基于辐射成像的扩散火焰温度和烟黑浓度分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,能源供应状况日趋紧张,燃料燃烧产生的环境污染也日趋严重。烟黑是化石燃料燃烧产生的污染物之一,是没有实现的燃料化学能;烟黑颗粒随燃烧排气进入大气环境,从而造成环境污染。烟黑颗粒表面吸附有多环芳烃PAH,具有诱变性与致癌性,从而对人体健康造成不利影响;光化烟雾、酸雨及消光效应也是烟黑对环境的不利影响。在燃气透平燃烧室中,烟黑的强吸收性对燃烧室壁面辐射传热,需增大额外的冷却空气量;烟黑颗粒可直接对涡轮叶片造成冲蚀,或沉积在叶片引起腐蚀。在火灾中,烟黑的连续辐射是火灾生长与蔓延的主要原因,是火灾救险、逃生的主要障碍。而在锅炉中,烟黑辐射是主要的传热方式,这里烟黑既是重要的,又是必须的,更是无法避免的。因此问题的关键在于掌握烟黑生长的物理化学机理,有效控制烟黑生成、表面生长及表面氧化过程。
     由于燃烧现象是受多种物理和化学因素控制的复杂过程,因此从发展数值燃烧科学的角度,深入研究火焰中烟黑生长机理,寻求一种数值模拟烟黑生长、火焰辐射与污染排放的实用方法,具有重要的现实意义和科学价值。
     本文首先详细分析了国内外有关烟黑生长与氧化研究的现状,重点阐述了烟黑模型研究的进展。烟黑测量是烟黑机理研究与烟黑生长过程控制与可视化的关键,本文详细介绍了国内外常用的烟黑测量方法及其研究现状,重点阐述了直接取样技术和发射CT技术的特点及其应用。燃烧测量科学中,燃烧火焰图像处理及可视化是一个重点,本文详细分析了国内外燃烧火焰图像处理可视化以及辐射传递逆问题求解方面的研究现状和进展。论文还介绍了化学发光分析技术及其应用方面的国内外研究进展。
     本文基于详细的基元反应模型和简单双方程烟黑半经验模型,利用复杂热特性及输运特性实验数据,针对轴对称、层流、同向流扩散乙烯-空气火焰,用简单双方程烟黑模型与详细气相化学反应耦合模拟烟黑的生成、生长与氧化过程。火焰中CO,CO2,H2O以及烟黑的辐射热传递用离散坐标法计算,它们的辐射特性计算采用统计窄带相关-k基带模型(SNBCK)。完成完全椭圆型控制方程的求解,给出了合理的火焰温度与烟黑容积份额分布计算结果。并与发射CT法的测量结果比较,取得比较满意的结果。
     针对非均匀吸收、发射、无散射轴对称含烟黑扩散火焰对象,常规双色法不再适用,本文基于烟黑辐射特性,提出并模拟研究了同时重建火焰温度与烟黑容积份额的发射CT法,模拟结果显示发射CT法适用于重建单峰或峰谷差较小的双峰温度与烟黑容积份额分布。本文所完成的是火焰温度场与烟黑容积份额分布的同时辐射成像重建,这是本文的一个重要创新。
     利用发射CT法对非冒烟蜡烛火焰与冒烟煤油火焰的温度与烟黑容积份额进行测量,可以准确得到非冒烟与冒烟火焰扩散火焰的分布特征。进一步将发射CT法应用于流量可控的乙烯/空气扩散火焰研究,从火焰温度与烟黑容积份额分布可以看到,温度达到最大值的径向位置比烟黑容积份额达到最大值的径向位置稍大,从而可以确定扩散火焰中烟黑颗粒形成区发生在火焰反应区的富燃侧。当燃料流量增大,烟黑浓度增大,辐射损失增大,反过来影响火焰温度,使火焰温度水平更低。火焰温度反过来影响烟黑的氧化速率,使火焰中烟黑浓度增加。这与文献中的实验结论是一致的。通过与模拟计算和热电偶的测量比较,发射CT法不但可以定性还可以定量给出温度分布与烟黑容积份额分布,而且比热电偶法测量烟黑在火焰上部的氧化区有更强的适应性。
     在燃烧传热数值计算中,通常假定燃烧释放的化学能全部转化为燃烧介质的内能,介质温度升高,热辐射增强,但这与实际情况不符。事实上,燃烧反应释放的总能量可分成二个部分,一部分为燃烧产物吸收成为内能;另一部分则作为辐射能直接对外发射。因此本文在辐射传递方程与能量守恒方程中引入了燃烧反应放热的自吸收份额ψ,针对一个简单二维发射吸收的矩形系统,研究了燃烧反应中考虑化学发光辐射对整个燃烧系统能量平衡的影响。从总能量平衡角度看,化学发光并不影响壁面热流分布以及非反应区的温度分布。而直接辐射能份额对反应区温度的影响十分明显,自吸收份额ψ越小,直接辐射份额越大,反应区温度越低。因此基于热辐射成像的测量方法需要作相应的修正,而首先要解决的问题就是通过相关实验来确定自吸收热量份额的大小。实验结果表明,发射CT法测得的反应区温度明显高于热电偶的测量结果,除计算与测量误差外,化学发光的影响也应给予必要的考虑。因此,考虑化学发光为我们进行燃烧诊断提供了一个新的思路。
With the rapid development of economy of China, the situation of energy supply is becoming tighter and tighter, and the environmental pollution produced by burned fuel is becoming more and more serious. Soot is one of pollutants produced by burned fossil fuel, and it represents unrealized chemical energy of fuel. The emission of soot by combustion processes is a source of atmospheric pollution and, due to its association with mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAH), has been affecting human health. Soot particles also affect the environment in many other ways including their contribution to the formation of photochemical smog and atmospheric acids. Soot particle presented in the atmosphere scatter and absorb solar radiation that can impede atmospheric visibility. In internal combustion engines and gas turbines, the deposition of soot has deleterious consequences for the maintenance and efficiency of the device, so the designer has many good reasons to avoid soot formation. This objective also applied in the case of fires, whose mechanism of propagation often involved radiant transfer from hot soot particles. On the other hand, this same ability to radiate is obviously desirable in a furnace. Therefore, it’s critical to understand the physical and chemical mechanisms about soot formation, and make it possible to control the processes of soot nucleation, surface growth, and oxidation.
     Development of practical ways to numerically simulate flame environments, as a step toward developing computational combustion, requires significantly improved understanding of soot processes in flame. Clearly, improved understanding of soot formation in flames is needed to achieve effective methods of predicting flame radiation and pollutant emissions, as well as for developing practical methods of computational combustion.
     In this dissertation, the present situation of investigations about soot formation and oxidation, soot measurement, and visualization of physical properties in flame by flame image processing at home and abroad was analyzed in detail, and emphasis was put on the development of soot model and emission CT technique. The development of experimental use of chemiluminescence was also described.
     A numerical study of soot formation and oxidation in axisymmetric laminar coflow diffusion ethylene-air flame was conducted using detailed gas-phase chemistry and complex thermal and transport properties. A simple two-equation soot model was employed to predict soot formation, growth, and oxidation with interactions between the soot chemistry and the gas-phase chemistry taken into account. Radiation heat transfer by both soot and radiating gases was calculated using the discrete-ordinates method coupled with a statistical narrow-band correlated-k based band model. The governing equations in fully elliptic form were solved. Reasonable flame temperature and soot volume fraction distributions were given here.
     For visualizing non-uniform absorbing, emitting, non-scattering, axisymmetric sooting flames, conventional two-color emission methods are no longer suitable, so an emission CT method for the simultaneous estimation of temperature and soot volume fraction distributions is studied. The simulation results indicate that the emission CT method is suited for the reconstruction of flame structures with single peak or double peaks with small difference between the peak and valley. For a double-peaked flame structure with larger peak and valley difference, reasonable result can be obtained just when the mean square deviations of measurement data are small, for example, not more than 0.01. The simultaneous estimation of temperature and soot volume fraction distributions is one important innovation in this dissertation.
     The emission CT method is used to estimate temperatures and soot volume fractions simultaneously in a candle flame, a kerosene flame, and several ethylene flames from the knowledge of the monochromatic radiation intensities measured by a CCD in this dissertation. The results indicate that the greater soot concentration lies inside the higher flame temperature in both types of flame, both inside the flame front and outside the flame axis. In addition, the fuel flow rate of the kerosene flame is greater than that of the candle flame which increases the amount of soot in the flame, thus increasing radiation losses. This, in turn, causes a lower flame temperature. This is observed by other researchers.
     In computational combustion, it is generally assumed that all the energy released is transformed into the internal energy of the combustion medium. So the temperature of the medium increases, and then the thermal radiation emitted from it increases too. But it is opposed to the practical situation. Therefore, it was assumed in this paper that the total energy released in a combustion reaction is divided into two parts, one part is a self-absorbed heat, and the other is a directly-emitted heat. The former is absorbed immediately by the products, becomes the internal energy and then increases the temperature of the products as treated in the traditional way. The latter is emitted directly as radiation into the combustion domain and should be included in the radiation transfer equation (RTE) as a part of radiation source. For a simple, 2-D, gray, emitting-absorbing, rectangular system, the numerical study showed that the temperatures in reaction zones depended on the fraction of the directly-emitted energy, and the smaller the gas absorption coefficient was, the more strong the dependence appeared. Because the effect of the fraction of the directly-emitted heat on the temperature distribution in the reacting zones for gas combustion is significant, the measurement based on thermal radiation imaging need corresponding correction, the first problem to be solved is to determine the fraction of the directly-emitted heat. Experimental results show that the temperatures in reacting zones achieved by emission CT are greater than those measured by thermocouple. Besides computational and measuremental errors, the effect of chemiluminescence should be considered in experiment. Thus, a new clue is provided by consideration of chemiluminescence for combustion diagnosis.
引文
[1] Haynes BS, Wagner HG. Soot formation. Progress in Energy and Combustion Science, 1981, 7: 229-273
    [2] 朱广一. 大气可吸入颗粒物研究进展. 环境保护科学, 2002, 28(3): 3-5
    [3] 郑楚光, 柳朝晖. 弥散介质的光学特性及辐射传热. 华中理工大学出版社, 1996
    [4] Koylu UO, Faeth GM. Carbon monoxide and soot emissions from liquid-fueled buoyant turbulent diffusion flames. Combustion and Flame, 1991, 87: 61-76
    [5] Al-Omari S-AB, Kawajiri K, Yonesawa T. Soot processes in a methane-fueled furnace and their impact on radiation heat transfer to furnace walls. International Journal of Heat and Mass Transfer, 2001, 44: 2567-2581
    [6] 钟北京, 刘晓飞. 碳黑碳黑颗粒生长模型的初步研究. 工程热物理学报, 2004, 25(5): 894-896
    [7] Dobbins RA, Fletcher RA, Chang H-C. The evolution of soot precursor particles in a diffusion flame. Combustion and Flame, 1998, 115: 285-298
    [8] Kent JH, Wagner HG. Why do diffusion flames emit smoke? Combustion Science and Technology, 1984, 41: 245-269
    [9] Santoro RJ, Semerjian HG, Dobbins R.A. Soot particle measurements in diffusion flames. Combustion and Flame, 1983, 51: 203-218
    [10] Kennedy IM, Kollmann W, Chen JY. A model for soot formation in a laminar diffusion flame. Combustion and Flame, 1990, 81: 73-85
    [11] Xu F, Faeth GM. Soot formation in laminar acetylene/air diffusion flames at atmospheric pressure. Combustion and Flame, 2001, 125: 804-819
    [12] Colket MB, Hall RJ. Sucesses and uncertainties in modeling soot formation in laminar, premixed flames. In: Bockhorn H, ed. Soot Formation in Combustion: Mechanisms and Models. Berlin: Springer-Verlag, 1994. 442-468
    [13] Leung KM, Lindstedt RP, Jones WP. A simplified reaction mechanism for soot formation in nonpremixed flames. Combustion and Flame, 1991, 87: 289-305
    [14] Frenklach M, Wang H. Detailed mechanism and modeling of soot particle formation.In: Bockhorn H, ed. Soot formation in combustion: mechanisms and models. Berlin: Springer, 1994. 162-190
    [15] Kennedy IM, Yam C, Rapp DC et al. Modeling and measurements of soot and species in a laminar diffusion flame. Combustion and Flame, 1996, 107: 368-382
    [16] Markatou P, Wang H, Frenklach M. A computational study of sooting limits in laminar premixed flames of ethane, ethylene, and acetylene. Combustion and Flame, 1993, 93: 467-482
    [17] Stein SE. On the High Temperature Chemical Equilibria of Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry, 1978, 82(5): 566-571
    [18] Frenklach M, Clary DW, Gardiner WC Jr. et al. Detailed kinetics modeling of soot formation in shock-tube pyrolysis of acetylene. In: 20th International Symposium on Combustion. Pittsburgh: The Combustion Institute, 1984. 887-901
    [19] Richter H, Howard JB. Formation of polycyclic aromatic hydrocarbons and their growth to soot--a review of chemical reaction pathways. Progress in Energy and Combustion Science, 2000, 26: 565-608
    [20] Ezekoye OA, Zhang Z. Soot oxidation and agglomeration modeling in a microgravity diffusion flame. Combustion and Flame, 1997, 110: 127-139
    [21] Harris SJ, Weiner AM. Surface growth of soot particle in premixed ethylene/air flames. Combustion Science and Technology, 1983, 31: 155-167
    [22] Wieschnowsky U, Bockhorn H, Fetting F. Some new observations concerning the mass growth of soot in premixed hydrocarbon-oxygen flames. In: 22th Symposium (International) on Combustion. The Combustion Institute, 1988. 343-352
    [23] Xu F, El-Leathy AM, Kim CH et al. Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure. Combustion and Flame, 2003, 132: 43-57
    [24] Lee KB, Thring MW, Beer JM. On the rate of combustion of soot in a laminar soot flame. Combustion and Flame, 1962, 6: 137-145
    [25] Nagle J, Strickland-Constable RF. Oxidation of carbon between 1000-2000oC. In: Proceedings of the Fifth Conference on Carbon. London: Pergamon Press, 1962. 154-164
    [26] Fenimore CP, Jones CW. Oxidation of soot by hydroxyl radicals. Journal of Physical Chemistry, 1967, 71(3): 593-597
    [27] Neoh KG, Howard JB, Sarofim AF. Soot oxidation in flames. In: Siegla DC, Smith GW, eds. Particulate carbon: formation during combustion. New York: Plenum, 1981. 261-277
    [28] Puri R, Santoro RJ, Smyth KC. The oxidation of soot and carbon monoxide in hydrocarbon diffusion flames. Combustion and Flame, 1994, 97: 125-144
    [29] Kennedy IM. Models of soot formation and oxidation. Progress in Energy and Combustion Science, 1997, 23: 95-132
    [30] Sivathanu YR, Gore JP. Coupled radiation and soot kinetics calculations in laminar acetylene/air diffusion flames. Combustion and Flame, 1994, 97: 161-172
    [31] Calcote HF, Manos DM. Effect of molecular structure on incipient soot formation. Combustion and Flame, 1983, 49: 289-304
    [32] Gill RJ, Olson DB. Estimation of soot thresholds for fuel mixtures. Combustion Science and Technology, 1984, 40: 307-315
    [33] Olson DB, Pickens JC, Gill RJ. The effects of molecular structure on soot formation II. Diffusion flames. Combustion and Flame, 1985, 62: 43-60
    [34] Harris SJ, Weiner AM, Ashcroft CC. Soot particle inception kinetics in a premixed ethylene flame. Combustion and Flame, 1986, 64: 65-81
    [35] Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth. In: Proceedings of the 23rd International Symposium on Combustion. Pittsburgh: The Combustion Institute, 1990. 1559-1566
    [36] Kazakov A, Wang H, Frenklach M. Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar. Combustion and Flame, 1995, 100: 111-120
    [37] Balthasar M, Mauss F, Knobel A et al. Detailed modeling of soot formation in a partially stirred plug flow reactor. Combustion and Flame, 2002, 128: 395-409
    [38] Smooke MD, McEnally CS, Pfefferle LD et al. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combustion and Flame, 1999, 117: 117-139
    [39] McEnally CS, Schaffer AM, Long MB et al. Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame. In: Proceedings of the 27th International Symposium on Combustion. Pittsburgh: The CombustionInstitute, 1998. 1497-1505
    [40] Hura HS, Glassman I. Soot formation in diffusion flames of fuel/oxygen mixtures. In: Twenty-Second Symposium (International) on Combustion. The Combustion Institute, 1988. 371-378
    [41] Sunderland PB, Faeth GM. Soot formation in hydrocarbon/air laminar jet diffusion flames. Combustion and Flame, 1996, 105: 132-146
    [42] Lindstedt RP, Skevis G. Detailed kinetic modeling of premixed benzene flames. Combustion and Flame, 1994, 99: 551-561
    [43] Vandsburger U, Kennedy IM, Glassman I. Sooting counterflow diffusion flames with varying oxygen index. Combustion Science and Technology, 1984, 39: 263-285
    [44] Tesner PA, Snegiriova TD, Knorre VG. Kinetics of dispersed carbon formation. Combustion and Flame, 1971, 17: 253-260
    [45] Magnussen BF, Hjertager BH. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. In: 16th Symposium (International) on Combustion. The Combustion Institute, 1977. 719-729
    [46] Said R, Garo A, Borghi R. Soot formation modeling for turbulent flames. Combustion and Flame, 1997, 108: 71-86
    [47] Moss JB, Stewart CD,Syed KJ. Flowfield modeling of soot formation at elevated pressure. The Combustion Institute, 1988. 413-423
    [48] Syed KJ, Stewart CD,Moss JB. Modeling soot formation and thermal radiation in buoyant turbulent diffusion flames. In: 23th Symposium (International) on Combustion. The Combustion Institute, 1990. 1533-1541
    [49] Fairweather M, Jones WP, Ledin HS et al. Predictions of soot formation in turbulent, non-premixed propane flames. In: Proceedings of the 24th International Symposium on Combustion. Pittsburgh: The Combustion Institute, 1992. 1067-1074
    [50] Lindstedt RP. A Simple Reaction Mechanism for Soot Formation in Non-Premixed Flames. Aerothermodynamics in Combustors, 1992, 145-146
    [51] Garo A, Prado G, Lahaye J. Chemical aspects of soot particles oxidation in a laminar methane-air diffusion flame. Combustion and Flame, 1990, 79: 226-233
    [52] Lindstedt RP. Simplified soot nucleation and surface growth steps for non-premixedflames. In: Bockhorn H, ed. Soot Formation in Combustion: Mechanisms and Models. Berlin: Springer-Verlag, 1994. 417-439
    [53] Koylu UO, Faeth GM, Farias TL et al. Fractal and Projected Structure Properties of Soot Aggregates. Combustion and Flame, 1995, 100: 621-633
    [54] Guo H, Liu F, Smallwood GJ et al. The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene-air diffusion flame. Combustion Theory and Modelling, 2002, 6: 173-187
    [55] Liu F, Guo H, Smallwood GJ et al. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73: 409-421
    [56] Liu F, Guo H, Smallwood GJ et al. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flame. Combustion Theory and Modelling, 2003, 7: 301-315
    [57] Choi MY, Hamins A, Mulholland GW et al. Simultaneous optical measurement of soot volume fraction and temperature in premixed flames. Combustion and Flame, 1994, 99: 174-186
    [58] Shahad HAK, Mohammed YKA. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture. Energy Conversion & Management, 2000, 41: 1897-1916
    [59] Sunderland PB, Koylu UO, Faeth GM. Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air. Combustion and Flame, 1995, 100: 310-320
    [60] Santoro RJ, Yeh TT, Horvath JJ et al. The transport and growth of soot particles in laminar diffusion flames. Combustion Science and Technology, 1987, 53: 89-115
    [61] Megaridis CM, Dobbins RA. Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames. Combustion Science and Technology, 1989, 66: 1-16
    [62] McEnally CS, Koylu UO, Pfefferle LD et al. Soot Volume Fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocoples . Combustion and Flame, 1997, 109: 701-720
    [63] Greenberg PS, Ku JC. Soot volume fraction maps for normal and reduced gravitylaminar acetylene jet diffusion flames. Combustion and Flame, 1997, 108: 227-230
    [64] Konsur B, Megaridis CM, Griffin DW. Fuel preheat effects on soot-field structure in laminar gas jet diffusion flames burning in 0-g and 1-g. Combustion and Flame, 1999, 116: 334-347
    [65] Snelling DR, Thomson KA, Smallwood GJ et al. Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Applied Optics, 1999, 38: 2478-2485
    [66] Melton LA. Soot diagnostics based on laser heating. Applied Optics, 1984, 23(13): 2201-2208
    [67] Bengtsson PE. Simultaneous two-dimensional visualization of soot and OH in flames using laser-induced fluorescence. Applied Spectroscopy, 1996, 50(9): 1182-1186
    [68] Mewes B, Seitzman JM. Soot volume fraction and particle size measurements with laser-induced incandescence. Applied Optics, 1997, 36(3): 709-717
    [69] Shaddix CR, Smyth KC. Laser-Induced Incandescence Measurements of Soot Production in Steady and Flickering Methane, Propane, and Ethylene Diffusion Flames. Combustion and Flame, 1996, 107: 418-452
    [70] Snelling DR, Smallwood GJ, Gulder OL et al. Soot volume Fraction Characterization Using the Laser-Induced Incandescence Detection Method. In: 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2000. 1-16
    [71] Schraml S, Dankers S, Bader K et al. Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII). Combustion and Flame, 2000, 120: 439-450
    [72] Vander Wal RL, Ticich TM, Stephens AB. Can soot primary particle size be determined using laser-induced incandescence? Combustion and Flame, 1999, 116: 291-296
    [73] Roth P, Filippov AV. In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission. Journal of Aerosol Science, 1996, 27(1): 95-104
    [74] Rosner DE, Schaffer AM, Long MB et al. In-Situ, Real-Time SIzing of Inorganic Nano-Particle Populations in Flames Using Laser-Induced Incandescence. the 20thAnnual AAAR Conference, 2001.
    [75] Quay B, Lee T-W, Ni T et al. Spatially resolved measurements of soot volume fraction using laser-induced incandescence. Combustion and Flame, 1994, 97: 384-392
    [76] Vander Wal RL, Zhou Z, Choi MY. Laser-Induced Incandescence Calibration Via Gravimetric Sampling. Combustion and Flame, 1996, 105: 462-470
    [77] De Iuliis S, Barbini M, Benecchi S et al. Determination of the Soot Volume Fraction in an Ethylene Diffusion Flame by Multiwavelength Analysis of Soot Radiation Combustion and Flame, 1998, 115: 253-261
    [78] Snelling DR, Thomson KA, Smallwood GJ et al. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA Journal, 2002, 40(9): 1789-1795
    [79] Haudiquert M, Cessou A, Stepowski D et al. OH and Soot Concentration Measurements in a High-Temperature Laminar Diffusion Flame. Combustion and Flame, 1997, 111: 338-349
    [80] Zhao H, Ladommatos N. Optical diagnostics for soot and temperature measurement in diesel engines. Progress in Energy and Combustion Science, 1998, 24: 221-255
    [81] Gaydon AG. The spectroscopy of flames. London: Chapman and Hall, 1974
    [82] Jones AH. Flame failure detection and modern boilers. Journal of Physics E: Scientific Instruments, 1988, 21: 921-928
    [83] 卫成业. 燃煤锅炉炉膛火焰温度场和浓度场测量及燃烧诊断的研究. 浙江大学博士学位论文, 2001.
    [84] Hirano T, Ishizuka S, Tsuruda T et al. The potential of visualization for studies on flames and furnaces. Fuel, 1994, 73(3): 1697-1709
    [85] Kurihara N, Nishikawa M. A combustion diagnosis method for pulverized coal boilers using flame imagere cognition technology. IEEE Transaction on Energy Conversion, 1986, 1(2): 99-103
    [86] Shimoda M, Sugano A, Kimura T et al. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame. IEEE Transaction on Energy Conversion, 1990, 5(4): 640-645
    [87] Collins S. Advanced flame monitors take on combustion control. Power, 1993, (10): 75-77
    [88] Yan Y, Lu G, Colechin M. Monitoring and characterization of pulverized coal flames using digital imaging techniques. Fuel, 2002, 81: 647-656
    [89] Bheemul HC, Lu G, Yan Y. Three-dimensional visualization and quantitative characterization of gaseous flames. Measurement Science and Technology, 2002, 13(10): 1643
    [90] Correia DP, Ferrao P, Caldeira-Pires A. Advanced 3D emission tomography flame temperature sensor. Combustion Science and Technology, 2001, 163: 1-24
    [91] 吴占松. 发光火焰的图象处理及其在燃烧检测中的应用. 清华大学博士学位论文, 1988.
    [92] 王补宣, 李天铎, 吴占松. 图象处理用于发光火焰温度分布测量的研究. 工程热物理学报, 1989, 10(4): 446-448
    [93] 何万青, 余岳峰, 张银桥, 徐伟勇. 基于图像处理和数字视频技术的锅炉多路火焰检测系统. 热力发电, 2000, 58(3): 45-48
    [94] 孙江, 徐伟勇, 余岳峰, 吴建繁. 据煤粉火焰图像判断状况的计算机判断算法. 热力发电, 1997,(1): 14-18
    [95] 徐伟勇, 余岳峰, 孙江, 吴建繁. 数字图像处理技术在火焰检测上的应用. 中国电力, 1994,(10): 41-44
    [96] 许柯夫. 数字图象处理技术在电厂锅炉燃烧检测中的应用研究. 电力系统自动化, 1995, 19(4): 43-47
    [97] 薛飞. 基于辐射图像的火焰温度场测量研究. 浙江大学博士学位论文, 1999.
    [98] 薛飞,李晓东, 倪明江,严建华. 基于面阵 CCD 的火焰温度场测量方法研究. 中国电机工程学报, 2000, 19(1): 39-41
    [99] 王飞,薛飞, 马增益等. 运用彩色 CCD 测量火焰温度场的试验研究及误差分析. 热能动力工程, 1998, 13(2): 81-84
    [100] 卫成业,严建华,商敏儿,岑可法. 利用面阵 CCD 进行火焰温度分布测量(I)-二维投影温度场的测量. 热能动力工程, 2002, 17(1): 58-61
    [101] 王飞, 马增益, 卫成业, 严建华, 岑可法. 根据火焰图像测量煤粉炉截面温度场的研究. 中国电机工程学报, 2000, 20(7): 40-43
    [102] 卫成业, 王飞, 严建华, 马增益, 薛飞, 陈宗福, 岑可法. 利用代数重建技术根据火焰辐射图象测量煤粉火焰断面温度场. 计量学报, 2001, 22(2): 116-121
    [103] 卫成业,王飞,马增益,胡刚,陈宗福,李晓东,严建华,岑可法. 基于炉内火焰辐射图象处理的断面温度场的重建方法研究. 动力工程, 2001, 21(1): 1046-1049
    [104] 卫成业,严建华,商敏儿,岑可法. 利用面阵 CCD 进行火焰温度分布测量(II)——三维截面温度场的测量. 热能动力工程, 2002, 17(2): 161-165
    [105] 王飞, 马增益, 严建华, 池涌, 倪明江, 岑可法. 利用火焰图像同时重建温度场和浓度场的试验研究. 动力工程, 2003, 23(3): 2404-2408
    [106] 王飞, 马增益, 严建华, 岑可法. 利用火焰图像重建三维温度场的模型和实验. 燃烧科学与技术, 2004, 10(2): 140-145
    [107] Wang F, Wang XJ, Ma ZY et al. The research on the estimation for the NOx emissive concentration of the pulverized coal boiler by the flame image processing technique. Fuel, 2002, 81(16): 2113-2120
    [108] 王式民, 吕震中, 麻庭光, 吴国兴, 李大骥. 图像处理技术在全炉膛火焰监测中的应用. 动力工程, 1996, 16(6): 68-72
    [109] 邹煜, 吕震中, 王式民. 锅炉全炉膛火焰数字图像处理与监测系统开发与研究. 热能动力工程, 1998, 13(4): 261-263
    [110] 王式民, 赵延军, 汪风林. 光学分层热成像法重建火焰三维温度场分布的研究. 工程热物理学报, 2002, 23(S1): 233-236
    [111] 周怀春,娄新生,肖教芳,尹鹤龄,邓元凯,顾一之,徐方灵,孙国俊. 炉膛火焰温度场图像处理试验研究. 中国电机工程学报, 1995, 15(5): 295-300
    [112] 盛锋,周怀春,韩曙东,李军,郑楚光. 基于图象处理及辐射传热逆问题求解的二维炉膛温度场重建. 中国电机工程学报, 1999, 19(10): 1-5
    [113] 盛锋,周怀春,韩曙东,郑楚光. 基于针孔成像模型的炉膛辐射成像快速算法.华中理工大学学报, 2000, 28(5): 95-97
    [114] 娄春, 韩曙东, 刘浩, 周怀春. 一种煤粉燃烧火焰辐射成像新模型. 工程热物理学报, 2002, 23(增刊)(93): 96
    [115] Zhou HC, Han SD, Lou C et al. A new model of radaitive image formation used in visualization of 3-D temperature distributions in large-scale furnaces. Numerical Heat Transfer, B, 2002, 42(3): 243-258
    [116] Zhou HC, Sheng F, Han SD et al. A fast algorithm for calculation of radiative energy distributions received by pinhole image-formation process from 2D rectangular enclosure. Numerical Heat Transfer Applications, 2000, 38(7): 757-773
    [117] Zhou HC, Sheng F, Han SD et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72: 361-383
    [118] Zhou HC, Sheng F, Han SD et al. Reconstruction of Temperature Distribution in a 2-D Absorbing-Emitting System from Radiant Energy Images. JSME International Journal, Series B, 2000, 43(1): 104-109
    [119] 韩曙东,周怀春,盛锋,黄勇理,孙学信. 基于具有明显测量误差的辐射图像的二维炉膛温度分布重建和快速特征识别研究. 中国电机工程学报, 2000, 20(9): 67-71
    [120] 盛锋. 基于辐射成像逆问题求解的温度场重建方法研究. 华中理工大学博士学位论文, 2000.
    [121] 韩曙东. 大型燃煤锅炉炉膛温度场重建逆问题研究. 华中科技大学博士学位论文, 2002.
    [122] 刘浩, 周怀春, 娄春, 刘尧平, 吴秋. 燃煤锅炉炉膛断面温度场可视化实验研究. 热科学与技术, 2003, 2(3): 250-254
    [123] 吴峰, 艾育华, 娄春, 周怀春. 蜡烛火焰三维温度场重建实验研究. 工程热物理学报, 2003, 24(5): 894-896
    [124] 曾佳,娄春,程强,罗自学,周怀春,何晋,黄本元,裴振林,吕传新. 大型电站锅炉炉内三维燃烧温度场可视化实验研究. 工程热物理学报, 2004, 25(3): 523-526
    [125] Lou C, Zhou HC. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation. Combustion and Flame, 2005, 143: 97-105
    [126] Zhou HC, Lou C, Cheng Q et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proceedings of the Combustion Institute, 2005, 30: 1699-1706
    [127] 程强, 娄春, 姜志伟, 周怀春, 宋平, 张茂杰, 吴煊, 王锐. 工业炉三维温度场可视化试验研究. 全国能源与热工 2004 年学术年会
    [128] 陈志刚,蒙建波,李良熹. 电站锅炉数字图像火焰检测系统设计与实现. 重庆大学学报(自然科学版), 2003, 26(2): 32-35
    [129] 姜凡, 刘石, 卢钢等. 双色法火焰监测分析技术用于火焰温度场的实测试验. 中国电机工程学报, 2002, 22(12): 133-137
    [130] 李少辉, 高岳, 高稚允. 图像比色法在炉膛火焰温度场实时监测的研究. 光学技术, 2002, 28(2): 145-147
    [131] Konishi N, Kitagawa K, Arai N et al. Two-dimensional spectroscopic analysis of a flame using highly preheated combustion air. Journal of Propulsion and Power, 2002, 18(1): 199-204
    [132] Siewert CE. A new approach to the inverse problem. Journal of Mathematical Physics, 1978, 19(12): 2619-2621
    [133] Siewert CE. On The inverse problem for a three-term phase function. Journal of Quantitative Spectroscopy and Radiative Transfer, 1979, 22: 441-446
    [134] Kamiuto KA. A constrained least-squares method for limited inverse scattering problems. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 40(1): 47-50
    [135] Ou NR, Wu CY. Simultaneous estimation of extinction coefficient distribution, scattering albedo and phase function of a two-dimensional medium. International Journal of Heat and Mass Transfer, 2002, 45(23): 4663-4674
    [136] Liu LH, Man GL. Reconstruction of time-averaged temperature of non-axisymmetric turbulent unconfined sooting flame by inverse radiation analysis.Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 78: 139-149
    [137] Li H-Y. A two-dimensional cylindrical inverse source problem in radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 69: 403-414
    [138] Siewert CE. An inverse source problem in radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 50(6): 603-609
    [139] Liu LH. Simultaneous identification of temperature profile and absorption coefficient in one-dimensional semitransparent medium by inverse radiation analysis. Int Comm Heat Mass Transfer, 2000, 27(5): 635-643
    [140] Zhou HC, Hou YB, Chen DL. An inverse radiative transfer problem of simultaneously estimating profiles of temperature and radiative parameters from boundary intensity and temperature measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 74: 605-620
    [141] Zhou HC, Yuan P, Sheng F et al. Simultaneous estimation of the profiles of the temperature and the scattering albedo in an absorbing, emitting, and isotropically scattering medium by inverse analysis. International Journal of Heat and Mass Transfer, 2000, 43(23): 4361-4364
    [142] Ai YH, Zhou HC. Simulation on simultaneous estimation of non-uniform temperature and soot volume fraction distributions in axisymmetric sooting flames. Journal of Quantitative Spectroscopy and Radiative Transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(1): 11-26
    [143] 周怀春,娄新生,邓元凯. 基于图像处理的炉膛燃烧三维温度分布检测原理及分析. 中国电机工程学报, 1997, 17(1): 1-4
    [144] Zhou HC, Chen DL, Cheng Q. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 83(3-4): 459-481
    [145] Zhou HC, Cheng Q. The DRESOR method for the solution of the radiative transfer equation in gray plane-parallel media. Proceedings of the Fourth International Symposium on Radaitive Transfer, Istanbul, Turkey, 2004,(181): 190
    [146] McCormick NJ. Inverse radiative transfer problems: a review. Nuclear Science and Engineering, 1992, 112: 185-198
    [147] McCormick NJ. Analytical solutions for inverse radiative transfer optical property estimation. Proceedings of the ASME Heat Transfer Division, 1997, 353: 367-371
    [148] Park HM, Yoon TY. Solution of the inverse radiation problem using a conjugate gradient method. International Journal of Heat and Mass Transfer, 2000, 43: 1767-1776
    [149] McCormick NJ. Estimation of two similarity parameter from polarized radiation measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 1989, 42: 303
    [150] Siewert CE, Dunn WL. On inverse problems for plane-parallel media with nonuniform surface illumination. Journal of Mathematical Physics, 1982, 23: 1376
    [151] Larsen EW. Solution of multidimensional inverse transport problems. Journal of Mathematical Physics, 1984, 25(1): 131-135
    [152] Bokar JC. The estimation of spatially varying albedo and optical thickness in a radiating slab using artificial neural networks. Int Comm Heat Mass Transfer, 1999, 26(13): 359
    [153] Li H-Y. Inverse radiation problem in two-dimensional rectangular media. Journal of Thermophysics and Heat Transfer, 1997, 11(4): 556-531
    [154] Aleiferis PG, Hardalupas Y, Taylor AMKP et al. Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine. Combustion and Flame, 2004, 136: 72-90
    [155] Choi CW, Puri IK. Flame stretch effects on partially premixed flames. Combustion and Flame, 2000, 123: 119-139
    [156] Prince R, Hurle I, Sugden T. Optical studies of the generation of noise in turbulent flames. Twelfth Symposium (International) on Combustion, 1968, 1093-1102
    [157] Langhorne P. An acoustically coupled combustion instability. part 1. experiment. Journal of Fluid Mechanics, 1988, 193: 417-443
    [158] Samamiego J, Egolfopoulos F, Bowman C. CO2* chemiluminescence in premixed flames. Combustion Science and Technology, 1995, 109: 183-203
    [159] Najm H, Paul P, Mueller C et al. On the adequacy of certain experimental observables as measurements of flame burning rate. Combustion and Flame, 1998,113: 312-332
    [160] Marchese A, Dryer F, Nayagam V et al. Hydroxyl radical chemiluminescence imaging and the structure of microgravity droplet flames. Twenty-sixth Symposium (International) on Combustion, 1996, 1219-1226
    [161] Schefer R. Flame sheet imaging using CH chemiluminescence. Combustion Science and Technology, 1997, 126: 255-270
    [162] Chomiak J. Application of chemiluminescence measurement to the study of turbulent flame structure. Combustion and Flame, 1972, 18: 429-433
    [163] Beyler C, Gouldin F. Flame structure in a swirl stabilized combustor inferred by radiant emission measurements. Eighteenth Symposium (International) on Combustion, 1981, 1011-1019
    [164] Hardalupas Y, Orain M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combustion and Flame, 2004, 139: 188-207
    [165] Smith GP, Luque J, Park C et al. Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence. Combustion and Flame, 2002, 131: 59-69
    [166] Brookes SJ, Moss JB. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combustion and Flame, 1999, 116: 486-503
    [167] Sivathanu YR, Gore JP. Effects of gas-band radiation on soot kinetics in laminar methane/air diffusion flames. Combustion and Flame, 1997, 110: 256-263
    [168] Megaridis CM, Dobbins R.A. Soot aerosol dynamics in a laminar ethylene diffusion flame. In: 22th Symposium (International) on Combustion. The Combustion Institute, 1988. 353-362
    [169] Moss JB, Stewart CD, Young KJ. Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combustion and Flame, 1995, 101: 491-500
    [170] Liu F, Smallwood GJ, Gulder OL. Application of the statistical narrow-band correlated-K method to low-resolution spectral intensity and radiative heat transfer calculations--effects of the quadrature scheme. International Journal of Heat and Mass Transfer, 2000, 43: 3119-3135
    [171] Soufiani A, Taine J. High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2. International Journal of Heat and Mass Transfer, 1997, 40: 987-991
    [172] Liu F, Smallwood GJ, Gulder OL. Application of the statistical narrow-band correlated-K method to non-grey gas radiation in CO2-H2O mixtures: approximate treatments of overlapping bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 68: 401-417
    [173] 于娟, 章明川, 赵国锋, 范卫东, 周月桂. FTIR 发射透射光谱对含颗粒气流的温度测量. 燃烧科学与技术, 2003, 9(5): 434-438
    [174] Block B, Hentschel W, Ertmer W. Pyrometric determination of temperature in rich flames and wavelength dependence of their emissivity. Combustion and Flame, 1998, 114: 359-369
    [175] Zhou HC, Han SD. Simultaneous reconstruction of temperature distribution, absorptivity of wall surface and absorption coefficient of medium in a 2-D furnace system. International Journal of Heat and Mass Transfer, 2003, 46(14): 2645-2653
    [176] Eisner AD, Rosner DE. Experimental studies of soot particle thermophoresis in nonisothermal combustion gases using thermocouple response techniques. Combustion and Flame, 1985, 61: 153-166
    [177] Roper FG. The prediction of laminar jet diffusion flame sizes: Part I. Theoretical Model. Combustion and Flame, 1977, 29: 219-226
    [178] Higgins B, McQuay MQ, Lacas F et al. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames. Fuel, 2001, 80: 1583-1591
    [179] 韩颂青, 刘吉平, 贵大勇. 高温燃烧体系的光辐射. 火工品, 1998,(3): 37-40
    [180] Modest MF. Radiative Heat Transfer. New York: McGraw-Hill, 1993
    [181] Yang WJ, Kudo K. Calculating radiative heat transfer using Monte Carlo method. Advances in Heat Transfer, 1995, 27: 1-215
    [182] Kudo K, Kuroda A, Eid A et al. Radiative load problem using the singular value decomposition technique. JSME International Journal, Series B, 1996, 39(4): 808-814

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700