受体蛋白酪氨酸激酶血管内皮生长因子受体-2抑制剂的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管新生是许多生理和病理进程发生的重要机理。在生物体内,血管新生需经过多步精细调控历程,现有研究表明血管内皮生长因子(VEGF)及其受体蛋白酪氨酸激酶,尤其是血管内皮生长因子受体-2(VEGFR-2)所介导的信号级联通路是其中关键性的调节途径。VEGF/VEGFR-2所介导的信号级联通路可以调控血管内皮细胞的增殖、迁移、存活和通透性的改变,促进血管的新生。研发VEGFR-2抑制剂分子以达到阻碍血管新生的疗效,已经成为了现代治疗肿瘤等疾病的重要策略。
     本文采用计算机辅助药物设计的方法研究了新型的苯并咪唑类血管内皮生长因子受体-2抑制剂的活性与结构之间的关系,并且提出了化合物的药效团模型和提高化合物抑制活性的结构改造信息。作为VEGFR-2抑制剂的药物研发的前期工作,本课题可以为后续的研究提供一个良好的平台。本文的主要内容包括以下四个方面的:
     第一部分是绪论。介绍了血管内皮生长因子受体所介导的信号通路及其抑制剂的研究进展,此外还概述了计算机辅助药物设计的相关理念。
     第二部分是药效团模型的构建。使用距离比较法建立苯并咪唑类抑制剂分子的药效团模型,随后对于得分最高的药效团模型进行了优化和验证。
     第三部分是定量构效关系研究。对苯并咪唑类抑制剂分子使用CoMFA和CoMSIA方法进行了三维定量构效关系研究,并得到了良好预测能力的模型,为抑制剂的改进提供了理论依据。
     第四部分是对新型抑制剂的设计的概述,提出了新型的1,8-二氮萘类VEGFR-2类的抑制剂分子的设想。
Angiogenesis is of great importance to a variety of normal physiological processes and pathological disorders. It is tightly regulated by many mechanisms, among which vascular endothelial growth factor (VEGF) is one of the most potent promoters. VEGF binds and activates its specific receptor tyrosine kinases, especially vascular endothelial growth factor receptor-2(VEGFR-2). VEGFR-2 mediates the key functional and biochemical effects of VEGF in endothelial cells including proliferation, migration, survival, and permeability. Research and development of VEGFR-2 inhibitors in order to prohibit angiogenesis has become a significant strategy for cancer therapy, as well as other diseases treatment.
     Computer aided drug design method was used to research the structure-activity relationship of benzimidazole derivatives, which were novel VEGFR-2 inhibitors. As a result, pharmacophore models were established, the informations concerning how to improve the inhibiting activity were also obtained. As a preparatory work for research and development of VEGFR-2 inhibitors, this research will provide a good foundation for the subsequent research. This paper includes four parts:
     Part one, introduction. VEGF/VEGFR-2 signaling pathway mechanisms and VEGFR-2 inhibitors research progress were introduced in brief. The theory of computer aided drug design was also summarized.
     Part two, benzimidazole derivatives were researched to establish pharmacophore models. A distance comparison method was used as the arithmetic. The pharmacophore model, which with the highest score, was refined and validated later.
     Part three, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to do three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis of benzimidazole derivatives. CoMFA and CoMSIA models were builded and validated. With good predicted ability, those models could be useful for improving this kind of inhibitors.
     Part four, as a assume, 1,8-naphthyridine derivatives were design as novel VEGFR-2 inhibitors.
引文
[1] Mannig G, Whyte D B, Martinez R, et al. The protein kinase complement of the human genome[J]. Science, 2002, 298(5600): 1912~1934
    [2] Hanks S K. Genomic analysis of the eukaryotic protein kinasesuperfamily: a perspective[J]. Genome Biol, 2003, 4(5): 111
    [3] Noble M E, Endicott J A, Johnson L. N. Protein Kinase Inhibitors: Insights into Drug Design from Structure[J]. Science, 2004, 303(5665): 1800~1805
    [4] Zhang J, Yang P L, Gray N S. Targeting cancer with small molecule kinase inhibitors[J]. Nat. Rev. Cancer, 2009, 9(1): 28~39
    [5] Smith W W, Pei Z, Jiang H, et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity[J]. Nat. Neuro sci, 2006, 9(10): 1231~1233
    [6] Solinas G, Vilcu C, Neels J G, et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity[J]. Cell Metab. 2007, 6(5): 386~397
    [7] Huse M, Kuriyan J. The conformational plasticity of protein kinases[J]. Cell, 2002, 109(3): 275~282
    [8] Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis[J]. BMB Rep, 2008, 41(4): 278~286
    [9] Kiba A, Sagara H, Hara T, et al. VEGFR-2-specific ligand VEGF-E induces non-edematous hyper vascularization in mice[J]. Biochem Biophys Res Commun, 2003, 301(2): 371~377
    [10] Yamazaki Y, Takani K, Atoda H, et al. Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2) [J]. J Biol Chem, 2003, 278(52): 51985~51988
    [11] Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele[J]. Nature, 1996, 380(6573): 435~439
    [12] Carmeliet P, Moons L, Dewerchin M, et al. Insights in vessel development and vascular disorders using targeted inactivation and transfer of vascular endothelial growth factor, the tissue factor receptor, and the plasminogen system[J]. Ann N Y Acad Sci, 1997, 811: 191~206
    [13] Vincenti V, Cassano C, Rocchi M, et al. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3[J]. Circulation, 1996, 93(8): 1493~1495
    [14] Zygalaki E, Kaklamanis L, Nikolaou N I, et al. Expression profile of total VEGF, VEGF splice variants and VEGF receptors in the myocardium and arterial vasculature of diabetic and non-diabetic patients with coronary artery disease[J]. Clin Biochem, 2008, 41(1-2): 82~87
    [15]肖扬,焦炳华,缪辉南.血管内皮细胞生长因子研究进展[J].生物化学与生物物理进展,2000,27(2): 131~135
    [16] Liu L, Simon M C. Regulation of transcription and translation by hypoxia[J]. Cancer Biol Ther, 2004, 3(6): 492~497
    [17] Holmes K, Roberts O L, Thomas A M, et al. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition[J]. Cell Signal, 2007, 19(10): 2003~2012
    [18] Kawamura H, Li X, Harper S J, et al. Vascular endothelial growth factor (VEGF)-A165b is aweak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity[J]. Cancer Res. 2008, 68(12): 4683~4692
    [19] Terman B I, Carrion M E, Kovacs E, et al. Identification of a new endothelial cell growth factor receptor tyrosine kinase[J]. Oncogene, 1991, 6(9): 1677~1683
    [20] Ruch C, Skiniotis G, Steinmetz M O, et al. Structure of a VEGF-VEGF receptor complex determined by electron microscopy[J]. Nat Struct Mol Biol, 2007, 14(3): 249~250
    [21] Shalaby F, Rossant J, Yamaguchi T P, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice[J]. Nature, 1995, 376(6535): 62~66
    [22] Kornev A P, Haste N M, Taylor S S, et al. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism[J]. Proc Natl Acad Sci, 2006, 103(47): 17783~17788
    [23] Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells[J]. Oncogene, 1999, 18(13): 2221~2230
    [24] Takahashi T, Yamaguchi S, Chida K, et al. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells[J]. EMBO J, 2001, 20(11): 2768~2778
    [25] Liao H J, Kume T, McKay C, et al. Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice[J]. J Biol Chem, 2002, 277(11): 9335~9341
    [26] Sakurai Y, Ohgimoto K, Kataoka Y, et al. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice[J]. Proc Natl Acad Sci, 2005, 102(4): 1076~1081
    [27] Singh A J, Meyer R D, Navruzbekov G, et al. A critical role for the E3-ligase activity of c-Cbl in VEGFR-2-mediated PLCγ1 activation and angiogenesis[J]. Proc Natl Acad Sci, 2007, 104(13): 5413~5418
    [28] Rask-Madsen C, King G L. Differential regulation of VEGF signaling by PKC-alpha and PKC-epsilon in endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2008, 28(5): 919~924
    [29] Shu X, Wu W, Mosteller R D, et al. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases[J]. Mol Cell Biol, 2002, 22(22): 7758~7768
    [30] Holmqvist K, Cross M J, Rolny C, et al. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration[J]. J Biol Chem, 2004, 279(21): 22267~22275
    [31] Matsumoto T, Bohman S, Dixelius J, et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis[J]. EMBO, 2005, 24(13): 2342~2353
    [32] Lamalice L, Houle F, Jourdan G, et al. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38[J]. Oncogene, 2004, 23(2): 434~445
    [33] Lamalice L, Houle F, Huot J. Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF[J]. J Biol Chem, 2006, 281(45): 34009~34020
    [34] Laramée M, Chabot C, Cloutier M, et al. The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation[J]. J Biol Chem, 2007, 282(11): 7758~7769
    [35] Graupera M, Guillermet-Guibert J, Foukas L C, et al. Angiogenesis selectively requires thep110alpha isoform of PI3K to control endothelial cell migration[J]. Nature, 2008, 453(7195): 662~666
    [36] Downward J. PI 3-kinase, Akt and cell survival[J]. Semin Cell Dev Biol, 2004, 15(2): 177~182
    [37] Soldi R, Mitola S, Strasly M, et al. Role of v?3 integrin in the activation of vascular endothelial growth factor receptor-2[J]. EMBO J, 1999, 18(4): 882~892
    [38] Blanes M G, Oubaha M, Rautureau Y, et al. Phosphorylation of tyrosine 801 of vascular endothelial growth factor receptor-2 is necessary for Akt-dependent endothelial nitric-oxide synthase activation and nitric oxide release from endothelial cells[J]. J Biol Chem, 2007, 282(14): 10660~10669
    [39] Duval M, Le Boeuf F, Huot J, et al. Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase[J]. Mol Biol Cell, 2007, 18(11): 4659~4668
    [40] Becker P M, Waltenberger J, Yachechko R, et al. Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability[J]. Circ Res, 2005, 96(12): 1257~1265
    [41] Gliki G, Abu-Ghazaleh R, Jezequel S, et al. Vascular endothelial growth factor-induced prostacyclin production is mediated by a protein kinase C (PKC)-dependent activation of extracellular signal-regulated protein kinases 1 and 2 involving PKC-delta and by mobilization of intracellular Ca2+[J]. Biochem J, 2001, 353(3): 503~512
    [42] Mimura K, Kono K, Takahashi A, et al. Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2[J]. Cancer Immunol Immunother, 2007, 56(6): 761~770
    [43] Takahashi A, Kono K, Ichihara F, et al. Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines[J]. Cancer Immunol Immunother, 2004, 53(6): 543~550
    [44] Nakamura Y, Patrushev N, Inomata H, et al. Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells[J]. Circ Res, 2008, 102(10): 1182~1191
    [45] Mattila E, Auvinen K, Salmi M, et al. The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling[J]. J Cell Sci, 2008, 121 :3570~3580
    [46] Bernatchez P N, Acevedo L, Fernandez-Hernando C, et al. Myoferlin regulates vascular endothelial growth factor receptor-2 stability and function[J]. J Biol Chem, 2007, 282(42): 30745~30753
    [47] Lampugnani M G, Zanetti A, Corada M, et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148[J]. J Cell Biol, 2003, 161(4): 793~804
    [48] Lampugnani M G, Orsenigo F, Gagliani M C, et al. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments[J]. J Cell Biol, 2006, 174(4): 593~604
    [49] Sarkar C, Chakroborty D, Mitra R B, et al. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells[J]. Am J Physiol Heart Circ Physiol, 2004, 287(4): H1554~1560
    [50]谭文福,肖东,王家珑,等.血管内皮生长因子受体信号转导通路与肿瘤血管生成[J].生物化学与生物物理进展,2001,28(5):623~625
    [51] Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer[J]. N Engl J Med, 2004, 350(23): 2335~2342
    [52] Hahn O, Stadler W. Sorafenib[J]. Curr Opin Oncol, 2006, 18(6): 615~621
    [53] Deeks E D, Keating G M. Sunitinib[J]. Drugs, 2006, 66(17): 2255-2266; discussion 2267~2268
    [54]徐芳.青蒿素类似物定量结构—活性关系研究[D].天津:天津大学,2007
    [55]张小轶.以人类免疫缺陷病毒整合酶为靶点的药物设计及耐药机理研究[D].北京:北京工业大学,2009
    [56]梁娜娜.苯并三唑类化合物抑制PTP-1B的QSAR和QSSR研究[D].天津:天津大学,2008
    [57]徐筱杰,侯廷军,乔学斌,等.计算机辅助药物分子设计[M].北京:化学工业出版社,2004,2~43
    [58]陈凯先,蒋华良,嵇汝运,等.计算机辅助药物设计—原理、方法及应用[M].上海:上海科学技术出版社,2000,8~23
    [59] Lyne P D. Structure-based virtual screening: an overview[J]. Drug Discov Today, 2002, 7(20): 1047~1055
    [60] Martin Y C, Bures M G, Danaher E A, et al. A Fast New Approach to Pharmacophore Mapping and Its Application tO Dopaminergic and Benzodiazepine Agonists[J].J Comput Aided Mole Des, 1993 7(1): 83~102
    [61]牛彦,裴剑锋,吕雯,等.距离比较法构建MI受体激动剂药效团模型[J].化学学报.2005,63(22):2021~2026
    [62]陈凯,程永浩,杨华铮.距离比较法(DISCO)构建ALS抑制剂药效团模型[J].化学学报.2002,60(3):518~523
    [63]郭彦伸,褚风鸣,郭宗儒.距离比较法构建表皮生长因子受体抑制剂的药效团模型[J].中国医学科学院学报.2004,26(4):379~384
    [64]任天瑞,沈斌,裴剑锋,等.家蝇与大鼠GABA受体抑制剂的药效团模型及其3D-QSAR研究[J].高等学校化学学报,2005,26(3): 546~549
    [65]相玉红,蒋大鹏,张卓勇.苯酰胺类组蛋白去乙酰化酶抑制剂的分子对接及三维定量构效关系研究[J].计算机与应用化学,2009,26(11):1371~1379
    [66] Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase[J]. Science, 2000, 289(5486): 1938~1942.
    [67] Zuccotto F, Ardini E, Casale E, et al. Through the "gatekeeper door": exploiting the active kinase conformation[J]. J Med Chem. 2010, 53 (7): 2681~2694
    [68] Karaman M W, Herrgard S, Treiber D K, et al. A quantitativeanalysis of kinase inhibitor selectivity[J]. Nat. Biotechnol. 2008, 26 (1): 127~132
    [69] Shah N P, Nicoll J M, Nagar, B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia[J]. Cancer Cell, 2002, 2 (2), 117~125
    [70] Sun H. Pharmacophore-based virtual screening[J]. Curr Med Chem. 2008;15(10): 1018~1024
    [71] Wolber G, Seidel T, Bendix F, et al. Molecule-pharmacophore superpositioning and patternmatching in computational drug design[J]. Drug Discov Today. 2008, 13(1): 23~29
    [72] Milne GW, Nicklaus MC, Wang S, et al. Pharmacophores in drug design and discovery[J]. SAR QSAR Environ Res. 1998, 9(1): 23~38
    [73] Renhowe P A, Pecchi S, Shafer C M, et al. Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin -2-ones : a novel class of receptor tyrosine kinase inhibitors[J]. J Med Chem 2009, 52(2): 278~292.
    [74] Tripos Bookshelf 7.2, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA
    [75]李韶勇,孙命,文欣,等.距离比较法构建酪氨酸酶抑制剂的药效团模型[J].计算机与应用化学,2002,19(3):312~314
    [76]陈凯,程永浩,杨华铮.距离比较法(DISCO)构建ALS抑制剂药效团模型[J].化学学报,2002,60(3):518~523
    [77]郭彦伸,褚凤鸣,郭宗儒.距离比较法构建表皮因子受体抑制剂的药效团模型[J].中国医学科学院学报,2004,26(4):379~384
    [78]李宁.选择性M3受体拮抗剂的设计与合成[D].青岛:青岛科技科大学,2009
    [79]杨嵩,万坚,陈婷,等.α-氧代膦酸酯类衍生物的研究[J].华中师范大学学报(自然科学版),2006,4(1):58~59
    [80]王炳灿.新型乙酰胆碱酯酶复能剂的量子化学与构效关系研究[D].广州市:华南师范大学,2005
    [81]位灯国.QSAR及其在新型农药分子设计中的应用[D].武汉市:华中师范大学,2005
    [82]陈桃菊.酪氨酸激酶抑制剂的分子对接与三维定量构效关系的研究[D].广州市:中山大学,2009
    [83]何严萍.非核苷类HIV-1逆转录酶抑制剂6-萘甲基取代HEPT及DABO类似物的分子设计、合成及生物活性研究[D].上海市:复旦大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700