组织工程骺板软骨修复幼兔骺板损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骺板损伤后骨桥形成是引起儿童肢体短缩及成角畸形的常见原因之一,现有的治疗方法主要是骨桥切除后植入脂肪等填充物,不同程度地恢复受累肢体的纵向生长能力及矫正部分成角畸形。这些治疗方法不满意的主要原因可能是填充物仅能通过机械阻隔作用,防止骨桥形成,不具备生长能力。因此,寻找具有生长能力的填充物成为研究重点之一。近年来组织工程技术快速发展,组织工程骺板软骨的构建已初步显示出近期效果,本研究试图通过构建天然骺板软骨获得远期疗效。
     目的:通过体外细胞培养技术,观察比较不同部位骺板软骨细胞的生长特性,确定生长潜力最大的取材部位;以牛关节软骨细胞外基质(cattlearticular cartilage extracellular matrix CACECM)为支架,复合同种异体骺板软骨细胞体外构建组织工程骺板软骨;将组织工程骺板软骨植入幼兔股骨远端的骺板缺损区,观察其是否可以有效地防止骨桥形成。
     方法:(1)体外分离培养骺板软骨细胞,通过大体及组织学观察细胞生长特性;通过生长曲线等比较不同部位骺板软骨细胞生长潜力。
     (2)CACECM复合骺板软骨细胞后,光镜、电镜、染色等方面观察细胞在CACECM上的生长情况,确定CACECM对骺板软骨细胞的影响;体内异位植入CACECM,不同的时间取出,大体及染色情况下观察CACECM自行降解时间、局部反应等;复合物植入兔背部肌肉中,不同的时间取出组织块观察是否异位成软骨、降解时间、排异反应等。
     (3)将复合骺板细胞的CACECM体外培养后植入幼兔股骨远端骺板缺损区,不同的时间点观察股骨生长及畸形发生情况。
     结果:(1)2周龄兔股骨远端及胫骨近端的骺板软骨细胞生长特性及单位体积细胞产量等方面优于髂骨、肱骨远端及尺桡骨近端的骺板细胞,可优先作为骺板组织工程的种子细胞;骺板软骨细胞体外培养不要超过三代,以保持良好的生长潜力。
     (2)CACECM组织相容性较好;骺板软骨细胞可以在CACECM支架上不断增殖生长,分泌基质;CACECM可以在体内不断降解,不存在明显的排异反应及组织残留;CACECM复合骺板软骨细胞在体外可以继续生长,体内可形成类软骨样组织、分泌糖胺聚糖(glycosaminoglycans,GAG)及Ⅱ型胶原。
     (3)以CACECM作为支架的组织工程骺板软骨在4周、8周、12周及16周均能有效地防止股骨成角和短缩畸形,而单独植入CACECM则不能阻止其畸形的发生。
     本文证明异体组织工程骺板软骨在骺板早闭的治疗中,预防骨桥形成及促进损伤骺板生长是有作用的,组织工程骺板软骨在治疗骺板早闭方面有以下几个优点:①不存在填充骺板软骨时的供体短缺的问题;②与脂肪、硅胶、肌肉等相比,它具有一定生长能力;③比单纯细胞移植的免疫源性小;④比填塞骺板软骨更容易通过渗透获得营养。
Growth arrest in the epiphyseal plate during childhood often causes both periarticular deformities and limb length discrepancy,leading to compartmental osteoarthrosis and gait disturbance or spinal disorders,respectively.Traditional treatments for bony bridge include packing an interpositional material such as fat and bone cement after removal of the bone bar.It can partly remedy the angulation deformity and recover the ability of longitudinal growth but got no satisfactory results.The main reason is that the interpositional materials can only restrain the form of bone bridge in virtue of passive barriers,but growth-ability.The interpositional materials with growth ability has become one of the important research point consequently.With the rapid progress of Tissue-engineered technique,the tissue-engineered epiphyseal cartilage has a good short-term effect. Therefore we construct a novel natural epiphyseal plate intent to recove the ability of longitudinal growth,so as to get a satisfactory long-term effect.
     Objective:Observed and compared the growth characteristics of cultured physeal chondrocytes by technique of cell culture in vitro to find the right place with the great growth potential;Cultured the engineered epiphyseal growth plate in vitro by using cattle articular cartilage extracellular matrix as cell scaffold seeded with epiphyseal chondrocytes;Implanted the engineered tissue into the lateral distal defects of growth plate of New Zealand rabbit femur to observe whether it can prevent the growth deformity of not.
     Method:(1)After cultivate the epiphyseal chondrocytes in vitro,we observed the growth characteristics of cultured physeal chondrocytes by light microscope and staining;Compared the growth potential of chondrocytes from different postion by growth curve to destermined the better one.
     (2)It is determined that the cattle articular cartilage extracellular matrix whether have a influence on epiphyseal chondrocytes by light microscope、electron microscope、staining technique after seeded epiphyseal chondrocytes into cattle articular cartilage extracellular matrix.To observe the degradation time and rejection by transplant the complex and cattle articular cartilage extracellular matrix into muscle of rabbit's back.
     (3)Transplanted the complex into the lateral distal defects of growth plate of rabbit femur to observed the growth and deformity in different time.
     Results:(1)The epiphyseal chondrocyte from femur and tibia of 2 weeks rabbit is better than the others in characteristics and output of unit volume.It's better not to use the chondroeytes after 3 passages in preparing the engineered tissue,otherwise they will lost the optimal growth potential.
     (2)The histocompatibility of cattle articular cartilage extracellular matrix is good.CACECM will degradate in vivo generally with no rejection and tissue left.It can provide a three dimensional space for epiphyseal chondrocytes to grow.While seeding in epiphyseal chondrocytes,it would keeping grow in vitro and form similar cartilage tissue in vivo.
     (3)The engineered epiphyseal tissue can prevent the formation of the femur deformity in different time.While the implantation of CACECM scaffold alone couldn't.
     It is proved in this paper that the engineered epiphyseal tissue can prevent the formation of bony bridge and promote the growth of the injured growth plate in treatment of premature arrest of growth plate.There are several good quality as follow:①donator will not shortage.②the engineered epiphyseal tissue has a certain ability of growth.③little immunogenicity than implantation chondrocytes alone.④It could get nutrition more easier in implant prophase due to the loose tissue structure.
引文
[1]许瑞江,小儿矫形外科学,科学技术文献出版社,2002,103-104。
    [2]Langenskiold A.The possibilities of eliminating premature partial closure of an epiphyseal plate caused by trauma or disease.Acta Orthop Scand,1967,38:267-279.
    [3]Peterson HA.Operative correction of post-fracture arrest of the epiphyseal plate.Case report with ten-year follow-up.J Bone and Joint Surg,1980,62-A:1018-1101.
    [4]Makela,E.A.et al.The effect of a penetration Biodegradable Implant on the epiphyseal plate:an experimental study on growing rabbits with special regard to polyglactin 910.J Pedia Othop,7:415-20,1987.
    [5]Martiana K,Low CK and Tan SK et al.Comparison of various interpositional materials in the prevention of transphyseal bone bridge formation.Clin Orthop,1996,325:218-224.
    [6]Wirth T,Byers S and Byard RW et al.The implantation of cartilaginous and periosteal tissue into growth plate defects.Int Orthop,1994,18:220-8.
    [7]Lee EH,Gao GX and Bose K.Management of partial growth arrest:physis,fat or silastic?.J Pediatr Orthop,1993,13:368-372.
    [8]王建,杨志明,解慧琪等,培养软骨,肌肉,骨蜡移植修复生长板缺损的实验研究[J],创伤外科杂志,2002,4(1):16-19.
    [9]Rodrigues A,Pap S,Vacanti CA.The effect of long-term culture on the ability of human auricular chondrocytes to generate tissue engineered cartilage.In:Stard GB,Horch R,Tanczos E(eds).Biological matrices and tissue reconstruction.New York:Springer 1998:163-3.
    [10]Zhang ZW,Yang CD,Jin JJ,etal,Maintain the characteristic phenotype of the rabbits articular chondrocytes after culture in alginate bead.Zhongguo Linchuang Kangfu 2003;7(4):556-7.
    [11]Kawabe N,Ehrlich MG and Mankin HJ.Growth plate reconstruction using chondrocyte allograft transplants.J Pediatr Orthop,1987,7:381-388.
    [12]Foster BK,Hansen AL and Gibson-GJ et al.Reimplantation of growth plate chondrocytes into growth plate defects in sheep.J Orthop Res,1990,8:555-64.
    [13]Lee EH,Chen F and Chan J et al.Treatment of growth arrest by transfer of cultured chondrocytes into physeal defects.J Pediatr Orthop,1998,18:155-160.
    [14]Barr SJ,Zaleske DJ and Mankin HJ et al:Physeal replacement with cultured chondrocytes of varying developmental time:failure to reconstruct a functional or structural physis.J Orthop Res,1993,11:10-9.
    [15]Jouve JL.In vitro culture of growth cartilage and in situ reimplantation.Chirurgie,1996,121:273-8.
    [16]Benya PD,Shaffer JD.Dedifferentiated chondrocytes reexp ress the differentiated collagen phenotype when cultured in agarose gels.Cell,1982,30(1):215-224.
    [17]Ibusuki S,Fujii Y,Iwamoto Y,et al.Tissue-engineered cartilage using an injectable and in situgelable thermoresponsive gelatin:fabrication and in vitro performance.Tissue Eng 2003;9(2):371-384.
    [18]Lee CR,Grodzinsky AJ,Hsu HP,et al.Effects of cultured autologous chondrocyte seeded type-collagen scaffold on the healing of a chondral defect in a canine model[J].J Orthop Res,2003,(21):272-281.
    [19]黄靖香、张文涛、周勇刚、等,种子细胞库的建立及应用,骨与关节损伤杂志,2003,18(4):217-220。
    [20]吴靖芳、刘杰、江红等,Dextran分离纯化大鼠胰岛的生物学特性,解放军医学杂志,2006,31(4):338-341。
    [21]Foster Bk,Hansen AL,Gibson GJ,et al.Reimplantation of growth plate chondrocytes into growth plate defects in sheep,J Orthop Res 1990,jul;8(4):555-564。
    [22]王建、杨志明、解慧琪,培养软骨移植修复兔生长板缺损,中国修复重建外科杂志,2001,15(1):53-56。
    [23]Song HX,Li FB,Shen HL,et al.Repairing articular cartilage defects with tissue2engineering cartilage in rabbits[J].Chin J Traumatol,2006,9(5):266-271.
    [24]Vacanti CA,Upton J.Yissue engineering morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices.Clin Plast Surg,1994,21:445-462.
    [25]康红军,卢世璧,张莉等.人脂肪干细胞复合CACECM支架在生物反应器中构建组织工程软骨[J].中国组织工程研究与临床康复,2007,11(10):1801-1804。
    [26]刘红利、陈燕、崔国惠、等,鱼藤素对淋巴瘤Daudi细胞株细胞增殖细胞凋亡的影响及其机制,中华肿瘤杂志,2007,29(3):176-180。
    [27]张建党,软骨组织工程载体-关节软骨源性支架的系列研究,军医进修学院博士学位论文,2005,45。
    [28]Hutmacher DW.Scaffolds in tissue engineering bone and cartilage.Biomaterials JT-Biomaterials,2000,21:2529-43.
    [29]Nehrer S,Breinan HA and Ramappa A.et al.Canine chondrocytes seeded in type Ⅰ and type Ⅱ collagen implants investigated in vitro.J Biomed Mater Res,1997,38:95-104.
    [30]Veilleux NH,Yannas IV,Spector M.Effect of passage number and collagen type on the proliferative,biosynthetic,and contractile activity of adult canine articular chondrocytes in type Ⅰ and Ⅱ collagen-glycosaminoglycan matrices in vitro.Tissue Eng.2004;10(1-2):119-27.
    [31]Kato YL,Iwamoto M,Koike T,et al.Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes:regulation by transforming growth factor beta and serumfactors[J].Proc Natl Acad Sci USA,1988,85(24):9552-9556.
    [32]Foglieni C,Meoni C,Davalli A Ml Fluorescent dyes for cell viability:an application on prefixed conditions[J].Histochem Cell Biol,2001,115(3):223.
    [33]朱志宏、马承宣、许瑞江一种新型兔骺板部分早闭模型的建立,军医进修学院学报,2005,11,26(6),476-478。
    [34] Bright RW. Further canine studies with medical elastomer X7-2320 after osseous bridge resection for partial physeal plate closure. Trans Orthop, 1981,6: 1108.
    [1]Lee EH,Chen F,Bose K,Treament of growth arrest by transfer of cultured chondrocytes into physel defects[J].J Pediatr Orthop,1998,18:155-160.
    [2]Brouhgton NS,Dickens DRV,Cole WG,etal.Epiphysiolysis for partial growth plate arrest[J].J Bone Joint Surg[Br].1989;71:13-16.
    [3]Langenskiold A.Surgical treatment of partial closure of the growth plate[J].J Pediatr Orthop.1981;1:3-11.
    [4]王建,杨志明,解慧琪等,培养软骨,肌肉,骨蜡移植修复生长板缺损的实验研究[J],创伤外科杂志,2002,4(1):16-19.
    [5]Rudolph,-B;Dallek,-M;Meenen,-N-M,etal.Behavior of artificially-induced epiphyseal groove defects in rabbits.Part 2.Transplantation of autologous and homologous groove cartilage[J].Unfallchirurgie.1993 Jun;19(3):131-7
    [6]Takato T,Harii K,Komuro Y,et al.Y.Experimental study on growth of.epiphysial plate;free graft in rabbits[J].Br J Plast Surg.1993 jul;46(5):416-420
    [7]Martiana K,Low CK,Tan SK,et al.Comparison of various interpositional materials in the prevention of transphyseal bone bridge formation[J].Clin Orthop,1996,325:218-224.
    [8]Nunley JA,Spiegl PV,Goldner RD,et al.Longitudinal epiphyseal growth after replantation and transplantation in children[J].J Hand Surg(Am),1987,12A:274-279.
    [9]王建、杨志明、解慧琪,培养软骨移植修复兔生长板缺损[J],中国修复重建外科杂志,2001,15(1)53-55
    [10]Rodrigues A,Pap S,Vacanti CA.The effect of long-term culture on the ability of human auricular chondrocytes to generate tissue engineered cartilage[J].In:Stard GB,Horch R,Tanczos E(eds).Biological matrices and tissue reconstruction.New York:Springer 1998:163-3
    [11]Zhang ZW,Yang CD,Jin JJ,et al.Maintain the characteristic phenotype of the rabbits articular chondrocytes after culture in alginate bead[J].Zhongguo Linchuang Kangfu 2003;7(4):556-7.
    [12]He QY,Li QH,Xu JZ,et al.Immortalization of human articular chondrocytes and induction of their phenotypes[J].ZhongHua Chuangshang Zazhi 2002;18(12):723-31
    [13]He QY,Li QH,Xu JZ,et al,Comparing biological characteristics between transformed human chondrocytes and normal chondrocytes[J].Zhongguo Linchuang Kangfu 2002;6(10):1414-5
    [14]Kato YL,Iwamoto M,Koike T,et al.Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes:regulationby transforming growth factor beta and serumfactors[J].Proc Natl Acad Sci USA,1988,85(24):9552-9556.
    [15]周勇刚,卢世璧,王继芳,等.组织工程骺板软骨用于骨骺早闭治疗的实验研究[J].中华外科杂志.2000;38(10):742-744
    [16]陶凌晖,周强,李起鸿,传代培养骺板软骨细胞作为组织工程种子细胞的生物学研究[J],中国临床康复,2003;7(23)3156-7。
    [17]Wakitani S,Goto T,Pineda SJ,Young RG,Mansour JM,Caplan AI,Goldberg VM.Mesenchymal cell-based repair of large,full-thickness defects of articular cartilage[J].J Bone Joint Surg(Am),1994,76:579-592.
    [18]蔡林、张爱明、陈振光,组织工程化软骨修复兔骺板损伤的实验研究[J],中华实验外科杂志,2004;21(12)1524-5.
    [19]Pate DW,Sout herland SS,Grande DA.Isolation and diferentiation of mesenchymal stem cells from rabbit muscle[J].Surg Forum,1993,44:587.
    [20]Erickson GR,Gimble JM,Franklin DM,et al.Chondrogenic potenial of adipose tissue derived stromal cells in vitro and in vivo[J].Biochem Biophys Rescommun,2002,290:263.
    [21]Shamblott MJ,Axelman J,Wang S,et al.Derivation of pluripotent stem cells from cultured human primordial germ cells[J].Proc Natl Acad Sci USA,1998,(95):13726-13731.
    [22]Reubinoff BE,Pera MF,Fong CY,et al.Embryonic stemcell lines from human blastocysts:Somatic differentiation in vitro[J].Nat Biotechnol,2000, (18):399-404.
    [23]Kramer J,Hegert C,Guan K.Embryonic stemcell-derived chondrogenic differentiation in vitro:Activation by BMP-2 and BMP-4[J].Mech Dev,2005,(92):193-205.
    [24]Guo X,Du,Zheng Q,et al,Expession of transforming growth factor beta I in mesenchymal stem cells:Potential utility in molecular tissue engineering for osteochondral repair[J].J Huazhong Univ Sci Technol Med Sci,2002,22(2):112-115.
    [25]Tsuchiya H,Kitoh H,Sugiura F,et al.Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells[J].Biochem Biophys Res comm.,2003,301(2):338-343.
    [26]李欣、黄仕龙、金润铭,永生化骨骺板软骨细胞的生物学性状研究[J],临床儿科杂志,2007,25(11):937-940.
    [27]Coutts RD,Healey BM,Ostrander R.Matrices for cartilage repair[J].Clin Orthop,2006,391(Suppl):271-279.
    [28]Buma P,Pieper JS,Yienen TV,et al.Cross-linked type Ⅰ and type Ⅱcollagenous matricesfor the repair of full-thickness articular cartilage defects-a study in rabbits[J].Biomaterials,2003,(24):3255-3263.
    [29]Lee CR,Grodzinsky A J,Hsu HP,et al.Effects of cultured autologous chondrocyte seeded type-collagen scaffold on the healing of a chondral defect in a canine model[J].J Orthop Res,2003,(21):272-281.
    [30]Aoki H,Yomita N,Morita Y,et al.Culture of chondrocytes in fi-broin-hydrogel sponge[J].Biomed Mater Eng 2003;13(4):309-316.
    [31]韩雪峰,杨大平,郭铁芳,等.纤维蛋白胶塑形、异体微粒软骨脱细胞基质支架的人工软骨研究[J].中国临床康复,2005,9(2):56-58
    [32]Fox DB,Cook JL,Arnoczky SP,et al.Fibrochondrogenes is of free intra articular small intestinal submucosa scaffolds[J].Yissue Eng 2004;10(1-2):129-137.
    [33]Li WJ,Danielson KG,Alexander PG,et al.Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (epsilon-caprolactone)scaffolds[J].J Biomed Mater Res A 2003;67(4):1105-1114.
    [34]Chia SL,Goma K,Gogolewski S,et al.Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair[J].Tissue Eng 2006;12(7):1945-195.
    [35]Ibusuki S,Fujii Y,Iwamoto Y,et al.Tissue-engineered cartilage using an injectable and in situgelable thermoresponsive gelatin:fabrication and in vitro performance[J].Tissue Eng 2003;9(2):371-384.
    [36]史德海,蔡道章,周长忍,等.壳聚糖与Ⅱ型胶原复合制作组织工程软骨支架及其性能研究[J].中国修复重建外科杂志,2005,19(4):278-282.
    [37]Yamane S,Iwasaki N,Majima T,et al.Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering[J].Biomaterials 2005;26(6):611-619.
    [38]Caterson EJ,Nesti LJ,Li WJ.Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam[J].J Biomed Mater Res 2001;57(3):394-403.
    [39]Hsu SH,Whu SW,Hsieh SC,et al.Evaluation of chitosan-alginatehyaluronate complexes modified by an RGD-containing protein as tissueengineering scaffolds for cartilage regeneration[J].Artif Organs 2004;28(8):693-703.
    [40]Zehbe R,Libera J,Gross U,et al.Short-term human chondrocyte culturing on oriented collagen coated gelatine scaffolds for cartilage replacement[J].Biomed Mater Eng 2005;15(6):445-454
    [41]范宏斌,胡蕴玉,李旭升,等.明胶-硫酸软骨素-透明质酸钠载体制备及复合骨髓基质干细胞成软骨的实验研究[J].中国骨与关节损伤杂志,2006;21(1):33-35.
    [42]Malda J,Woodfield TB,van der Vloodt F,et al.The effect of PEGT/PBT scaffold architecture on the composition of tissue engineering cartilage[J]. Biomaterials 2005;26(1):63-72.
    [43]Bhattarai SR,Bhattarai N,Yi HK,et al.Novel biodegradable electrospun membrane:scaffold for tissue engineering[J].Biomaterials 2004;25(13):2595-2602.
    [44]卢华定,蔡道章,冯智英,等.柱状分层的胶原-羟基磷灰石复合支架负载软骨细胞体外培养[J].中国修复重建外科杂志,2006,20(2):144-147。
    [45]李忠,杨柳,陈光兴,等.胶原凝胶包埋软骨细胞复合聚磷酸钙纤维/左旋聚乳酸支架异体移植修复兔关节软骨缺损[J].中华实验外科杂志,2005,22(3):266-268.
    [46]Svensson A,Nicklasson E,Harrah T,et al.Bacterial cellulose as a potential scaffold for tissue engineering of cartilage[J].Biomaterials 2005;26(4):419-31.
    [47]Lee CR,Grad S,Goma K,et al.Fibrin-polyurethane composites for articular cartilage tissue engineering:a preliminary analysis[J].Tissue Eng 2005;11(9-10):1562-1573.
    [48]Subramanian A,Vu D,Larsen GF,et al.Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering[J].J Biomater Sci Polym Ed 2005;16(7):861-873.
    [49]Liu LR,Zhang LH,Wang F J,et al.The study of collagen-HA composite with incorporated BMP as bone tissue engineering scaffold[J].KeyMater Eng Adv Biomater VI,2005,(288-289):261-264.
    [50]Blunk T,Sieminski AL,Cooch KJ,et al.Differential effects of growth factors ontissue-engineered cartilage[J].Tissue Eng,2005,(8):73-84.
    [51]Martin I,Suetterlin R,Baschong W,et al.Enhanced cartilage tissuengineering by sequential exposure of chondrocytes to FGF-2 druing 2D expansion and BMP-2 during 3D cultivation[J].J CellBiochem,2005,(83):121-128.
    [52]Pei M,Seidel J,Vunjak-Novakovic G,et al.Growth factors for sequential cellular de-andre-differentiation in tissue engineering[J].BiochemBiophys Res Commun,2004,(294):149-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700