稀土磷酸盐纳米荧光材料的可控合成及其光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土荧光材料由于其独特的发光性能而受到广泛关注。它已经广泛地应用于发光二极管(LED)照明,激光和红外光纤传输等领域。目前,对稀土作为上转换荧光材料的研究也越来越多。稀土上转换荧光材料在生物应用中没有发现明显的生物毒性,而且相比传统的紫外激发的荧光材料,它以能量较低的连续红外激光为激发光源,在生物应用上具有明显的优势。纳米材料由于其小尺寸、大比表面积和量子尺寸效应等因素,使得它们具有不同于常规固体材料的新特性。对纳米荧光材料的研究更是一个意义重大的课题。荧光材料的纳米化不仅可能使材料的性能得到改善,而且还推动了材料在生物医药等领域的应用。
     但是另一方面当稀土材料小到纳米尺度时,其荧光性能往往受到很大的影响。纳米化的荧光材料,由于改变了材料原来的物理状态会引起其性能的变化。如材料纳米化极大地增大了材料的表面积,不仅使材料具有很高的表面能,而且也使得材料拥有大量的表面原子。这将在很大程度上影响材料的物理和化学性能。
     为了减少或者避免稀土荧光材料纳米化后的荧光减弱,得到发光性能良好的纳米稀土荧光材料,同时也考虑到工业生产和后续应用的需要,简化合成条件,避免使用高温、高压以及有机化学试剂,本文研究了在温和反应条件下稀土磷酸盐(LnPO4)荧光纳米粒子的可控合成及其荧光性能的提高:应用不同的制备方法合成了形貌可控的LnPO4纳米材料,讨论了纳米材料形貌对其荧光性能的影响;利用异质成核机制在常温生长LnPO4纳米材料,并研究该方法对材料结构和荧光性能的影响;研究在多功能纳米体系和其他纳米复合物体系中,LnPO4材料荧光性能的保持和作用。主要取得如下研究成果:
     利用三聚磷酸钠(TPP)作为磷酸源,在加热下缓慢分解控制释放出来的P043-与稀土离子Ln3+发生反应制备LnPO4纳米材料。通过控制反应时间得到了粒径为8~10nm纳米颗粒和粒径为16~25nm的中空纳米颗粒,其空腔直径在3~6nm左右。
     在室温下,采用过程强化法(如旋转盘反应器(SDP)和旋转管反应器(RTP))研究一维LnPO4纳米材料的制备。结果表明,可以通过改变旋转速度和反应物浓度,得到了长径比不同的一维材料;提高旋转速度,可以提高材料的长径比和形貌的均一性。但在SDP和RTP中,反应物浓度对合成材料的长径比有着不同的影响。荧光表征表明,一维LnPO4纳米材料的长径比越大,其荧光强度也越高。
     用对磺基杯芳烃[6](SC[6])作为联接剂,将磁性纳米粒子Fe304和荧光纳米棒LaPO4:Ce3+:Tb3+组装成Koosh球结构复合体系。由于水分子和Fe304对LaPO4:Ce3+:Tb3+的荧光猝灭作用导致其发光强度的降低,但Fe3O4@SC[6]-LaPO4:Ce3+:Tb3+还是显示出比较强的荧光性能,而磁性能却没有受到任何影响。在制备的Fe3O4@SC[6]-LaPO4:Ce3+:Tb3+复合材料中,其磁性和荧光性能都得以体现,成功制备了磁性荧光双功能纳米材料。
     用窄管反应器(NCR)成功制备了量子点(QDs),大大缩短了其合成时间。将RTP和NCR联用,可以制备得到QDs@CePO4纳米复合物。通过调节在NCR中的反应时间,可以改变吸附在CePO4纳米棒上QDs的粒径,从而调节材料的发射峰位置。随着QDs粒径的增大,QDs和QDs@CePO4纳米复合物的发射峰都发生了红移。激发谱的表征还发现,QDs@CePO4的激发谱比QDs多一个峰,大大增加了QDs@CePO4的Stokes迁移。
     利用单壁碳纳米管(SWCNT)生长LnPO4纳米粒子,抑制了LnPO4的一维生长,成功制备了由SWCNT串起的超细零维LnPO4纳米颗粒。与LnPO4纳米线相比,LnPO4纳米颗粒荧光强度大大提高了,量子产率也提高到了89%,接近体相材料的量子产率。利用石墨烯生长LnPO4上转换纳米粒子,可以得到上转换荧光很强的复合材料,材料很高的绿红比也间接说明了合成材料很高的上转换效率。
Lanthanide based fluorescent materials have attracted increasing interest because of their unique optical properties. They have been largely used in light emitting diode (LED), lasers, glass fibers for optical communication, etc. Recently, there is a rising interest on the lanthanides based materials used for upconversion. Lanthanide materials have been found to be of low toxicity when applied in biological studies. More importantly, lanthanide based upconversion materials, normally excited by near infrared (NIR) which is a lower energy light source, have unique advantages, compared with conventional UV excited fluorescent materials. Nanomaterials, arising from their small size, high specific surface area and quantum effect etc., provide them with unique properties different from their bulk phase. The study of nanosized fluorescent materials is one of the most interesting research areas. It may not only improve the properies, but also encourage the application of fluorescent materials in the area like bio-medicine and so on.
     However on the other hand, their optical properties would be greatly influenced after the materials are nanosized. Nanosized fluorescent materials have not only considerably high surface energy, but also expose large quantity of atoms on the surface which have different surrounding environment from the bulk atoms. And this may enormously impact their physical and chemical properties.
     Taking into consideration of the industrial production and later on application needs, to simplify the synthesis condition, to avoid the use of toxic organic solvents, high temperature and high pressure, and also to prevent the fluorescence from decreasing caused by nanosized materials and maintain good optical properties, in this thesis, we focus on controllable synthesis of well defined lanthanide phosphate (LnPO4) nanomaterials in mild conditions and the improvement of their optical properties. It includes (1) controllable synthesis of LnPO4 nanomaterials using different preparation methods, and study the impact of morphology on the optical properties; (2) Room temperature growth of LnPO4 nanomaterials via heterogeneous nucleation process, and study the impact of this protocol on the structure and optical property of the obtained nanomaterials; (3) study of the fluorescence maintenance and their functions of LnPO4 in multifunctional nanomaterials and other nanocomposite systems. We have made some progress in the following aspects:
     Using sodium tripolyphosphate (TPP) as phosphate source, PO43- was released slowly when heated and reacts with Ln3+ resulting in LnPO4 nanoparticles. Solid nanoparticles (8-10nm) and hollow nanoparticles (16-25nm) with holes ranging from 3-6nm in diameter can be obtained at different synthesis times.
     At room temperature,1-dimensional LnPO4 nanomaterials were successfully synthesized by "process intensification" such as spinning disc processing (SDP) and rotating tube processing (RTP). The result shows that, the aspect ratios of the prepared samples can be easily tuned by adjusting the spinning/rotating speed and/or feeding concentration. The high spinning/rotating speed of both platforms results in high aspect ratio and narrow size distribution of the products, while high feeding concentration has dichotomy effects for different methods (SDP or RTP). Moreover, the optical characterization of the obtained products shows that the fluorescence intensity increases with the increase of aspect ratio.
     Magnetic Fe3O4 nanoparticles and fluorescent LaPO4:Ce3+:Tb3+nanorods can be assembled into koosh nanoball structure with the help of p-sulfonato-calix[6]arene (SC[6]) as binder. Although there is the fluorescence quenching effect from water molecules and Fe3O4 nanoparticles, the prepared Fe3O4@SC[6]-LaPO4:Ce3+:Tb3+ nanocomposite shows quite bright light emission with the magnetism maintained. Thus a bifunctional nanocomposite has been successfully synthesized with both magnetism and fluorescence expressed.
     Quantum dots (QDs) with very short synthesis time have been obtained though narrow channel reactor (NCR). Using RTP cooperated with NCR, QDs@CePO4 nanocomposite can be synthesized. The particle size of QDs can be tuned by choosing different synthesis time, resulting in a change of the emission wavelength. With the increase of particle size of QDs, both QDs itself and QDs@CePO4 nanocomposite show a red shift in the emission spectra. Also, QDs@CePO4 has one more excitation peak than QDs, which largely increases the Stokes shift in QDs@CePO4 nanocomposite.
     We have synthesized single walled carbon nanotube (SWCNT) strung ultrafine LnPO4 nanoparticles by supressing the 1-dimensional preferential growth of LnPO4 with SWCNT serving as heterogeneous nuclei centres. Compared with LnPO4 nanowires, ultrafine LnPO4 nanoparticles show improved fluorescence with the quantum yield reaching up to 89% which is close to the corresponding bulk material. Also, we have got upconversion nanocomposite by growing LnPO4 nanocrystals on graphene sheets, and its high green to red ratio in the emission spectrum indicates very high upconversion efficiency.
引文
[1]Polman A. Erbium as a probe of everything? [J]. Physica B:Condensed Matter.2001,300 (1-4):78-90.
    [2]Soga K., Wang W., Riman R. E., Brown J. B., Mikeska K. R. Luminescent properties of nanostructured Dy3+-and Tm3+-doped lanthanum chloride prepared by reactive atmosphere processing of sol-gel derived lanthanum hydroxide [J]. J. Appl. Phys.2003,93 (5): 2946-2951.
    [3]Patra C. R., Bhattacharya R., Patra S., Basu S., Mukherjee P., Mukhopadhyay D. Lanthanide phosphate nanorods as inorganic fluorescent labels in cell biology research [J]. Clin. Chem.2007,53 (11):2029-2031.
    [4]Hilderbrand S. A., Shao F., Salthouse C., Mahmood U., Weissleder R. Upconverting luminescent nanomaterials:application to in vivo bioimaging [J]. Chem. Commun.2009 (28): 4188-4190.
    [5]Chatterjee D. K., Rufaihah A. J. Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials.2008,29 (7):937-943.
    [6]Feldmann C., Justel T., Ronda C. R., Schmidt P. J. Inorganic luminescent materials:100 years of research and application [J]. Adv. Funct. Mater.2003,13 (7):511-516.
    [7]Qian L., Du W., Gong, Q., Qian X. Controlled synthesis of light rare earth phosphate nanowires via a simple solution route [J]. Mater. Chem. Phys.2009,114 (1):479-484.
    [8]Fang Y.-P., Xu A.-W., Song R.-Q., Zhang H.-X., You L.-P., Yu J. C., Liu H.-Q. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires [J]. J. Am. Chem. Soc.2003,125 (51):16025-16034.
    [9]Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A.1976,32 (5): 751-767.
    [10]Wei Z., Sun L., Liao C., Yin L., Jiang X., Yan C. Size-dependent chromaticity in YBO3:Eu nanocrystals:correlation with microstructure and site symmetry [J]. J. Phys. Chem. B.2002,106(41):10610-10617.
    [11]Williams D. K., Bihari B., Tissue B. M., McHale J. M. Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals [J]. J. Phys. Chem. B.1998,102 (6):916-920.
    [12]Tao Y, Zhao G, Zhang W., Xia S. Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors [J]. Materials Research Bulletin.1997,32 (5):501-506.
    [13]Tissue, B. M. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts [J]. Chem. Mater.1998,10 (10):2837-2845.
    [14]Yan R., Sun X., Wang X., Peng Q., Li Y. Crystal structures, anisotropic growth, and optical properties:controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials [J]. Chem. Eur. J.2005,11 (7):2183-2195.
    [15]Yu S. H., Liu B., Mo M. S., Huang L. H., Liu X. M., Qian Y. T. General synthesis of single-crystal tungstate nanorods/nanowires:a facile, low-temperature solution approach [J]. Adv. Funct. Mater.2003,13 (8):639-647.
    [16]Peng Z. A., Peng X. Mechanisms of the shape evolution of CdSe nanocrystals [J]. J. Am. Chem. Soc.2001,123 (7):1389-1395.
    [17]Peng Z. A., Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:Nucleation and growth [J]. J. Am. Chem. Soc.2002,124 (13):3343-3353.
    [18]Morales A. M., Lieber C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science.1998,279 (5348):208-211.
    [19]Trentler T. J., Hickman K. M., Goel S. C., Viano A. M., Gibbons P. C., Buhro W. E. Solution-liquid-solid growth of crystalline III-V semiconductors:an analogy to vapor-liquid-solid growth [J]. Science.1995,270 (5243):1791-1794.
    [20]Harada M., Adachi M. Surfactant-mediated fabrication of silica nanotubes [J]. Adv. Mater.2000,12 (11):839-841.
    [21]Golitz P. Editorial:modern times [J]. Angewandte Chemie International Edition.2002, 41 (1):3-4.
    [22]Mooney R. X-ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification [J]. Acta Crystallographica. 1950,3 (5):337-340.
    [23]Murphy K. E., Altman M. B., Wunderlich B. The monoclinic-to-trigonal transformation in selenium [J]. J. Appl. Phys.1977,48 (10):4122-4131.
    [24]Milligan W. O., Mullica D. F., Beall G. W., Boatner L. A. Structural investigations of YPO4, ScPO4, and LuPO4 [J]. Inorg. Chim. Acta.1982,60:39-43 (1982).
    [25]Milligan W. O., Mullica D. F., Beall G. W., Boatner L. A. Structures of ErPO4, TmPO4, and YbPO4 [J]. Acta Crystallographica Section C.1983,39 (1):23-24.
    [26]Ghosh P., Oliva J., Rosa E. D.1., Haldar K. K., Solis D., Patra A. Enhancement of upconversion emission of LaPO4:Er@Yb Core-Shell nanoparticles/nanorods [J]. J. Phys. Chem. C.2008,112 (26):9650-9658.
    [27]Aumer M. E., LeBoeuf S. F., Bedair S. M., Smith M., Lin J. Y, Jiang H. X. Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures [J]. Appl. Phys. Lett.2000,77 (6):821-823.
    [28]Wang X., Zhuang J., Peng Q., Li Y. A general strategy for nanocrystal synthesis. Nature. 2005,437(7055):121-124.
    [29]Huo Z., Chen C., Chu D., Li H., Li Y Systematic synthesis of lanthanide phosphate nanocrystals [J]. Chem. Eur. J.2007,13 (27):7708-7714.
    [30]Riwotzki K., Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln=Eu, Sm, Dy) [J]. J. Phys. Chem. B.1998,102 (50):10129-10135.
    [31]Riwotzki K., Meyssamy H., Kornowski A., Haase M. Liquid-phase synthesis of doped nanoparticles:colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution [J]. J. Phys. Chem. B.2000,104 (13):2824-2828.
    [32]Meyssamy H., Riwotzki K., Kornowski A., Naused S., Haase M. Wet-chemical synthesis of doped colloidal nanomaterials:particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb [J]. Adv. Mater.1999,11 (10):840-844.
    [33]Riwotzki K., Meyssamy H., Schnablegger H., Kornowski A., Haase M. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals [J]. Angew. Chem. Int. Ed.2001,40:573-576.
    [34]Heer S., Lehmann O., Haase M., Giidel H.-U. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution [J]. Angew. Chem. Int. Ed.2003,42:3179-3182.
    [35]Lehmann O., Meyssamy H., Kompe K., Schnablegger H., Haase M. Synthesis, growth, and Er3+ luminescence of lanthanide phosphate nanoparticles [J]. J. Phys. Chem. B.2003,107 (30):7449-7453.
    [36]Heer S., Kompe K., Giidel H. U., Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals [J]. Adv. Mater. 2004,16 (23-24):2102-2105.
    [37]Aebischer A., Stephan H., Daniel B., Karl K., Maukus H., Hans U. Visible light emission upon near-infrared excitation in a transparent solution of nanocrystalline NaGdF4:Yb3+, Er3+ [J]. Chem. Phys. Lett.2005,407 (1-3):124-128.
    [38]Ptacek P., Schafer, H., Kompe K.& Haase M. Crystal phase control of luminescing NaGdF4:Eu3+ and NaGdF4:Eu3+ nanocrystals [J]. Adv. Funct. Mater.2007,17 (18): 3843-3848.
    [39]Schafer H., Ptacek P., Kompe K., Haase, M. Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission [J]. Chem. Mater.2007,19 (6): 1396-1400.
    [40]Helmut S., Pavel P., Otmane Z., Markus H. Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4 [J]. Adv. Funct. Mater. 2008,18 (19):2913-2918.
    [41]Helmut S., Pavel P., Henning E., Markus H. Synthesis of hexagonal Yb3+,Er3+ doped NaYF4 nanocrystals at low temperature [J]. Adv. Funct. Mater.2009,19 (19):3091-3097.
    [42]Hickmann K., Kompe K., Hepp A., Haase M. The role of amines in the growth of terbium(III)-doped cerium phosphate nanoparticles [J]. Small.2008,4 (12):2136-2139.
    [43]Pradhan N., Reifsnyder D., Xie R., Aldana J., Peng X. Surface ligand dynamics in growth of nanocrystals [J]. J. Am. Chem. Soc.2007,129 (30):9500-9509.
    [44]Park J., Lee E., Hwang N.-M., Kang M., Kim S. C., Hwang Y, Park J.-G., Noh H.-J., Kim J.-Y, Park J.-H., Hyeon T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles [J]. Angew. Chem. Int. Ed.2005,44 (19): 2872-2877.
    [45]Nakamoto M., Kashiwagi Y, Yamamoto M. Synthesis and size regulation of gold nanoparticles by controlled thermolysis of ammonium gold(I) thiolate in the absence or presence of amines [J]. Inorg. Chim. Acta.2005,358 (14):4229-4236.
    [46]Krumeich F., Muhr H. J., Niederberger M., Bieri F., Schnyder B., Nesper R. Morphology and topochemical reactions of novel vanadium oxide nanotubes [J]. J. Am. Chem. Soc.1999, 121 (36):8324-8331.
    [47]Qu L., Peng X. Control of photoluminescence properties of CdSe nanocrystals in growth [J]. Journal of the American Chemical Society.2002,124 (9):2049-2055.
    [48]Lisensky G. C., Penn R. L., Murphy C. J., Ellis A. B. Electro-optical evidence for the chelate effect at semiconductor surfaces [J]. Science.1990,248 (4957):840-843.
    [49]Buissette V., Moreau M., Gacoin T., Boilot, J.-P., Chane-Ching J.-Y., Colloidal synthesis of luminescent rhabdophane LaPO4:Ln3+·xH2O nanocrystals [J]. Chem. Mater.2004,16 (19): 3767-3773.
    [50]Yin A., Zhang Y, Sun L., Yan C. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals [J]. Nanoscale.2010,2 (6):953-959.
    [51]Mai H.-X., Zhang Y.-W., Sun L.-D., Yan C.-H. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals [J]. J. Phys. Chem. C.2007,111 (37):13721-13729.
    [52]Huignard A., Buissette V., Franville A.-C., Gacoin T., Boilot J.-P. Emission processes in YVO4:Eu nanoparticles [J]. The Journal of Physical Chemistry B.2003,107 (28):6754-6759.
    [53]Fang Y.-P., Xu A.-W., Dong W.-F. Highly improved green photoluminescence from CePO4:Tb/LaPO4 core/shell nanowires [J]. Small.2005,1 (10):967-971.
    [54]Zhu L. Facile sonochemical synthesis of CePO4:Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties [J]. Nanotechnology.2006,17:4217-4222.
    [55]Zhu L. Facile sonochemical synthesis of CePO4:Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties [J]. Nanotechnology.2006,17:4217-4222.
    [56]Kompe K., Borchert H., Storz J., Lobo A., Adam S., Moller T., Haase M. Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield [J]. Angew. Chem. Int. Ed.2003,42 (44):5513-5516.
    [57]Kompe K., Lehmann O., Haase M. Spectroscopic distinction of surface and volume ions in cerium(Ⅲ)-and terbium(III)-containing core and core/shell nanoparticles [J]. Chem. Mater. 2006,18 (18):4442-4446.
    [58]Buissette V., Moreau M., Gacoin T., Boilot J.-P. Luminescent core/shell nanoparticles with a rhabdophane LnPO4 structure:stabilization of Ce3+ doped compositions [J]. Adv. Funct. Mater.2006,16 (3):351-355.
    [59]Borchert H., Hauhold S., Haase M., Weller H., McGinley C., Riedler M., Moller T. Investigation of ZnS passivated InP nanocrystals by XPS [J]. Nano Lett.2001,2 (2):151-154.
    [60]Tang C., Bando Y, Golberg D., Ma R. Cerium phosphate nanotubes:synthesis, valence state, and optical properties [J]. Angew. Chem. Int. Ed.2005,44 (4):576-579.
    [61]Liu X., Wang Q., Gao Z., Sun J., Shen J. Fabrication of lanthanide phosphate nanocrystals with well-controlled morphologies by layer-by-layer adsorption and reaction method at room temperature [J]. Cryst. Growth Des.2009,9 (8):3707-3713.
    [62]Guan M., Tao F., Sun J., Xu Z. Facile preparation method for rare earth phosphate hollow spheres and their photoluminescence properties [J]. Langmuir.2008.24 (15):8280-8283.
    [63]Wang F., Han Y., Lim C. S., Lu Y., Wang J., Xu J., Chen H., Zhang C., Hong M., Liu X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature.2010,463 (7284):1061-1065.
    [64]Bohler G, Feldmann C. Microwave-assisted synthesis of luminescent LaPO4:Ce,Tb nanocrystals in ionic liquids [J]. Angew. Chem. Int. Ed.2006,45 (29):4864-4867.
    [65]Bai X., Song H., Pan G, Lei Y, Wang T., Ren X., Lu S., Dong B., Dai Q., Fan L. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects [J]. J. Phys. Chem. C.2007,111 (36):13611-13617.
    [66]Lee S., Teshima K., Mori S., Endo M., Oishi S. Selective growth of upconverting YbPO4:Ln (Ln=Er or Tm) crystals in a micro reaction cell [J]. Cryst. Growth Des.2010,10 (4):1693-1698.
    [67]Fang, J. Saunders M., Guo Y, Lu G, Raston C. L., Iyer K. S. Green light-emitting LaPO4:Ce3+:Tb3+ koosh nanoballs assembled by p-sulfonato-calix[6]arene coated superparamagnetic Fe3O4 [J]. Chem. Commun.2010,46 (18):3074-3076.
    [68]Guan M., Sun J., Han M., Xu Z., Tao F., Yin G., Wei X., Zhu J., Jiang X. Synthesis and luminescence of CePO4 and CePO4:Tb hollow and core-shell microspheres composed of single-crystal nanorods [J]. Nanotechnology.2007,18 (41):415602.
    [69]Yin Y, Rioux R. M., Erdonmez C. K., Hughes S., Somorjai G A., Alivisatos A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect [J]. Science.2004, 304 (5671):711-714.
    [70]Liang X., Wang X., Zhuang Y, Xu B., Kuang S., Li Y Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect [J]. J. Am. Chem. Soc. 2008,130 (9):2736-2737.
    [71]Zeng H., Cai W., Liu P., Xu X., Zhou H., Klingshirm C., Kalt H. ZnO-based hollow nanoparticles by selective etching:elimination and reconstruction of metal, semiconductor interface, improvement of blue emission and photocatalysis [J]. ACS Nano.2008,2 (8): 1661-1670.
    [72]Smets B. M. J. Phosphors based on rare-earths, a new era in fluorescent lighting. Mater. Chem. Phys.1987,16 (3-4):283-299.
    [73]Li Q., Yam V. W.-W. Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires [J]. Angew. Chem. Int. Ed.2007,46 (19):3486-3489.
    [74]Shan J., Yao N., Ju Y Phase transition induced formation of hollow structures in colloidal lanthanide-doped NaYF4 nanocrystals [J]. J. Nanopart. Res.2009,12 (4):1429-1438.
    [75]Wang F., Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem. Soc. Rev.2009,38 (4):976-989.
    [76]Takita Y, Sano K.-i., Muraya T., Kawata N., Ito M., Akbay T., Ishihara T. Oxidative dehydrogenation of iso-butane to iso-butene II. Rare earth phosphate catalysts [J]. Appl. Catal. A.1998,170(1):23-31.
    [77]Rajesh K., Mukundan P., Pillai P. K., Nair V. R., Warrier K. G K. High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route [J]. Chem. Mater.2004,16 (14):2700-2705.
    [78]van Embden J., Sader J. E., Davidson M., Mulvaney P. Evolution of colloidal nanocrystals:theory and modeling of their nucleation and growth [J]. J. Phys. Chem. C.2009, 113(37):16342-16355.
    [79]Chin S. F., Iyer K. S., Raston C. L., Saunders M. Size selective synthesis of superparamagnetic nanoparticles in thin fluids under continuous flow conditions [J]. Adv. Funct. Mater.2008,18 (6):922-927 (2008).
    [80]Iyer K. S., Raston C. L., Saunders M. Continuous flow nano-technology:manipulating the size, shape, agglomeration, defects and phases of silver nano-particles [J]. Lab Chip.2007, 7(12):1800-1805.
    [81]Panagiotou T., Mesite S. V., Fisher R. J. Production of norfloxacin nanosuspensions using microfluidics reaction technology through solvent/antisolvent crystallization [J]. Ind. Eng. Chem. Res.2009,48 (4):1761-1771.
    [82]Gao, J., Zhang B., Gao Y., Pan Y., Zhang X., Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction:a simple preparation for multifunctional nanostructures [J]. J. Am. Chem. Soc.2007,129 (39):11928-11935.
    [83]Lee J.-H., Schneider B., Jordan E. K., Liu W., Frank J. A. Synthesis of complexable fluorescent superparamagnetic iron oxide nanoparticles (FL SPIONs) and cell labeling for clinical application. Adv. Mater.2008,20 (13):2512-2516.
    [84]Liong M. Lu J., Kovochich M., Xia T., Ruehm S. G., Nel A. E., Tamanoi F., Zink J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery [J]. ACS Nano.2008,2 (5):889-896.
    [85]Iyer K. S., Saunders M., Becker T., Evans C. W., Raston C. L. Nanorings of self-assembled fullerene C70 as templating nanoreactors [J]. J. Am. Chem. Soc.2009,131 (45):16338-16339.
    [86]Fernandez B., Galvez N., Cuesta R., Hungria A. B., Calvino J. J., Dominguez-Vera J. M. Quantum dots decorated with magnetic bionanoparticles. Adv. Funct. Mater.2008,18 (24): 3931-3935(2008).
    [87]Gu H., Zheng R., Zhang X., Xu B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles:a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 2004,126 (18):5664-5665.
    [88]Wang D., He J., Rosenzweig N., Rosenzweig Z. Superparamagnetic Fe2O3 beads CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation [J]. Nano Lett. 2004,4 (3):409-413.
    [89]Groman E. V., Bouchard J. C., Reinhardt C. P., Vaccaro D. E. Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents [J]. Bioconj. Chem.2007,18 (6):1763-1771.
    [90]De Silva C. R., Smith S., Shim I., Pyun J., Gutu T., Jiao J., Zheng Z. Lanthanide(III)-doped magnetite nanoparticles [J]. J. Am. Chem. Soc.2009,131 (18): 6336-6337.
    [91]Yu S.-Y., Zhang H.-J., Yu J.-B., Wang C., Sun L.-N., Shi W.-D. Bifunctional magnetic optical nanocomposites:grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture [J]. Langmuir.2007,23 (14):7836-7840.
    [92]Dosi D., Mikaela N., Randy K. D., Shirley J. G., Bruce D. H., Kai L., Ian M. K. Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard [J]. Nanotechnology.2007,18 (5):055102.
    [93]Chin S. F., Makha M., Raston C. L., Saunders, M. Magnetite ferrofluids stabilized by sulfonato-calixarenes [J]. Chem. Commun.2007:1948-1950.
    [94]Chelebaeva E., Larionova J., Guari Y., Ferreira R. A. S., Carlos L. D., Paz F. A. A., Trifonov A., Guerin C. Luminescent and magnetic cyano-bridged coordination polymers containing 4d-4f ions:toward multifunctional materials [J]. Inorg. Chem.2009,48 (13): 5983-5995.
    [95]Jose, M. T., Lakshmanan A. R. Ce3+ to Tb3+ energy transfer in alkaline earth (Ba, Sr or Ca) sulphate phosphors [J]. Opt. Mater.2004,24 (4):651-659.
    [96]Katharina L., Liliana P. R. Encapsulated magnetite particles for biomedical application [J]. J. Phys:Cond. Matter.2003,15 (15):S1345.
    [97]Perret F., Lazar A. N., Coleman A. W. Biochemistry of the para-sulfonato-calix[n]arenes [J]. Chem. Commun.2006:2425-2438.
    [98]Dalgarno S. J., Hardie M. J., Makha M., Raston C. L. Controlling the conformation and interplay of p-sulfonatocalix[6]arene as lanthanide crown ether complexes [J]. Chem. Eur. J. 2003,9 (12):2834-2839.
    [99]Yu L., Song H., Lu S., Liu Z., Yang L., Kong X. Luminescent properties of LaPO4:Eu nanoparticles and nanowires [J]. J. Phys. Chem. B.2004,108 (43):16697-16702.
    [100]Tang Z., Kotov N. A., Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires [J]. Science.2002,297 (5579):237-240.
    [101]Zhang H., Wang L., Xiong H., Hu L., Yang B., Li W. Hydrothermal synthesis for high-quality CdTe nanocrystals [J]. Adv. Mater.2003,15 (20):1712-1715.
    [102]Qian H., Dong C., Weng J., Ren J. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals [J]. Small.2006,2 (6): 747-751.
    [103]Fisher M. J., Wang W., Dorhout P. K., Fisher E. R. Synthesis of LaPO4:Eu nanostructures using the sol-gel template method [J]. J. Phys. Chem. C.2008,112 (6): 1901-1907.
    [104]Xu L., Song H., Dong B., Wang Y., Bai X., Wang G., Liu Q. Electrospinning preparation and photoluminescence properties of lanthanum phosphate nanowires and nanotubes [J]. J. Phys. Chem. C.2009,113 (22):9609-9615.
    [105]Xing Y, Li M., Davis S. A., Mann S. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media [J]. J. Phys. Chem. B.2006,110 (3): 1111-1113.
    [106]Nakamura, H., Yamaguchi Y., Miyazaki M., Uehara M., Maeda H., Mulvaney P. Continuous preparation of CdSe nanocrystals by a microreactor [J]. Chem. Lett.2002,31 (10): 1072-1073.
    [107]Kikkeri R., Laurino P., Odedra A., Seeberger P. H. Synthesis of carbohydrate-functionalized quantum dots in microreactors [J]. Angew. Chem Int. Ed.2010, 49 (11):2054-2057.
    [108]Yen B. K. H., Giinther A., Schmidt M. A., Jensen K. F., Bawendi M. G. Titelbild:a microfabricated gas-liquid segmented flow reactor for high-temperature synthesis:the case of CdSe quantum dots [J]. Angew. Chem.2005,117 (34):5483-5483.
    [109]Marre S., Park J., Rempel J., Guan J., Bawendi M. G., Jensen K. F. Supercritical continuous-microflow synthesis of narrow size distribution quantum dots [J]. Adv. Mater. 2008,20 (24):4830-4834.
    [110]Shirure V. S., Pore A. S., Pangarkar V. G. Intensification of precipitation using narrow channel reactors:magnesium hydroxide precipitation [J]. Ind. Eng. Chem. Res.2005,44 (15): 5500-5507.
    [111]Vacassy R., Lemaitre J., Hofmann H., Gerlings J. H. Calcium carbonate precipitation using new segmented flow tubular reactor [J]. AIChE Journal.2000,46 (6):1241-1252.
    [112]Hartlieb K. J., Saunders M., Jachuck R. J. J., Raston C. L. Continuous flow synthesis of small silver nanoparticles involving hydrogen as the reducing agent [J]. Green Chem.2010, 12(6):1012-1017.
    [113]Nguyen T.-L., Spizzirri P., Wilson G, Mulvaney P. Tunable light emission using quantum dot-coated upconverters [J]. Chem. Commun.2009:174-176.
    [114]Wang L., Yan R., Huo Z., Wang L., Zeng J., Bao J., Wang X., Peng Q., Li Y. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles [J]. Angew. Chem.2005,117 (37):6208-6211.
    [115]Wang F., Banerjee D., Liu Y, Chen X., Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy [J]. Analyst.2010,135 (8):1839-1854.
    [116]Shen J., Sun L.-D., Yan C.-H. Luminescent rare earth nanomaterials for bioprobe applications [J]. Dalton Trans.2008 (42):5687-5697.
    [117]Boyer J.-C., Cuccia L. A., Capobianco J. A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J]. Nano Lett.2007,7 (3):847-852.
    [118]Guo H., Li Z., Qian H., Hu Y, Muhammad I. N. Seed-mediated synthesis of NaYF4:Yb,Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity [J]. Nanotechnology.2010,21 (12):125602.
    [119]Zhang Y.-W., Yan Z.-G., You L.-P., Si R., Yan C.-H. General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires [J]. Eur. J. Inorg. Chem.2003,2003 (22):4099-4104.
    [120]Fu Z., Bu, W. High efficiency green-luminescent LaPO4:Ce,Tb hierarchical nanostructures:Synthesis, characterization, and luminescence properties [J]. Sol. Stat. Sci. 2008,10(8):1062-1067.
    [121]Juarez, B. H., Meyns M., Chanaewa A., Cai Y, Klinke C., Weller H. Carbon supported CdSe nanocrystals. J. Am. Chem.Soc.2008,130 (46):15282-15284.
    [122]Wang L., Li, Y. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals [J]. Chem. Mater.2007,19 (4):727-734.
    [123]Wang Y, Iqbal Z., Mitra S. Rapidly functionalized, water-dispersed carbon nanotubes at high concentration [J]. J. Am. Chem. Soc.2005,128 (1):95-99.
    [124]Chin S. F., Iyer K. S., Raston C. L. Fabrication of carbon nano-tubes decorated with ultra fine superparamagnetic nano-particles under continuous flow conditions [J]. Lab Chip. 2008,8 (3); 439-442.
    [125]Balavoine F., Schultz P., Richard C., Mallouh V., Ebbesen T. W., Mioskowski C. Helical crystallization of proteins on carbon nanotubes:A first step towards the development of new biosensors [J]. Angew. Chem. Int. Ed.1999,38 (13-14):1912-1915.
    [126]Chen Z., Berciaud S., Nuckolls C., Heinz T. F., Brus L. E. Energy transfer from individual semiconductor nanocrystals to graphene [J]. ACS Nano.2010,4 (5):2964-2968.
    [127]Lim X., Zhu Y., Cheong F. C., Hanafiah N. M., Valiyaveettil S., Sow C.-H. Multicolored carbon nanotubes:decorating patterned carbon nanotube microstructures with quantum dots [J]. ACS Nano.2008,2 (7):1389-1395.
    [128]Grzelczak M., Correa-Duarte M. A., Salgureirino-Maceira V., Giersig M., Diaz. R., Liz-Marzan L. M. Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silica-shell spacer [J]. Adv. Mater.2006,18 (4):415-420.
    [129]Wu S., Han G, Milliron D. J., Aloni S., Altoe V., Talapin D. V., Cohen B. E., Schuck P. J. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals [J]. Proc. Nati. Acad. Sci. USA.2009,106 (27):10917-10921.
    [130]Li D., Muller M. B., Gilje S., Kaner R. B., Wallace G G Processable aqueous dispersions of graphene nanosheets [J]. Nat Nano.2008,3 (2):101-105.
    [131]LaMer V. K., Dinegar R. H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc.1950,72 (11):4847-4854.
    [132]Mialon G, Turkcan S., Dantelle G, Collins D. P., Hadjipanayi M., Taylor R. A., Gacoin T., Alexandrou A., Boilot J.-P. High up-conversion efficiency of YVO4:Yb,Er nanoparticles in water down to the single-particle level [J]. J. Phys. Chem. C.2010,114 (51):22449-22454.
    [133]Dantelle G, Mortier M., Vivien D., Patriarche G. Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass, ceramics [J]. Chem. Mater.2005,17 (8):2216-2222.
    [134]Kramer K. W., Biner D., Frei G, Gudel H. U., Hehlen M. P., Luthi S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors [J]. Chem. Mater.2004,16 (7):1244-1251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700