转染SSTR2对人胰腺癌细胞抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言:胰腺癌在西方国家居癌症死亡原因的第四位,尽管最近几十年外科手术治疗、化学治疗以及放射治疗取得很大进展,死亡率仍等于发病率,1年生存率约为12%。生长抑素能抑制表达2型生长抑素受体的胰腺癌细胞的生长,对于不表达2型生长抑素受体的胰腺癌细胞则没有作用。2型生长抑素受体在正常的胰腺外分泌细胞中表达,而在胰腺外分泌腺癌、转移癌细胞以及大多数胰腺癌细胞株中很少表达。2型生长抑素受体表达可能是胰腺癌细胞失去的一个重要的肿瘤抑制途径。
     目的:我们通过构建包含SSTR2基因的腺病毒载体( AdCAG- SSTR2)转染SSTR2丢失的人胰腺癌BxPC-3细胞,观察对胰腺癌细胞肿瘤特性的影响,探讨其作用机制。构建含有COX-2基因启动子和SSTR2基因的腺病毒载体(AdCOX-2L-SSTR2)转染胰腺癌细胞以评估COX-2基因启动子的启动效率。观察苦参碱结合SSTR2基因转染能否增强对细胞增殖的抑制作用和阐明其作用机理。
     方法:分别应用空载体、AdCAG-SSTR2转染生长抑素受体阴性的人胰腺癌细胞株BxPC-3。RT-PCR和Western印迹法分析检测SSTR2在细胞中的表达。对非转染细胞,转染空载体细胞和转染SSTR2细胞使用血球计数板直接细胞计数测定细胞生长速度。采用流式细胞仪膜联蛋白V/碘化丙啶(Annexin V/PI)标记法检测细胞凋亡。Real Time PCR检测PCNA、Fas、Bax、Bcl-xl、VEGF和MMP9的表达。
     AdCAG-SSTR2和AdCOX-2-SSTR2重组腺病毒分别转染胰腺癌细胞,RT-PCR和Western印迹法分析检测SSTR2在细胞中的表达。Real Time PCR检测Bax、VEGF的表达。
     未转染胰腺癌细胞、转染AdCAG-SSTR2细胞、应用苦参碱细胞及转染AdCAG-SSTR2联合应用苦参碱细胞采用流式细胞仪膜联蛋白V/碘化丙啶(Annexin V/PI)标记法检测细胞凋亡。Real Time PCR检测Bax、Bcl-xl的表达。
     结果:AdCAG-SSTR2基因重组腺病毒转染胰腺癌细胞后可以检测到SSTR2mRNA和蛋白的稳定表达,转染SSTR2后细胞生长受到抑制,与对照组差异有显著性意义(P<0.01)。转染SSTR2后细胞凋亡发生率为9.45%,对照组凋亡发生率分别为0.33%、1.34%,与对照组差异有显著性意义(P<0.01)。同时检测到Fas、Bax的表达量升高,是对照组的1.99倍、3.18倍;Bcl-xl、VEGF、MMP9的表达量降低,分别是对照组的0.34倍、0.23倍及0.3倍。
     AdCOX-2-SSTR2重组腺病毒转染胰腺癌细胞则未检测到SSTR2mRNA和蛋白明显的表达,Bax、VEGF的表达也无明显变化,分别是对照组的1.23倍、1.12倍。
     苦参碱组细胞凋亡发生率为5.86±1.01%;AdCAG-SSTR2组细胞凋亡发生率为9.45±0.87%;AdCAG-SSTR2+苦参碱组细胞凋亡发生率为11.92±0.56% ;对照组细胞凋亡发生率为0.33±0.02%。苦参碱组与AdCAG-SSTR2组差异有显著性意义(P<0.01);苦参碱组与对照组、AdCAG-SSTR2+苦参碱组间差异有显著性意义( P< 0.01)。苦参碱组及AdCAG-SSTR2+苦参碱组Bcl-xl的表达下降,分别是对照组的0.67倍和0.19倍;苦参碱组Bax的表达无明显变化,是对照组的1.23倍,AdCAG-SSTR2组与AdCAG-SSTR2+苦参碱组Bax的表达无明显变化,分别是对照组的3.18倍和3.21倍。
     结论: SSTR2通过诱导胰腺癌细胞凋亡发挥抗肿瘤增殖的作用,其机制可能与上调Fas、Bax的表达,下调Bcl-xl的表达有关。
     VEGF、MMP9表达下降提示SSTR2可以在胰腺癌的抗血管生成治疗中发挥作用。在胰腺癌细胞株BxPC-3中COX-2启动子驱动SSTR2表达未显示出肿瘤特异性启动子的优势。
     苦参碱能促进细胞凋亡并增强SSTR2的作用,其机制可能与下调Bcl-xl的表达有关,而与Bax的表达无关。苦参碱在胰腺癌的治疗中显示出潜在的价值。
Background:Pancreatic carcinoma is the fourth leading cause of cancer related deaths in Western countries, Despite advances in surgery, chemotherapy, and radiation therapy in recent decades, the mortality rate for pancreatic cancer remains equal to its incidence, with an overall 1-year survival rate of 12% or so. It have been demonstrated that somatostatin inhibits the growth of pancreatic cancers expressing somatostatin receptor subtype 2 (SSTR2) but not receptor-negative cancers. SSTR2 is expressed in normal human endocrine pancreas but not in exocrine pancreatic carcinomas and their metastasis as well as in most of human pancreatic cancer cell lines. SSTR2 expression may be an important tumor suppressor pathway that is lost in human pancreatic cancer.
     Objectiv:We corrected the SSTR2 defect in human pancreatic cancer BxPC-3 cells by stable transfection with adenoviral vector containing the SSTR2, investigated its effect on tumorigenicity of human pancreatic cancer, elucidated the underlying mechanisms. We evaluated transductional efficiency of adenoviral vector bearing COX-2 promoter and SSTR2 gene in pancreatic cancer. Matrine was combined with SSTR2 gene expression to observe whether it can potentiate the inhibition of cell proliferation and to elucidate the underlying mechanisms.
     Methods:We used AdCAG-SSTR2 and empty vector transfected so- matostatin receptor-negative human pancreatic cancer cells (BxPC-3) respectively. The expression of SSTR2 were detected by RT-PCR and Western blot. Negative contral, vector control, and SSTR2 transfected cells were cultured and the rate of cell growth was determined by direct cell counting using a hemacytometer. The apoptosis was assessed by flow cytometric Annexin V/PI labelling assay. The expression of PCNA, Fas, Bax, Bcl-xl, VEGF and MMP9 were detected by Real Time PCR.
     AdCOX-2L-SSTR2 and AdCAG-SSTR2 transfected human pancreatic cancer cells (BxPC-3) respectively. The expression of SSTR2 mRNA and protein was detected by RT-PCR and Western blot. The expression of Bax, VEGF were detected by Real Time PCR.
     The apoptosis was assessed by flow cytometric Annexin V/PI labelling assay in negative control, AdCAG-SSTR2 transfection, administration of Matrine and AdCAG-SSTR2 transfection combining administration of Matrine respectively. The expression of Bax, Bcl-xl were detected by Real Time PCR.
     Results:The stable expression of SSTR2 was detected in the cells transfected by AdCAG-SSR2. The significant decrease of pancreatic cancer cell growth was detected in experimental group compared with control groups(P< 0.01).The ratio of apoptosis significantly increased in cells re-expressing SSTR2 (9.45%) than control group (P<0.01).The increase of Fas, Bax(1.99、3.18fold) and decrease of Bcl-xl, VEGF, MMP9(0.34、0.23 & 0.30fold) were detected by Real Time PCR.
     The stable expression of SSTR2 wasn’t detected in the cells transfected by AdCOX-2L-SSTR2, and no effect on the expression of Bax and VEGF was found.
     The ratio of apoptosis was 5.86±1.01%, 9.45±0.87%,11.92±0.56% and 0.33±0.02% in administration of Matrine group, AdCAG-SSR2 transfection group, administration of Matrine combining with AdCAG-SSR2 trans- fection group and control group respectively. There was significant di- fference between administration of Matrine group and AdCAG-SSR2 transfection group; the ratio of apoptosis in administration of Matrine combining with AdCAG-SSR2 transfection group was significantly higher than in administration of Matrine group. The decrease of Bcl-xl was detected in administration of Matrine group (0.67 fold) and administration of Matrine combining with AdCAG-SSR2 transfection group (0.19 fold).The expression of Bax hadn’t changed in administration of Matrine group (1.23 fold). There was no significant different expression of Bax between administration of Matrine group and administration of Matrine combining with AdCAG-SSR2 transfection group (3.18 vs 3.21 fold).
     Conclusions:SSTR2 reversed tumorigenicity of human pancreatic cancer cells. The mechanisms of inducing apoptosis may involved in up- regulating the expression of Fas、Bax and down-regulating the ex- pression of Bcl-xl. The decrease of VEGF and MMP9 may predict response to therapy of anti-angiogenesis in pancreatic carcinoma with SSTR2. COX-2 promoter havn’t represented advantage in promoting the expression of SSTR2 in BxPC-3. Administration of Matrine elevated the ratio of apoptosis and potentiated the effect of AdCAG-SSR2, The mechanisms of inducing apoptosis may be due to the down-regulating the expression of Bcl-xl. Administration of Matrine showed potential therapy effect in pancreatic carcinoma.
引文
1 Salle GL,Robert JJ,Berrard S,et al.An adenovirus vector for gene transfer into neurous and glia in the brain.Science,1993,259~988
    2 Barajas M, Mazzolini G, GenovéG, et al. Gene therapy of orthotopic hepato- cellular carcinoma in rats using adenovirus coding for interleukin 12. Hepato- logy. 2001 ,33(1):52-61
    3 Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001 ,7 (1):33- 40.
    4 Shayakhmetov DM, Gaggar A, Ni S, et al. Adenovirus binding to blood factors results in liver cell infection and epatotoxicity.J Virol. 2005 ,79(12): 7478- 7491.
    5 Kanerva A, Hemminki A. Adenoviruses for treatment of cancer.Ann Med. 2005, 37 (1):33-43.
    6 Vile R, Russell SJ.Gene transfer technologies for the gene therapy of cancer. Gene Ther. 1994,1(2):88-98.
    7 Sinkovics J, and Horvath J. New developments in the virus therapy of cancer: a historical review. Inter virology. 1993, 36:193–214.
    8 Smith R, Huebner R, Rowe W, et al. Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer (Phila).1956, 9:1211–1218.
    9 Chiocca E A,abbed K M,Tatter S,et al.A phaseⅠopen-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX- 015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol ther.2004, 10(5):958-966.
    10 Yu D C, Chen Y, Seng M, et al. The addition of adenovirus type5 region E3 enables Calydon Virus 787 to eliminate distant prostate tumor xenagrafts.Cancer Res.1999, 59(17):4200-4203.
    11 Doehn C, Jocharm D.Technology evaluation: CV-787, Calydon lnc.Curr opin molther, 2001, 3(2):204-210.
    12 Bischoff J, Kirn D, Williams A, et al. An adenovirus mutant that replicates selectively in p53 deficient human tumor cells. Science.1996, 274:373–376.
    13 Steegenga WT, Riteco N, Jochemsen AG, et al. The large E1B protein together with E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene.1998, 16:349-357.
    14 Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicatesselectively in p53-deficient human tumor cells. Science.1996, 274: 373-376.
    15 Wildner O, Blaese R, Morris J. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virusthymidine kinase. Cancer Res.1999, 59:410–413.
    16 Goodrum F, Ornelles D. p53 status does not determine outcome of E1B 55 kilo-dalton mutant adenovirus lytic infection. J. Virol.1998, 72:9479-9490.
    17 Turnell A, Grand R, Gallimore P. The replicative capacities of large E1B-null group A and group C adenovirus are independent of host cell p53 status. J. Virol.1999, 73:2074–2083.
    18 Nemunaitis J, Khuri F, Ganly I, et al. PhaseⅡtrial of intratumoral ad- ministration of ONYX2015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001, 19: 289-298.
    19 Ramachandra M, Rahman A, Zou A, et al. Re2engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol. 2001, 19:1035-1041.
    20 Wang H, Moran E, Yaciuk P. E1A promotes association between p300 and pRB in multimeric complexes required for normal biologic activity. J. Virol. 1995, 69: 7917–7924.
    21 Fueyo J, Gomez-Manzano C, Alemany R, et al. Amutant oncolytic adenovirus targeting the Rb pathway produces antiglioma effect in vivo. Oncogene.1999, 19: 1–11.
    22 Suzuki K, Fueyo J, Krasnykh V, et al. A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res. 2001, 7:120–126.
    23 Heise C, Hermiston T, Johnson L, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med. 2000, 6:1134–1139.
    24 Rodriguez R, Shuur E, Lim H., et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate specific antigen positive prostate cancer cells. Cancer Res.1997, 57:2559–2563.
    25 Deweese TL, Vanderpoel H, Li S, et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 2001, 61:7474-7472.
    26 Nettelbeck DM, Rivera AA, BalaguéC, et al. Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res. 2002, 62(16):4663-4670.
    27 Hallenbeck PL, Chang YN, Hay C, et al. A novel tumor-specific replication- restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther. 1999, 10(10):1721-1733.
    28 Yamamoto M, Davydova J, Wang M, et al.Infectivity enhanced, cyclooxygenase- 2 promoter-based conditionally replicative adenovirus for pancreatic cancer. Gastroenterology. 2003, 125(4):1203-1218.
    29 Davydova J, Le LP, Gavrikova T, et al.Infectivity-enhanced cyclooxygenase- 2-based conditionally replicative adenoviruses for esophageal adenocarcinoma treatment.Cancer Res. 2004,64(12):4319-4327.
    30 Ono HA, Davydova JG, Adachi Y, et al. Promoter-controlled infectivity- enhanced conditionally replicative adenoviral vectors for the treatment of gastric cancer.J Gastroenterol. 2005, 40(1):31-42.
    31 Rein DT, Breidenbach M, Kirby TO, et al. A fiber-modified, secretory leukoprotease inhibitor promoter-based conditionally replicating adenovirus for treatment of ovarian cancer. Clin Cancer Res. 2005, 11(3):1327-1335.
    32 Tekant Y, Davydova J, Ramirez PJ, et al. Oncolytic adenoviral therapy in gallbladder carcinoma. Surgery. 2005, 137(5):527-535.
    33 Jakubczak JL, Ryan P, Gorziglia LC, et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F21 promoter, and viral replication for selectivity and efficiency. Cancer Res. 2003, 63:1490-1499.
    34 Post DE, Van Meir EG. A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene.2003, 87:2525-2531.
    35 Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer.1997,33:787–791.
    36 Uchino J, Takayama K, Harada A, et al. Infectivity enhanced, hTERT promoter- based conditionally replicative adenoviruses are useful for SCLC treatment. Cancer Gene Ther. 2005,12:737-748.
    37 Huang TG, Savontaus MJ, Shinozaki K, et al. Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther.2003, 10:1241-1247.
    38 Altieri DC. Validating survivin as a cancer therapeutic target. Nature Rev Cancer. 2003,3:46–54.
    39 Chen JS, Liu JC, Shen L, et al. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther. 2004,11: 740– 747.
    40 Zhu ZB, Chen YB, Sharmila K. Survivin promoter-based conditionally re- plicative adenoviruses target cholangiocarcinoma. Int J Oncol. 2006, 29(5): 1319-1329.
    41 B Lu, SK Makhija, DM Nettelbeck, et al. Evaluation of tumor-specific promoter activities in melanoma. Gene Therapy. 2005, 12:330–338.
    42 Hernandez-Alcoceba R, Pihalja M, Qian D, et al. New oncolytic adenovirus with hypoxia and estrogen receptor-regulated replication. Hum Gene Ther. 2002, 13: 1737-1750.
    43 Cui Q, Jiang W, Wang Y. Transfer of suppressor of cytokine signaling 3 by an oncolytic adenovirus induces potential antitumor activities in hepatocellular carcinoma . Hepatology. 2008, 47(1):105-112.
    44 Johnson L, Shen A, Boyle L, et al. Selectively rep licating adenovirus targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell. 2002, 1: 325-337.
    45 Choi HS, Lee Y, Park KH, et al. Single-nucleotide polymorphisms in the promoter of the CDK5 gene and lung cancer risk in a Korean population. Hum Genet. 2009 Apr 3.
    46 Tan XL, Moslehi R, Han W, et al. Haplotype-tagging single nucleotide poly- morphisms in the GSTP1 gene promoter and susceptibility to lung cancer. Cancer Detect Prev. 2009 Mar 10.
    47 Sitarz R, Leguit RJ, de Leng WW, et al. The COX-2 promoter polymorphism -765 G >C is associated with early-onset, conventional and stump gastric cancers.Mod Pathol. 2008, 21(6):685-690.
    48 Bergelson J M, Cunningham J A, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997,275 (5304):1320-1323.
    49 Oosterhoff D, van Beusechem VW. Conditionally replicating adenoviruses as anticancer agents and ways to imp rove their efficacy. Exp TherOncol. 2004, 4: 37-57.
    50 Shinowara N, Yoshida Y, Tsunoda R, et al. Highly augmented cytopathic effectof a fiber-mutant E1B-defective adenovirus for gene-therapy of gliomas. Cnacer Res.1999, 59: 3411-3416.
    51 Jacob D, Bahra M, Schumacher G, et al. Gene therapy in colon cancer cells with a fiber-modified adenovector expressing the TRAIL gene driven by the hTERT promoter. Anticancer Res.2004, 24:3075-3079.
    52 Bauerschmitz GJ, Lam JT, Kanerva A, et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res.2002, 62:1266-1270.
    53 Dehari H, Ito Y, Nakamura T, et al. Enhanced antitumor effect of RGD fiber-modified adenovirus for gene therapy of oral cancer. Cancer Gene Ther. 2003,10:75-85.
    54 Jager D , Stockert E , Scanlan MJ , et al . Cancer-testis antigens and ING1 tumor suppressor gene product are breast cancer antigens: characterization of tissue2specific ING1 transcripts and a homologue gene. Cancer Res.1999,59 (24):6197-6204.
    55 Boon T, Coulie P G, Van den Eynde B. Tumor antigens recognized by T cell . Immunol Today. 199l, 18(6):267-268.
    56 Sebestyen Z, de Vrij J, Magnusson M, et al. An oncolytic adenovirus redirected with a tumor-specific T-cell receptor. Cancer Res. 2007, 67(23):11309-11316.
    57 Magnusson M K, Henning P, Myhre S, et al. Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther.2007, 14(5):468-479.
    58 Krasnykh VN, Mikheeva GV, Douglas JT, et al. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol. 1996, 70:6839–6846.
    59 Kawakami Y, Li H, Lam JT, et al. Substitution of the adenovirus serotype 5 knob with a serotype 3 knob enhances multiple step s in virus replication. Cancer Res.2003, 63:1262-1269.
    60 Raki M, Sarkioja M, Desmond R A , et al. Oncolytic adenovirus Ad5/3-Δ24 and chemotherapy for treatment of orthotopic ovarian cancer. Gynecol Oncol.2008, 108(1):166-172.
    61 Ophorst OJ, Kostense S, Goudsmit J, et al. An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity. Vaccine.2004, 22:3035-3044.
    62 Yu L, Shimozato O, Li Q, et al. Adenovirus type 5 substituted with type 11 or 35fiber structure increases its infectivity to human cells enabling dual gene transfer in CD46-dependent and–independent manners. Anticancer Res.2007, 27(4B): 2311-2316.
    63 Green M, Panesar N K, Loewenstein P M. Adenovirus E1A proteins are closely associated with chromatin in productively infected and transformed cells. Virology.2008, 371(1):1-7.
    64 Ram Z, Culver KW, Oshiro EM, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med. 1997, 3:1354-1361.
    65 Klatzmann D. A phase III study of herpes simplex virus type 1 thymidine kinase“suicide”gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther.1998, 9:2595-2604.
    66 Shand N, Weber F, Mariani L, et al. A phase 1 - 2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European - Canadian Study Group. Hum Gene Ther.1999, 10:2325-2335.
    67 Rainov N. G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther.2000, 11:2389-2401.
    68 Puumalainen AM, Vapalahti M, Agrawal RS, et al. Beta - galactosidase gene transfer to human malignant glioma in vivo using replication -deficient retroviruses and adenoviruses. Hum Gene Ther.1998, 9:1769-1774.
    69 Sandmair AM, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adeno- viruses. Hum Gene Ther.2000, 11:2197-2205.
    70 Immonen A, Vapalahti M, Tyynela K, et al. AdvHSV - tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther.2004, 10:967-972.
    71 Nanda D, Vogels R, Havenga M, et al. Treatment of malignant gliomas with a replicating adenoviral vector exp ressing herpes simplex virus-thymidine kinase. Cancer Res.2001, 61:8743-8750.
    72 Lambright ES, Amin K, Wiewrodt R, et al. Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumorefficiency. Gene Ther.2001, 8:946-953.
    73 Freytag SO, Rogulski KR, Paielli DL, et al. A novel three– pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther.1998, 10(9):1323-1333.
    74 Wildner O, Morris JC, Vahanian NN, et al. Adenoviral vectors capable of replication improve the efficacy of HSVtk/ GCV suicide gene therapy of cancer. Gene Ther.1999, 6(1):57-62.
    75 Rogulski KR, Wing MS, Paielli DL, et al. Double suicide gene therapy adeno- virus through enhanced cytotoxicity and radiosensitization.Hum Gene Ther. 2000,11:67-76.
    76 Freytag SO , Khil M, Stricker H,et al. Phase I study of replication -competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res.2002, 62:4968-4976.
    77 Fukuda K, Abei M, Ugai H, et al. E1A, E1B double-restricted replicative adenovirus at low dose greatly augments tumor-specific suicide gene therapy for gallbladder cancer. Cancer Gene Ther.2009, 16(2):126-36.
    78 Schepelmann S, Ogilvie LM, Hedleg D, et al. Suicide gene therapy of human colon carcinoma xenografts using an armed oncolytic adenovirus expressing carboxypeptidase G2. Cancer Res.2007, 67(10):4949-4955.
    79 Kojima Y,Honda K,Hamada H, et al. Oncolytic Gene Therapy Combined with Double Suicide Genes for Human Bile Duct Cancer in Nude Mouse Models. 2009 Jan 10.
    80 Li G, Sham J, Yang J, et al .Potent antitumor efficacy of an E1B 55kDa-deficient adenovirus carrying murine endostatin in hepatocellular carcinoma. Int J Cancer. 2005, 113(4):640-648.
    81 Lamfers ML, Gianni D, Tung CH, et al. Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. Cancer Res.2005, 65(20):9398-9405.
    82 Ye X, Lu Q, Zhao Y, Ren Z, et al. Conditionally replicative adenovirus vector carrying TRAIL gene for enhanced oncolysis of human hepatocellular carcinoma. Int J Mol Med.2005, 16(6):1179-1184.
    83 van Beusechem VW, van den Doel PB, Grill J, et al. Conditionally replication adenovirus expressing p53 exhibits enhanced oncolytic potency. CancerRes.2002, 62:6165-6171.
    84 Danielsson A, Dzojic H, Nilsson B, et al. Increased therapeutic efficacy of the prostate2specific oncolytic adenovirus Ad[IPPPT-E1A] by reduction of the insulator size and introduction of the full-length E3 region. Cancer Gene Ther. 2008, 15(4):203-213.
    85 Robinson M, Ge Y, Ko D, et al. Comparison of the E3 and L3 regions for arming oncolytic adenoviruses to achieve a high level of Tumor-specific transgene expression. Cancer Gene Ther.2008, 15(1):9-17.
    86 Alemany R, Suzuki K, Curiel DT. Blood clearance rates of adenovirus type 5 in mice. J Gen Virol.2000, 81 (Pt11):2605-2609.
    87 Roberts D M, Nanda A, Havenga MJ, et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature.2006, 441(7090): 239-243.
    88 Parks RJ. Adenovirus protein IX: a new look at an old protein. Mol Ther.2005, 11:19–25.
    89 Vellinga J, Van der Heijdt S, Hoeben RC. The adenovirus capsid: major progress in minor proteins. J Gen Virol.2005, 86:1581–1588.
    90 Li J, Le L, Sibley DA,et al. Genetic incorporation of HSV-1 thymidine kinase into the adenovirus protein IX for functional display on the virion. Virology. 2005, 247–258.
    91 Ishida T, Atobe K, Wang X, et al. Accelerated blood clearance of PEGylated liposomes upon repeated injections: Effect of doxorubicin-encapsulation and high-dose first injection. J Controlled Release.2006, 115(3):251-258.
    92 Gao J Q, Eto Y, Yoshioka Y, et al. Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. J Controlled Release. 2007, 122(1):102-110.
    93 Eto Y, Gao JQ, Sekiguchi F, et al. PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. Gene Med.2005, 7(5):604-612.
    94 Li Y, Yu DC, Chen Y, et al. A hepatocellular carcinoma2specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res.2001, 61:6428-6436.
    95 Yu DC, Chen Y, Dilley J, et al. Antitumor synery of CV787, a prostate cancer specific adenovirus, and paclitaxel and docetaxel. Cancer Res.2001, 61:517-525.
    96 Raki M, Kanerva A, Ristimaki A, et al. Combination of gemcitabine and Ad5/32Delta24, a trop ism modified conditionally replicating adenovirus, for the treatment of ovarian cancer. Gene Ther. 2005,12:1198-1205.
    97 Portella G, Scala S, Vitagliano D, et al. ONYX2015, an E1B gene-defective adenovirus, induces cell death in human anaplastic thyroid carcinoma cell lines. J Clin Endocrinol Metab.2002, 87:2525-2537.
    98 Geoerger B, Grill J, Opolon P, et al. Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX2015) in human malignant glioma xenografts. Br J Cancer.2003, 89:577-584.
    99 LamfersML, Grill J, Dirven CM, et al. Potential of the conditionally replicative adenovirus Ad52△24RGD in the treatment of malignant glioma and its enhanced effectwith radiotherapy. Cancer Res.2002, 62:5736-5702.
    100 Freytag SO,Barton KN,Brown SL,et al. Replication-competent adenovirus- mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer.Mol Ther.2007,15(9);1600-1606.
    101 McNally LR,Rosenthal EL,Zhang W,et al. Therapy of head and neck squamous cell carcinoma with replicative adenovirus expressing tissue inhibitor of metalloproteinase-2 and chemoradiation.Cancer Gene Ther.2009,16(3):246-255.
    1. Devesa SS, Blot WJ, Stone BJ, et al. Recent cancer trends in the United States. J Natl Cancer Inst. 1995,87:175-182.
    2. Ahlgren JD. Epidemiology and risk factor in pancreatic cancer. Semin oncol. 1996,23:241-250.
    3. Niederhuber J, Brennan MF, Menck HR. The national cancer data base report on pancreatic cancer. Cancer. 1995,76:1671-1677.
    4. Rozenblum E,Schutte M,Goggins M,et al.Tumor-suppressive pathway in pancreatic carcinomas.Cancer Res.1997,57(9):1731-1734.
    5. Yamada Y, Post SR, Wang K,et al. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci U S A. 1992,89(1): 251-255.
    6. Bruno JF, Xu Y, Song J,et al. Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci U S A. 1992,89 (23): 11151-11155.
    7. O'Carroll AM, Lolait SJ, K?nig M, et al. Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin-28.Mol. Pharmacol. 1992,42:939–946.
    8. Rohrer L, Raulf F, Bruns C,et al.Cloning and characterization of a fourth human somatostatin receptor. Proc Natl Acad Sci U S A. 1993,90 (9):4196-200.
    9. Panetta R, Patel YC.Expression of mRNA for all five human somatostatin receptors (hSSTR1-5) in pituitary tumors. Life Sci. 1995,56 (5):333-42.
    10. Patel YC, Greenwood MT, Panetta R, et al. The somatostatin receptor family. Life Sci. 1995,57 (13):1249-65.
    11. Patel YC. Molecular pharmacology of somatostatin receptor subtypes. J. Endocrinol Invest. 20, 348–367.
    12. Hoyer D, Bell GI, Berelowitz M, et al. Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci. 1995,16 (3):86-8.
    13. MJ Toro, L Birnbaumer, MC Redon, et al. Mechanism of action of somatostatin, Horm Res. 1988,29:59– 64.
    14. GI Bell, T Reisine. Molecular biology of somatostatin receptors, Trends Neurosci. 1993,16:34– 38.
    15. Schally AV. Oncological applications of somatostatin analogues. Cancer Res.1988,48:6977-6985.
    16. Buscail L, Delesque N, Estève J-P, et al. Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human receptor subtypes SSTRI and SSTR2. Proc NatI Acad Sci USA.1994, 91: 2315-2319.
    17. Liebow C, Reilly C, Serrano M, et al. A. V. Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase. Proc NatI Acad Sci USA. 1989,86: 2003-2007.
    18. Lamberts S, WJ Krenning, EP, Reubi JC. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev.1991,12: 450-482.
    19. Buscail L, Saint-Laurent N, Chastre E, et al. Loss of sst2 somatostatin receptor gene expression in human pancreatic and colorectal cancer. Cancer Res. 1996,56: 1823-1827.
    20.王东,巩鹏,王忠裕.胰腺癌特异性受体基因载体的构建及环氧合酶2L启动子的作用.中华实验外科杂志. 2006,23(11):1322-1324.
    21. Janes RH Jr, Niederhuber JE, Chmiel JS, et al. Pattern of care for pancreatic cancer: results of a survey by the commission on cancer. Ann Surg.1996,3(6):1223-1261.
    22. Rosenber L, Lipsett M. Biotherapeutic approaches to pancreatic cancer. Expert Opin Biol Ther.2003, 3:319- 337.
    23. Prevost G, Veber N, Viollet C, et al. Somatostatin-14 mainly binds the somatostatin receptor subtype 2 in human neuroblastoma tumors. Neuroendocri- nology. 1996,63:188-197.
    24. Hoyer D, Bell GI, Berelowitz M, et al. Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci. 1995, 16: 86-88.
    25. Rochaix P, Delesque N, Esteve JP, et al. Gene therapy for pancreatic carcinoma: local and distant antitumor effects after somatostatin receptor sst2 gene transfer. Hum Gene Ther. 1999, 10: 995-1008.
    26. Paillard F. Somatostatin receptor gene transfer induces bystander effects. Hum Gene Ther. 1999, 10: 857-859.
    27. Weckbecker G, Raulf F, Stolz B, et al. Somatostatin analogs for diagnosis and treatment of cancer. Pharmacol Ther.1993, 60 (2):245-264.
    28. Lewin MJ. The somatostatin receptor in the GI tract. Annu Rev Physiol. 1992, 54:455-468.
    29. Qin RY, Fang RL, Gup taMK, et al. Alteration of somatostatin receptor subtype 2 gene expression in pancreatic tumor angiogenesis. World J Gastroenterol. 2004, 10(1):132-135.
    30. Tan CK, Podila PV, Taylor JE. Human cholangiocarcinomas express somatostatin recep tors and respond to somatostatin with growth inhibition. Gastroenterology.1995, 108(6):1908-1916.
    31. Li M, Li W, Kim HJ, et al. Characterization of somatostatin receptor expression in human pancreatic cancer using real-time RT-PCR. J Surg Res. 2004, 119 (2):130-137.
    32. Papotti M, Bongiovanni M, Volante M, et al. Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 2002, 440(5):461-75.
    33. Celinski SA, Fisher WE, Amaya F, et al. Somatostatin receptor gene transfer inhibits established pancreatic cancer xenografts. J Surg Res. 2003, 115(1):41-7.
    34. Fisher WE, Wu Y, Amaya F, et al. Somatostatin receptor subtype 2 gene therapy inhibits pancreatic cancer in vitro. J Surg Res. 2002, 105(1):58-64.
    35. Delesque N, Buscail L, Esteve JP, et al. SST2 somatostatin receptor expression reverses tumorigenicity of human pancreatic cancer cells. Cancer Res.1997, 57(5): 956-962.
    36.徐彬,徐浩,李月琴,等.腺病毒介导生长抑素2型受体对裸鼠人胰腺癌移植瘤抑制作用的研究.中国实用内科杂志.2007, 27(8):593-596.
    37. Fisher WE, Wu Y, Amaya F, et al. Somatostatin receptor subtype 2 gene therapy inhibits pancreatic cancer in vitro. J Surg Res. 2002, 105(1):58-64.
    38. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972, 26: 239-257.
    39. Jenkinson EJ, Kingston R, Smith CA, et al. Antigen-induced apoptosis in developing T cells: a mechanism for negative selection of the T cell receptor repertoire. Eur J Immunol. 1989, 19(11):2175-2177.
    40. Golstein P. Controlling cell death. Science. 1997, 275: 1081-1082.
    41. Pepper C, Thomas A, Tucker H, et al. Flow cytometric assessment of three different methods for the measurement of in vitro apoptosis. Leuk Res. 1998,22(5):439-444.
    42. Ota T, Akaza H, Hattori K, et al. The relationship between the estimated tumor growth speed and indices of bromodeoxyuridine (BrdU) incorporation and the proliferating cell nuclear antigen (PCNA) expression in superficial bladder cancer. Nippon Hinyokika Gakkai Zasshi. 1997, 88(10):868-873.
    43. Hager JH, Hanahan D. Tumor cells utilize multiple pathways to down-modulate apoptosis.Lessons from a mouse model of islet cell carcinogenesis. Ann N Y Acad Sci.1999, 887:150–163.
    44. Elnemr A, Ohta T, Yachie A, et al. Human pancreatic cancer cells disable function of Fas receptors at several levels in Fas signal transduction pathway. Int J Oncol.2001, 18:311–316.
    45. Elnemr A, Ohta T, Yachie A, et al. Human pancreatic cancer cells express nonfunctional Fas receptors and counterattack lymphocytes by expressing Fas ligand; a potential mechanism for immune escape. Int J Oncol.2001, 8:33–39.
    46. Guillermet J, Saint-Laurent N, Rochaix P, et al. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proc Natl Acad Sci U S A.2003, 100(1):155-160.
    47. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. Embo J .1998, 17:1675–1687.
    48. Hinz S, Trauzold A, Boenicke L, et al. Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene. 2000, 19:5477–5486.
    49. Reed JC, Green DR. Remodeling for demolition: changes in mitochondrial ultrastructure during apoptosis. Mol Cell. 2002; 9:1–3.
    50. Campani D, Esposito I, Boggi U, et al. Bcl-2 expression in pancreas development and pancreatic cancer progression. J Pathol. 2001, 194:444–450.
    51. Evans JD, Cornford PA, Dodson A, et al. Detailed tissue expression of bcl-2, bax, bak and bcl-x in the normal human pancreas and in chronic pancreatitis, ampullary and pancreatic ductal adenocarcinomas. Pancreatology. 2001, 1: 254–262.
    52. Hu Y, Benedict MA, Wu D, et al. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA. 1998, 95: 4386–4391.
    53. Masui T, Hosotani R, Ito D, et al. Bcl-XL antisense oligonucleotides coupledwith antennapedia enhances radiation-induced apoptosis in pancreatic cancer. Surgery.2006, 140:149–160.
    54. Klemm K, Eipel C, CantréD, et al.Multiple doses of erythropoietin impair liver regeneration by increasing TNF-alpha, the Bax to Bcl-xL ratio and apoptotic cell death. PLoS ONE. 2008, 3(12):e3924.
    55. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009, 15(4):1126-1132.
    56. Brinder, Marx D,Binder L,et al. Expression of bax in relation to bcl-2 and other predictive Parameters in breast cancer. Ann Onocl.1996,7(2):129-133.
    57. Isabelle Rauly, Nathalie Saint-Laurent, Nathalie Delesque, et al. Induction of a negative Autocrine loop by expression of sst2somatostatin receptor in NIH 3T3 cells. J. Clin. Invest.1996, 97(8):1874-1833.
    58. CarrereN, Vernejoul F, SouqueA, et al. Characterization of the bystander effect of somatostatin receptor sst2 after In vivo gene transfer into human pancreatic cancer cells. Hum Gene Ther. 2005, 16 (10):1175 - 1193.
    59. Teijeiro R, Rios R, Costoya JA, et al. Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53. Cell Physiol Biochem.2002, 12(1): 31-38.
    60. Ferrante E, Pellegrini C, Bondioni S, et al. Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2. Endocr Relat Cancer.2006, 13(3):955-962.
    61. Liu HL, Huo L, Wang L. Octreotide inhibits proliferation and induces apoptosis of hepatocellular carcinoma cells. Acta Pharmacol Sin.2004, 25(10):1380-1386.
    62. Rocheville M, Lange DC, Kumar U, et al. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem. 2000, 275(11): 7862-7869.
    63. Pfeiffer M, Koch T, Schroder H, et al. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem.2002, 277(22):19762-19772.
    64. Seo Y, Baba H, Fukuda T, et al. High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer. 2000, 88:2239-2245.
    65. Niedergethmann M, Hildenbrand R, Wostbrock B, Et al. High expression of vascular endothelial growth factor predicts early recurrence and poor prognosisafter curative resection for ductal adenocarcinoma of the pancreas. Pancreas. 2002,25:122-129.
    66. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997, 89:1260-1270.
    67. Sier CF, Kubben FJ, Ganesh S, et al. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br J Cancer. 1996, 74:413-417.
    68. Honda M, Mori M, Ueo H, et al. Matrix metalloproteinase-7 expression in gastric carcinoma. Gut. 1996, 39:444-448.
    69. Nomura H, Sato H, Seiki M, et al.Expression of membrane-type matrix metalloproteinase in human gastric carcinomas. Cancer Res. 1995, 55:3263- 3266.
    70. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004, 350:2335-2342.
    71. Chirivi RG, Garofalo A, Crimmin MJ, et al. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer. 1994, 58:460-464.
    72. Eccles SA, Box GM, Court WJ, et al. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res. 1996, 56:2815-2822.
    73. Watson SA, Morris TM, Collins HM, et al. Inhibition of tumour growth by marimastat in a human xenograft model of gastric cancer: relationship with levels of circulating CEA. Br J Cancer. 1999,81:19-23.
    74. Kindler HL, Friberg G, Stadler WM, et al. Bevacizumab (B) plus gemcitabine (G) in patients (pts) with advanced pancreatic cancer (PC): Updated results of a multicenter phase II trial. J Clin Oncol. 2004, 22(Suppl.):4009.
    75. Bramhall SR, Schulz J, Nemunaitis J, et al. A double-blind placebo controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer. 2002,87:161-167.
    1. Kanerva A, Hemminki A. Adenoviruses for treatment of cancer. Ann Med. 2005, 37(1):33-43.
    2. Yamamoto M, Davydova J, Wang M, et al. Infectivity enhanced, cyclooxygenase-
    2 promoter-based conditionally replicative adenovirus for pancreatic cancer. Gastroenterology. 2003,125(4):1203-18.
    3. Davydova J, Le LP, Gavrikova T, et al. Infectivity-enhanced cyclooxygenase- 2-based conditionally replicative adenoviruses for esophageal adenocarcinoma treatment. Cancer Res. 2004,64 (12):4319-27.
    4. Ono HA, Davydova JG, Adachi Y, et al. Promoter-controlled infectivity- enhanced conditionally replicative adenoviral vectors for the treatment of gastric cancer. J Gastroenterol. 2005,40(1):31-42.
    5. Rein DT, Breidenbach M, Kirby TO, et al. A fiber-modified, secretory leukoprotease inhibitor promoter-based conditionally replicating adenovirus for treatment of ovarian cancer. Clin Cancer Res. 2005,11 (3):1327-35.
    6. Tekant Y, Davydova J, Ramirez PJ,et al. Oncolytic adenoviral therapy in gallbladder carcinoma. Surgery. 2005,137(5):527-35.
    7. Zhao B, Zhao H, Zhao N, et al. Cholangiocarcinoma cells express somatostaitin receptor subetype 2 and respond to octreotide treatment. J Hepatobiliary Pancreat Surg.2002,9(4):497-502.
    8. Sadji-Ouatas Z, Lasfer M, Julien S, et al. Doxorubicin and octreotide induce a 40 kDa breakdown product of p53 in human hepatoma and tumoral colon cell lines. Biochem J. 2002,364 (Pt 3):881-885.
    9. Lasfer M, Vadrot N, Schally AV, et al. Potent induction of apoptosis in human hepatoma cell lines by targeted cytotoxic somatostatin analogue AN-238.J Hepatol. 2005,42(2):230-237.
    10. Jia WD, Xu GL, Xu RN, et al. Octreotide acts as an antitumor angiogenesis compound and suppresses tumor growth in nude mice bearing human hepatocellular carcinoma xenografts. J Cancer Res Clin Oncol. 2003 ,129(6): 327-34.
    11.王东,巩鹏,王忠裕.胰腺癌特异性受体基因载体的构建及环氧合酶2L启动子的作用.中华实验外科杂志. 2006,23(11):1322-1324.
    12. Janes RH Jr, Niederhuber JE, Chmiel JS, et al. Pattern of care for pancreaticcancer: results of a survey by the commission on cancer. Ann Surg.1996,3(6):1223-1261.
    13. Rosenber L, Lipsett M. Biotherapeutic approaches to pancreatic cancer. Expert Opin Biol Ther.2003,3:319- 337.
    14. Smith WL, Dewitt DL, Garavito RM, et al. Cyclooxygenase: structural, cellular, and molecular biology. Annu Rev Biochem. 2000,69:145-82.
    15. Tucker ON, Dannenberg A J, Yang E K, et al. Clooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 1999, 59(5):987-996.
    16. Okami J, Yamamoto H, Fujiwara Y, et al. Overexpression of Cyclooxygenase-2 in Carcinoma of the Pancreas. Clin Cancer Res. 1999, 5:2018-2024.
    17. Zhu ZB, Chen Y, Makhija SK, et al.Survivin promoter-based conditionally replicative adenoviruses target cholangiocarcinoma.Int J Oncol. 2006, 29(5): 1319-1329.
    18. Rein DT, Breidenbach M, Nettelbeck DM,et al.Evaluation of tissue-specific promoters in carcinomas of the cervix uteri. J Gene Med. 2004, 6(11):1281-1289.
    19. Guillermet J, Saint-Laurent N, Rochaix P, et al. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proc Natl Acad Sci U S A.2003, 100(1):155-160.
    20. Patel YC, Panetta R, Escher E, et al. Expression of multiple somatostatin receptor genes in AtT-20 cells. Evidence for a novel somatostatin-28 selective receptor subtype. J Biol Chem. 1994, 269(2):1506-1509.
    21. Klemm K, Eipel C, CantréD, et al.Multiple doses of erythropoietin impair liver regeneration by increasing TNF-alpha, the Bax to Bcl-xL ratio and apoptotic cell death. PLoS ONE. 2008, 3(12):e3924.
    22. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009, 15(4):1126-1132.
    23. Seo Y, Baba H, Fukuda T, et al. High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer. 2000, 88:2239-2245.
    24. Dannenberg AJ, Altorki NK, Boyle JO, et al. Cyclo-oxygenase 2: A pharmacological target for the prevention of cancer. Lancet Oncol.2001, 2: 544-551.
    25. Gasparini G, Longo R, Sarmiento R, et al. Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol. 2003, 4(10):605-15.
    26. Dempke W, Rie C, Grothey A, et al. Cyclooxygenase-2: A novel target for cancer chemotherapy? J Cancer Res Clin Oncol.2001, 127:411-417.
    27. Zhang X, Miao X, Tan W, et al. Identification of function genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology. 2005,129:565-576.
    28. Panguluri RC, Long LO, Chen W, et al.COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis. 2004, 25(6):961-966.
    29. Liu F, Pan K, Zhang X, et al. Genetic variants in cyclooxygenase-2: Expression and risk of gastric cancer and its precursors in a Chinese population. Gastroenterology. 2006, 130(7):1975-1984.
    30. Gao J, Ke Q, Ma HX, et al. Functional polymorphisms in the cyclooxygenase 2 (COX-2) gene and risk of breast cancer in a Chinese population. J Toxicol Environ Health A. 2007, 70(11):908-915.
    31. Sitarz R, Leguit RJ, de Leng WW,et al.The COX-2 promoter polymorphism -765 G>C is associated with early-onset, conventional and stump gastric cancers. Mod Pathol. 2008, 21(6):685-690.
    32. Fernandez P, de Beer PM, van der Merwe L,et al.COX-2 promoter polymorphisms and the association with prostate cancer risk in South African men.Carcinogenesis. 2008, 29(12):2347-2350.
    33.许东奎,张雪梅,赵平,等.COX-2基因启动子区单核苷酸多态与胰腺癌遗传易感性的关系.中华医学杂志.2008;88(28):1961-1965.
    34. Ramsay RG, Friend A, Vizantios Y, et al.Cyclooxygenase-2, a colorectal cancer nonsteroidal anti-inflammatory drug target, is regulated by c-MYB. Cancer Res. 2000, 60(7):1805-1809.
    35. Szczeklik W, Sanak M, Szczeklik A. Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma. J Allergy Clin Immunol. 2004, 114(2):248-253.
    1. Devesa SS, Blot WJ, Stone BJ, et al. Recent cancer trends in the United States. J Natl Cancer Inst.1995,87:175-182.
    2. Ahlgren JD. Epidemiology and risk factor in pancreatic cancer. Semin oncol.1996,23:241-250.
    3. Niederhuber J, Brennan MF, Menck HR. The national cancer data base report on pancreatic cancer. Cancer. 1995,76:1671-1677.
    4.彭彦辉,郝玉宾,史迎钦,等.苦参碱对肠癌HT-29细胞株增殖的抑制作用及其机制.中华实验外科杂志.2005,22(11):1353-1354.
    5.刘北忠,蒋纪恺,何於娟,等.苦参碱对K562细胞蛋白酪氨酸激酶及磷酸酶活性的影响.癌症.2002, 21(12):1292-1295.
    6.司维柯,高利宏,刘斌,等.苦参碱诱导人肝癌细胞分化凋亡时对G1细胞周期调节因子的调控。癌症.2001,20(8):848-851.
    7. Schally AV. Oncological applications of somatostatin analogues. Cancer Res. 1988, 48:6977-6985.
    8. Buscail L, Delesque N, Estève J-P, et al. Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human receptor subtypes SSTRI and SSTR2. Proc NatI Acad Sci USA.1994, 91: 2315-2319.
    9. Liebow C, Reilly C, Serrano M, et al. A. V. Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase. Proc NatI Acad Sci USA. 1989, 86: 2003-2007.
    10. Lamberts S, WJ Krenning, EP, Reubi JC. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev.1991, 12: 450-482.
    11.王东,巩鹏,王忠裕.胰腺癌特异性受体基因载体的构建及环氧合酶2L启动子的作用.中华实验外科杂志. 2006, 23(11):1322-1324.
    12. Janes RH Jr, Niederhuber JE, Chmiel JS, et al. Pattern of care for pancreatic cancer: results of a survey by the commission on cancer. Ann Surg.1996,3(6):1223-1261.
    13. Rosenber L, Lipsett M. Biotherapeutic approaches to pancreatic cancer. Expert Opin Biol Ther.2003, 3:319- 337.
    14. Zhang LP, Jiang JW, Tan JW, et al. Effect of Matring on proliferation anddifferentiation in K562 cells. Leuk Res.2001, 25(9):793–800.
    15. Zhang LP, Zhang M, Zhou J P, et al. Antifibrotice Effect of Matring on vitro and vivo models of liver fibrosis in rats. Acta Pharmscol Sin. 2001, 22(2):183–186.
    16. Shayakhmetov DM, Gaggar A, Ni S, et al. Adenovirus binding to blood factors results in liver cell infection and epatotoxicity. J Virol. 2005, 79(12): 7478-7491.
    17. Raki M, Kanerva A, Ristimaki A, et al. Combination of gemcitabine and Ad5/32Delta24, a trop ism modified conditionally replicating adenovirus, for the treatment of ovarian cancer. Gene Ther. 2005,12:1198-1205.
    18. Portella G, Scala S, Vitagliano D, et al. ONYX2015, an E1B gene-defective adenovirus, induces cell death in human anaplastic thyroid carcinoma cell lines. J Clin Endocrinol Metab. 2002,87:2525-2537.
    19. Geoerger B, Grill J, Opolon P, et al. Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX2015) in human malignant glioma xenografts. Br J Cancer.2003,89:577-584.
    20. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972,26: 239-257.
    21. Golstein P. Controlling cell death. Science. 1997, 275: 1081-1082.
    22. Pepper C, Thomas A, Tucker H, et al. Flow cytometric assessment of three different methods for the measurement of in vitro apoptosis. Leuk Res. 1998, 22(5):439-444.
    23. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. Embo J.1998,17:1675–1687.
    24. Hinz S, Trauzold A, Boenicke L, et al. Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene. 2000, 19:5477–5486.
    25. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998,281:1322–1326.
    26. Reed JC, Green DR. Remodeling for demolition: changes in mitochondrial ultrastructure during apoptosis. Mol Cell. 2002,9:1–3.
    27. Campani D, Esposito I, Boggi U, et al. Bcl-2 expression in pancreas development and pancreatic cancer progression. J Pathol. 2001,194:444–450.
    28. Evans JD, Cornford PA, Dodson A, et al. Detailed tissue expression of bcl-2,bax, bak and bcl-x in the normal human pancreas and in chronic pancreatitis, ampullary and pancreatic ductal adenocarcinomas. Pancreatology. 2001, 1:254–262.
    29. Hu Y, Benedict MA, Wu D, et al. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA. 1998,95: 4386–4391.
    30. Masui T, Hosotani R, Ito D, et al. Bcl-XL antisense oligonucleotides coupled with antennapedia enhances radiation-induced apoptosis in pancreatic cancer. Surgery.2006,140:149–160.
    31. Klemm K, Eipel C, CantréD, et al. Multiple doses of erythropoietin impair liver regeneration by increasing TNF-alpha, the Bax to Bcl-xL ratio and apoptotic cell death. PLoS ONE. 2008,3(12):e3924.
    32. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009,15(4):1126-1132.
    33.司维柯,肖桃元.苦参碱抑制HepG2细胞增殖及其剂量与抑制方式关系的研究.世界华人消化杂志.2001,9(2):185-188.
    34.耿国军,姜杰,杜好信,等.苦参碱对肺腺癌细胞凋亡及bcl - 2、bax表达的影响.现代中西医结合杂志. 2009,18(8):846-847.
    35. Evans DL, Dive C. Effects of cisplatin on the induction of apoptosis in proliferating hepatoma cells and nonproliferating immature thymocytes. Cancer Res. 1993,53(9):2133-2139.
    36. Barry MA, Reynolds JE, Eastman A. Etoposide-induced apoptosis in human HL-60 cells is associated with intracellular acidification. Cancer Res. 1993, 53:2349-2357.
    37. Bergeron S, Beauchemin M, Bertrand R. Camptothecin- and etoposide-induced apoptosis in human leukemia cells is independent of cell death receptor-3 and -4 aggregation but accelerates tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. Mol Cancer Ther. 2004,3(12):1659-1669.
    38. Fulad S, Debatin KM. Targeting apoptosis pathways in cancer therapy. Curr Cancer Drug Targets.2004,4(7):569-576.
    39. Leelawat K, Narong S, Udomchaiprasertkul W, et al.Inhibition of PI3K increases oxaliplatin sensitivity in cholangiocarcinoma cells. Cancer Cell Int. 2009, 9:3.
    40. Michaud WA, Nichols AC, Mroz EA,et al.Bcl-2 blocks cisplatin-inducedapoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma.Clin Cancer Res. 2009,15 (5):1645-1654.
    41. Cappellini A, Chiarini F, Ognibene A, et al. The cyclin-dependent kinase inhibitor roscovitine and the nucleoside analog sangivamycin induce apoptosis in caspase-3 deficient breast cancer cells independent of caspase mediated P-glycoprotein cleavage: implications for therapy of drug resistant breast cancers. Cell Cycle. 2009,8(9):1421-1425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700