迫下油菜土壤微生物区系及主要生理类群研究[J].农业环境科学学报,2006,25(6):1529-1534.
    [115]Lothenbach B, Furrer G, Scharli H, et al. Immobiization of zinc and cadmium by montmorillonite compaounds:Effect of aging and subsequent acidification[J]. Environmental Science and Technology,1999,32:2945-2952.
    [116]Ok Y S, Yang J E, Zhang Y S, et al. Heavy metal absorption by a formulated zeolite Portland cement mixture[J]. Journal of Hazardous Materials,2007,147(1):91-96.
    [117]Yong S O, Sung C K, Dong K K, et al. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea[J]. Environment Geochemistry and Health, 2011,33:23-30.
    [118]Nargal R P, Singh B R. Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil[J]. Water, Air, and Soil Pollution,1998,103:405-421.
    [119]Mench M J, Manceau A, Vangronsveld J, et al. Capacity of soil amendments in lowering the phytoavailaility of sludge-borne zinc[J]. Agronomy Journal,2000,20:383-397.
    [120]李俊良,崔德杰,孟祥霞,等.山东寿光保护地蔬菜施肥现状及问题的研究[J].土壤通报,2002,32(2):126-128.
    [121]杨治平,张建杰,张强,等.山西省保护地蔬菜长期施肥对土壤环境质量的影响[J].农业环境科学学报,2007,26(2):667-671.
    [122]关松荫.土壤酶及其研究方法[M].北京,农业出版社,1986.
    [123]李瑞美,王果,方玲.钙镁磷肥与有机物料配施对作物镉铅吸收的控制效果[J].土壤与环境,2002,11(4):348-351.
    [124]Naidu R, Bolan N S, Kookana R S, et al. Ionic strength and pH effects on surface charge and Cd sorption characteristics of soils[J]. European Journal of Soil Science,1994,45:419-429.
    [125]Rutten A, Mench M, Colpaert J V, et al. Phytostabilization of a metal contaminated sandy soil. Ⅰ:Influnence of compost and/ or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals[J]. Environmental Pollution,2006,144:524-532.
    [126]王训,闫飞,王永敏,等.秸秆改良剂对砂质土有机质和阳离子交换量的影响[J].中国农学通报,2010,26(23):224-228.
    [127]Mcgowen S L, Basta N T, Brown G O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil[J]. Journal of Environmental Quality,2001,30:493-500.
    [128]Bolan N S, Adriano D C, Natesa R, et al. Effects of organic amendments on the reduction and phytoavai lability of chromate in mineral soil[J]. Journal of Environmental Quality,2003, 32:120-128.
    [129]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制[M].北京:科学出版社,2006.
    [130]Kalbitz K, Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter[J]. The Science of the Total Environment,1998, 209:27-39.
    [131]Fitz W J, Wenzel W W. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation[J]. Journal of Biotechnology,2002, 99:259-278.
    [132]Mench M, Bussiere S, Boisson J, et al. Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments[J]. Plant and Soil,2003,249:187-202.
    [133]张冲,王纪阳,赵小虎,等.土壤改良剂对南方酸性菜园土重金属汞、砷有效态含量的影响[J].广东农业科学,2007,11:52-55.
    [134]胡克伟,关连珠.改良剂原位修复重金属污染土壤研究进展[J].中国土壤与肥料,2007,4:1-5.
    [135]Ford R C, Sparks D L. The nature of Zn precipitates formed in the presence of pyropyllite[J]. Environmental Science and Technology,2000,34:2479-2483.
    [136]Ryan J A, Zhang P, Hesterberg D, et al. Formation of chloropyromorphite in a lead contaminated soil amended with hydroxyapatite[J]. Environmental Science and Technology, 2001,35:3798-3803.
    [137]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用于环境生物学报,2003,9(1):105-109.
    [138]王新,周启星.土壤重金属污染生态过程、效应及修复[J].生态科学,2004,23(3):278-281.
    [139]Mikanova O. Effect of heavy metals on some soil biological parameters[J]. Journal of Geochemical Exploraation,2006,88:220-223.
    [140]Lee I S, Kim O K, Chang Y Y, et al. Heavy metal concentrations and enzyme activities in soil from a contaminated Korean Shooting Range[J]. Journal of Bioscience and Bioengineering,2002,94(5):406-411.
    [141]和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,2000,9(2):139-142.
    [142]常学秀,沈其荣,王焕校.锌厂Pb污染农田小麦根际与非根际土壤酶活性特征研究[J].生态学杂志,2001,20(4):5-8.
    [143]李法云,曲向荣,吴龙华.污染土壤生物修复理论基础与技术[M].北京,化学工业出版社,2006.
    [144]焦晓光,魏丹.长期培肥对农田黑土土壤酶活性动态变化的影响[J].中国土壤与肥料,2009.5:23-27.
    [145]Mora A P, Ortega-Calvo J J, Cabrera F, et al. Changes in enzyme activities and microbial biomass after "in situ" remediation of a heavy metal contaminated soil[J]. Applied Soil Ecology,2005,28:125-137.
    [146]Witter E, Martnsson A M, Garica F V. Size of the soil microbial biomass in a long term-experiment as affected by different N fertilizer and organic manures[J]. Soil Biology and Biochemistry,1993,25:659-669.
    [147]Laddy J N, Amato M, Zhou L K, et al. Different effects of rotation, plant residues and nitrogen fertilizer on microbial biomass and organic matter in Australian Alfiso[J]. Soil Biology and Biochemistry,1994,26:821-831.
    [148]王伯仁,徐明岗,文石林.长期不同施肥对旱地红壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100.
    [149]焦鹏,高建培,王宏镔,等.N、P、K肥对玉米幼苗吸收和积累重金属的影响[J].农业环境科学学报,2011,30(6):1094-1102.
    [150]Meharg A A, Macnair M R. An altered phosphate uptake system in arsenate tolerant Holcus lanatus L.[J]. New Phytologist,1990,116:29-35.
    [151]李丙奇,孙克刚,金辉,等.有机无机肥配合施用对小麦、玉米等作物品质改良的试验研究[J].磷肥与复肥,2009,24(1):87-88.
    [152]李友忠,杨化恩,辛茂刚,等.EM有机肥在蔬菜生产中应用技术研究[J].现代农业科技,2008,9:17-18.
    [153]Takebe M, Yoneyama T. Changes of ascorbic acid concentrations in the leaves and tubers of sweet potato(Ipomea batatas L.) and potato(Solanum tuberosum L.) [J]. Chemical Abstracts, 1992,63:447-454.
    [154]沈明星,刘凤军,吴彤东,等.有机无机氮肥比列对小白菜产量和硝酸盐、Vc含量的影响[J].江苏农业学报,2009,25(3):560-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700