燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪60年代Merzhanov等系统研究燃烧合成(Combustion synthesis, CS)技术以来,CS技术已成为当今材料制备方法中极具潜力的技术之一。CS的基本原理就是反应物在外部能源的诱发下而引燃自身充足而自持续的(或热爆式的)化学放热反应从而合成预期的产物。作为材料的一种原位合成(In situ)方法,CS技术已被广泛地用来制备金属间化合物、功能梯度材料、复合材料、陶瓷材料等,然而人们对原位合成材料的力学性能和应用研究较多,而对其形成机制、尤其是生长机理的研究却相对有限。因此,本文设计并采用燃烧反应技术合成了TiC、ZrC陶瓷颗粒,并利用差热(DTA),X射线衍射(XRD),微区X衍射,场发射扫描电镜(FE-SEM),能谱(EDS)以及透射电镜(TEM)等现代分析手段,研究了原位合成TiC、ZrC的反应特征、组织形貌、形成过程以及生长动力学机制。
     热力学分析表明,TiC、ZrC分别是Al-Ti-C和Al-Zr-C体系反应热力学上最稳定、最易形成的相。研究结果发现,在SHS(Self-propagating high-temperature synthesis)反应制备TiC时,随着Al-Ti-C体系中Al含量的增加,体系的绝热温度、反应温度和燃烧波速均明显下降,合成TiC晶粒的尺寸显著细化,而一旦Al含量超过50 mass.%时,体系的SHS反应进行得较不充分而致使中间相滞留在反应产物中。通过SHS合成TiC的反应过程特征并结合DTA实验以及淬熄处理,研究了TiC的形成机制。首先,Al粉与Ti粉经一定的预热后相互间发生固-固反应而形成少量的TiAl3相并放出适当热量促使Al熔化,然后由于部分Al的熔化而导致了更剧烈的Al-Ti固-液反应而生成大量TiAl3相,同时释放大量热量使得温度急剧升高而致使已生成的TiAl3相熔化,随后,C溶解到Al-Ti熔液中并与之反应而生成热力学上更稳定的TiC相。最后,该TiC相从熔体中形核、析出并生长为不同形态的TiC晶粒。
     当在Al-Zr-C粉末中SHS合成ZrC时,随着混合粉末中Al含量的增多,体系燃烧温度、反应波速也均明显降低,ZrC晶粒尺寸进一步细化。当Al含量超过50 mass.%时,体系的反应温度低至1460 K以致完全不能诱发ZrC合成反应。而在Al含量超过30 mass.%时,可以合成了纳米级(≤150 nm) ZrC颗粒,尤其是Al含量为40 mass.%时,ZrC晶粒尺寸竟小于50 nm。SHS反应合成ZrC相的燃烧过程、DTA分析以及燃烧波峰淬熄实验均表明,Al-Zr-C混合粉末中的添加剂Al粉不仅作为稀释剂降低整个反应温度而抑制ZrC晶粒的生长与粗化,更重要的是作为中间反应物参与整个SHS反应过程从而影响ZrC晶粒的形成机制和生长形态。实验还发现,在所有锆铝化合物中,ZrAl3化合物是最有利形成的、且唯一的相,这与其具有L12、D022亚稳态和D023稳定态等三种晶体结构紧密相关,还与D023-ZrAl3的点阵结构与fccα-Al的点阵结构相似有关。
     热爆(Thermal explosion, TE)合成TiC、ZrC时,由于其反应过程相对于SHS过程来说具有更快的反应速度和随后的冷却速度,使得整个反应进行得较不完全从而导致较多的中间过渡相如Al4C3、ZrAl3和Zr3Al3C5相驻留在最终产物中。但TE合成TiC、ZrC颗粒尺寸更细小,尤其在10 mass.%Zn-Ti-C粉末中TE合成了TiC纳米颗粒(< 200 nm),只不过TE合成TiC、ZrC晶体发育、生长较不完全。TiC、ZrC晶体均表现出强烈的小平面光滑生长趋势。实验结果发现,Al含量、点燃方式和稀释剂种类对TiC、ZrC晶体的生长形貌影响明显,但不影响二者的生长动力学机制,即二者的生长机制均表现为二维形核台阶侧向层状生长模式。燃烧合成过程极高的过饱和度与过冷度的差异使得TiC、ZrC晶核在凝固和析出生长过程中速度不同,从而导致TiC、ZrC晶体生长形态各异。特别是添加10 mass.%Zn到10 mass.%Al-Zr-C混合粉末中可TE合成中空的四方ZrC晶粒。
     当Al-Ti-C粉末中的Al含量超过40 mass.%时,SHS合成的TiC晶体形态呈规则的八面体,其显露的八个面为面网密度最大的{111}晶面,该{111}晶面具有最小的表面吸附能。TiC晶体的最小生长单元为六配位的Ti-C6八面体基元,正是Ti-C6基元通过二维形核方式不断进入{111}面并产生新的台阶,后续的基元通过这些台阶堆垛而最终生长成粗大而规则的TiC八面体。由于几何对称性和能量稳定性,TiC八面体联接时以棱边联接为稳定的联接方式。
     而在Al-Zr-C体系中,当Al含量为20 mass.%时,SHS反应合成的ZrC晶体生长成规则的、基面为{111}的六方体形态。根据分析可知,单层ZrC晶片在[111]方向的生长速度被抑制而在[110]方向的生长速度却得到促进。结果,ZrC晶核在{111}晶面内通过二维形核侧向生长模式沿[110]方向生长成单层ZrC六方形薄片,然后单层ZrC六方形薄片通过层状台阶生长机制沿[111]方向不断堆积而生长成为一个多层的、完整六方体形貌的ZrC晶体。
CS (Combustion synthesis) technology has been systematically investigated by Merzhanov et al. since the 1960s and has gradually become one of potential technologies for the materials-fabricating. CS method is essentially based on the sufficiently and self-sustainingly (or thermal explosion) chemical exothermic reaction of starting reactant mixtures once ignited by external energy supply to synthesize the designed products. As an in-situ method of materials fabrication, CS has been widely applied to synthesize intermetallic compounds, functional gradient materials, composites and ceramic particles. However, the mechanical properties and applications of in-situ materials have been paid more and more attention, while few work or report has been focused on its formation mechanism, especially its growth mode. So, in this paper, TiC and ZrC ceramic particulates were designed and fabricated by the CS technology. The reaction characteristics, crystal morphologies, formation mechanisms and the growth kinetics modes of the in-situ TiC and ZrC ceramics were investigated in detail by using the modern analyzing methods such as differential thermal analyzer (DTA), X-ray diffractometer (XRD) and micro-diffractometer, field emission scanning electron microscopy (FE-SEM), energy dispersive spectrometer (EDS), as well as transmission electron microscopy (TEM).
     The thermodynamic analysis showed that TiC and ZrC are the most thermodynamically stable and favorable phase in Al-Ti-C and Al-Zr-C reaction systems, respectively. The experimental results exhibited that when fabricating TiC ceramic by SHS (Self-propagating high-temperature synthesis), with Al contents increasing in Al-Ti-C mixtures, the adiabatic temperature Tad, reaction temperature Tc and combustion wave rate Vc all reduced evidently, and also the synthesized particles size became more finer. Once the Al content exceeds 50 mass.%, SHS reaction will become insufficient and the intermediate phase will retain in the final products. The formation mechanism of TiC was studied by combining the reaction characteristic of SHS with the DTA experiment and quenching experiment. After being preheated, the solid-state reaction between Al and Ti initially occurred and produced a few TiAl3 phase, and released some heat to make Al melt. Owing to some Al melting, the drastic solid-liquid reaction took place to produce more TiAl3 compound and to liberate a mass of heat, and thus leading the temperature abruptly to rise and the formed TiAl3 to melt. Subsequently, C dissolved into the Al-Ti melt and reacted with it to synthesize the thermodynamically stable TiC phase. As a result, the TiC phase nucleated in the melt, precipitated and grew as the TiC grains with various morphologies.
     When synthesizing ZrC by SHS in the Al-Zr-C powder mixtures, with Al contents increasing, the combustion temperature, reaction wave rate, as well as the ZrC particles size all decreased obviously. But once Al content is higher than 50 mass.%, the combustion temperature was so low (1460 K) that the ZrC-forming reaction was hardly induced. It is noted that once Al exceeds 30 mass.%, the nano-scaled ZrC particles (≤150 nm) were produced successfully, especially the ZrC size is less than 50 nm for 40 mass.% Al addition. The combustion process of SHS, DTA analysis and combustion wave front quenched experiment all indicate that, the Al additive in mixtures serves not only as a diluent to reduce the reaction temperature and to inhibit the ZrC particle from growing and coarsening, but importantly as an intermediate reactant to participate in the total SHS process and thus to control the formation mechanism and growth morphologies of ZrC grains. It was also found that, among all Zr-Al compounds, the SHS-synthesized ZrAl3 phase was the most favorable and only phase, which is greatly influenced by its three lattice structures such as L12 and D022 metastable structures and D023 stable structure, and also the similarity of lattice structure between D023-ZrAl3 and fccα-Al is responsible for.
     When synthesizing TiC and ZrC by TE(Thermal explosion), because TE processing has more rapid reaction rate and cooling rate than SHS processing, the total reaction proceeded insufficiently and resulted in more intermediate phase such as Al4C3, ZrAl3 and Zr3Al3C5 retaining in the products. Moreover, the TE-synthesized ZrC and TiC particles sizes are more finer, especially the nano-sized TiC particles were synthesized during TE processing in 10 mass.%Zn-Ti-C mixtures. However, the TE-synthesized TiC and ZrC crystals were of rather insufficient growth.
     TiC and ZrC crystals exhibit the strong faceting and smooth growth tendency. It showed that Al contents, ignition method, as well as the diluent species have evident influence on the growth morphology rather than on the growth kinetics mechanisms of TiC and ZrC crystals, namely both growth mechanisms are of the layer-by layer growth mode through the two-dimensional (2D) nucleation method. Due to the high supersaturation and undercooling, TiC and ZrC nuclei have different solidification, precipitation and growth rate, and hence resulting in the diverse growth morphologies of TiC and ZrC crystals. In particular, the hollow and square ZrC grains were synthesized by TE when 10 mass.%Zn was added into 10 mass.%Al-Zr-C mixtures.
     Once Al content in Al-Ti-C compact exceeds 40 mass.%, the SHS-synthesized TiC crystal appears as a regular octahedral morphology, and its unfolded eight planes are of the {111} facets with the biggest face density and the lowest surface attachment energy. The growth cell of TiC crystal is Ti-C6 octahedron unit. The Ti-C6 units continuously enter into the {111} planes and generate the new steps through 2D nucleation mode, and thus the octahedron units grew as the big and regular TiC octahedron through this layer-by-layer growth mode. TiC octahedra are linked through an edge-shared manner in order to favorably meet the geometry symmetry and energy stability.
     For Al-Zr-C mixtures, when Al content is 20 mass.%, the SHS-synthesized ZrC crystal grew as a well-developed hexagonal morphology with the {111} basal planes. According to the analysis, for the monolayer ZrC crystal, the rate in the [111] direction was suppressed and the rate in the [110] direction was prompted. As a result, the ZrC growth units in the (111) facet grew as a monolayer hexagonal platelet via 2D growth mode along [110] direction, and then the thick ZrC hexagonal multilayers were formed through the layer-by-layer growth mechanism of monolayer ZrC hexagonal platelets.
引文
[1] Toth L E. Transition Metal Carbides and Nitrides[M]. Acad Press, New York, 1971.
    [2] Shinada S, Nishisako M. Formation and microstructure of carbon-containing oxide scales by oxidation of single crystals of zirconium carbide[J]. J Am Ceram. Soc. 1995, 78:41-48.
    [3] Mackie W A, Davis P R. Single-Crystal Zirconium Carbide as a High-Temperature Thermionic Cathode Material[J]. IEEE Trans Electron Devices, 1989, 36:220-224.
    [4] Karabi D, Bandyopadhyay T K. Synthesis and characterization of zirconium carbide-reinforced iron-based composite[J]. Mater Sci Eng A. 2004, 379:83-91.
    [5] Srivasan T S, Ibrahim I A. Processing techniques for particulate-reinforced metal aluminum matrix composites[J]. J Mater Sc. 1991, 26:5965-5978.
    [6] Tong X C, Fang H S. Al-TiC composite in situ processed by ingot metallurgy and rapid solidification technology: PartⅠMicrostructural evolution[J]. Metall Mater Trans A. 1998, 29:875-891.
    [7] Gotman I, Koczak M J, Shtessel E. Fabrication of Al matrix in situ composites via self-propagating synthesis[J]. Mater Sci Eng A. 1994, 187:189-199.
    [8] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Mater Sci Eng R. 2000, 29: 49-113.
    [9] Jarfors A, Fredriksson H. On the thermodynamics and kinetics of carbides in the aluminum-rich corner of the the Al-Ti-C diagram[J]. Mate Sci Eng A. 1991, 135:119-123.
    [10] Klimowicz T F. The large scale commercialization of Al-matrix composites[J]. J Metals. 1994, 46(11):49-53.
    [11] Goldschmidt H. German Patent No.96317,1895.
    [12] Merzhanov A G. Self-propagating high-temperature synthesis: twenty years of search and finding in combustion and plasma synthesis of high-temperature materials. Edited by Munir Z A and Holt J B. New York: VCH, 1990:1-153.
    [13] Moore J J. Combustion synthesis of advanced materials: PartⅡ, Classification, applications and modeling[J]. Progr Mater Sci. 1995, 39(4-5):275-316.
    [14]王慧远.原位颗粒增强镁基复合材料的制备[博士论文].长春:吉林大学. 2004.
    [15] Merzhanov A G, Borovinskava I P, Prokudina V K. Efficiency of the SHS powders and their production method[J]. Int J SHS. 1994, 3(4): 353-370.
    [16] Merzhanov A G. History and recent developments in SHS[J]. Ceram Int. 1995,21(5):371-379.
    [17] Song M S, Zhang M X. Reaction synthesis of ZrAl3 intermetallic compound and its nucleation behavior[J]. Rare Metal Mater Eng. 2008, 37:1570-1574.
    [18] Watson R E, Weinert M, Alatalo M. Ternary transition metal aluminide alloy formation: The BiF3 structure[J]. Phys Rev B. 1998, 57:12134-12139.
    [19] Kidson G V, Miller G. D. A study of the interdiffusion of aluminum and zirconium[J]. J Nucl Mater. 1964, 1(12):61-69.
    [20] Merzhanov A G. A New Class of Combustion Processes[J]. Combust Sci Tech. 1975, 10:195-205.
    [21] Lee J H, Ko S K, Won C W. Singtering behavior of Al2O3-TiC composite powder prepared by SHS process[J]. Mate Res Bull. 2001, 36(5-6):989-996.
    [22] Kunrath A O, Strohaecker T R. Combustion syntheis of metal-matrix composites: PartⅢ, the Al-TiC-Al2O3 system[J]. Scripta Mater. 1996, 34(2): 189-194.
    [23] Xia T D, Liu T Z. Self-propagating high-temperature synthesis of Al2O3-TiC-Al composites by aluminothermic reactions[J]. J Mater Sci. 2001, 36:5581-5584.
    [24] Choi Y, Mullins M E. Fabrication of metal matrix composites of TiC-Al through self-propagating synthesis reaction[J]. Metal Trans A. 1992, 23:2387-2392.
    [25]张二林,曾松岩,曾晓春. Al+Ti+C复合系热爆反应合成过程及相组成研究[J].材料工程. 1996, 4:27-31.
    [26]严有为,刘生发,范晓明.自蔓延高温合成Al-TiC晶粒细化剂及其晶粒细化效果[J].中国有色金属学报. 2002, 12(5):977-981.
    [27] Ranganath S. A review on particulate-reinforced titanium matrix composites[J]. J Mater Sci. 1997, 32(1):1-16.
    [28] Jiang Q C, Li X L. Fabrication of TiC particulate reinforced magnesium matrix composites[J]. Scripta Mater. 2003, 48:713-717.
    [29] Wang H Y, Jiang Q C. In situ synthesis of TiB2/Mg composite by self-propagating high-temperature synthesis reaction of the Al-Ti-B system in molten magnesium[J]. J Alloy Compd. 2004, 379:L4-L7.
    [30] Jiang Q C, Ma B X. Fabrication of steel matrix composites locally reinforced with in situ TiB2-TiC particulates using self-propagating high-temperature synthesis reaction of Al-Ti-B4C system during casting[J]. Compos, Part A. 2006, 37:133-138.
    [31] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying[J]. Metal Trans A. 1970, 1(10):2943-2951.
    [32] James W, Cauley M C. A historical and technical perspective on SHS[J]. Ceramic Eng Sci . 1990, 11:1137-1181.
    [33] Murty B S, Ranganathan S. Novel materials synthesis by mechanical alloying/milling[J]. Int Mater Rev. 1998, 43(3):101-140.
    [34] Huang B, Ishihara K N. Metastable phases of Al-Fe system by mechanical alloying[J]. Mater Sci Eng A. 1997, 231:72-79.
    [35] Calka A, Radlinski A P. Formation of amorphous Fe-B alloys by mechanical alloying[J]. Appl Phys Lett. 1991, 58(2):119-1231.
    [36] Wu N Q, Wu J M. Formation of nanocrystalline F.C.C. phase by mechanically driven crystallization[J]. Mater Trans JIM. 1997, 38(3):255-259.
    [37] Matteazzi P L, Caer G. Room-temperature mechanosynthesis of carbides by grinding of elemental powders[J]. J Am Ceramic Soc. 1991, 74(6):1382-1390.
    [38] Wu N Q, Wang G X. Mechanically driven synthesis of nanophase TiC/TiAl composites powder[J]. MaterLett. 1997, 32(4):259-262.
    [39] Lai M Q, Lu L. Formation of Mg-Al-Ti/MgO composite via reduction of TiO2[J]. Comp Struct. 2002, 57(1-4):183-187.
    [40] Lu L, Thong K K. Mg-based composite reinforced by Mg2Si[J]. Comp Sci Tech. 2003, 63(5):627-632.
    [41] Brupbacher J M, Chrixtodoulou L. Rapid solidification of Metal-Second Phase Composites. U.S. Patent, 1989, No.4836982.
    [42] Mitra R, Chiou W A. Relaxation mechanisms at the interfaces in XDTM Al/TiCp metal matrix composites[J]. Scripta Metal Mater. 1991, 25:2689-2694.
    [43] Mitra R, Fine M E. Interfaces in an extruded XD Al/TiC and Al/TiB2 MMCs[J]. J Mater Res. 1993, 8(9):2380-2392.
    [44]朱和国,吴申庆,王恒志. XD合成Al2O3, TiB2复合材料的热力学分析[J],中国有色金属学报. 2001, 11(3):382-385.
    [45] Sato K, Fleming M C. Grain refinement of Al-4.5Cu alloy by adding an Al-30TiC master alloy[J]. Metal Mater Trans A. 1998, 29:1707-1710.
    [46] Brinkman H J, Zupanic F. Production of Al-Ti-C grain refiner alloys reactive synthesis of elemental powders: PartⅠ, reactive synthesis and characterization of alloys[J]. J Mater Re. 2000, 15(12):2620-2627.
    [47] Dong Q, Chen L Q. Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process[J]. Mater Lett. 2004, 58(6):950-926.
    [48] Qiu H P, Han L J, Liu L. Properties and microstructure of graphitized ZrC/C or SiC/C composites[J]. Carbon. 2005, 43:1021-1025.
    [49]张国珍,王澈,刘燕琴.氧化钨直接碳化SPS原位合成致密WC块体材料[J].稀有金属材料与工程. 2005, 3(34):486-488.
    [50] Won Y S, Varanasi V G, Kryliouk O. Equilibrium analysis of zirconium carbide CVD growth[J]. J Crystal Growth. 2007, 307:302-308.
    [51]赵程,彭红瑞,李世直.碳化钛膜的制备和应用研究[J].表面技术. 1998, 27(2):40-42.
    [52] Yu M B, Yoon Rusli S F, Xu S J. Hydrogenated nanocrystalline silicon carbide films synthesized by ECR-CVD and its intense visible photoluminescence at room temperature[J]. Thin Solid Films. 2000, 377-378:177-181.
    [53] Raveh A, Danon A, Hayon J. Characterization of carburized tantalum layers prepared in inductive RF plasma[J]. Thin Solid Films. 2001, 392:56-64.
    [54] Kusano E, Sato A, Kikuchi N. Preparation of TiC films by alternate deposition of Ti and C layers using a dual magnetron sputtering source[J]. Surf Coat Technol. 1999, 120-121:378-382.
    [55] Munir Z A. Synthesis of high-temperature materials by self-propagating combustion methods[J]. Am Ceram Soc Bull. 1988, 67(2):342-349.
    [56] Strunina A G. Martem'yanova T M. Ignition of gasless systems by a combustion wave[J]. Combust Explos Shock Waves. 1974, 10(4):449-455.
    [57] Munir Z A. Reaction synthesis processes: mechanisms and characteristics[J]. Metal Trans A. 1992, 23(1):7-13.
    [58] Merzhanov A G, Shkiro V M, Borovinskaya I P. Synthesis of Refractory Inorganic Compounds[J]. Refract Compd. 1985, 13(4):6-11.
    [59] Hillig W B. Making ceramic composites by melt infiltration[J]. Am Ceram Soc Bull. 1994, 73(4):56.
    [60]殷声,赖和怡.自蔓延高温合成(SHS)的发展[J].粉末冶金技术. 1992, 10(3):223-227.
    [61] Maksimov Yu M, Ziatdinov M Kh. Combustion of vanadium-iron alloys in nitrogen[J]. Combust Explos Shock Waves. 1984, 20(5):487-492.
    [62] Knyazik V A, Merzhanov A G. Macrokinetics of high-temperature titanium interaction with carbon under electrothermal explosion conditions[J]. Combust Explos Shock Waves. 1985, 21(3):333-337.
    [63] Munir Z A. Self-propagation exothermic reaction: The synthesis of high-temperature materials by combustion[J]. Mater Sci Reports. 1989, 21(3):277-365.
    [64] Holt J B, Munir Z A. Combustion synthesis of titanium carbide: Theory and experiment[J]. J Mater Sci. 1986, 21:251-259.
    [65] Bowen C R, Derby B. Finite-difference modeling of self-propagatinghigh-temperature synthesis of materials[J]. Acta Metal Mater. 1995, 43(10):3903-3913.
    [66] Pampuch R, Lis J. Self-Propagating High-Temperature Synthesis of Ceramic Powders[J]. Sci Ceram. 1988, 14:15-26.
    [67] Hardt A P. Propagation of gasless reactions in solids 1.Analytical study of exothermic jntermetallic reaction rates[J]. Combus Flame. 1973, 21:77-89.
    [68] Alekdanyan A G, Akopyan A G. Complex transition metal hydrides and hydride-nitrides prepared by SHS[J]. Powd Metal Metal Ceram. 1999, 38(1-2):40-43.
    [69] Borovinskaya I P. Chemical classes of the SHS processes and materials[J]. Pure Appl Chemistry. 1992, 64(7): 919-940.
    [70] Martirosyan N A. Dolukhanyan S K. Merzhanov A G. Principles and mechanism of combustion in the zirconium-Carbon-Hydrogen system[J]. Combust Explos Shock Waves. 1985, 21(5):557-561.
    [71] Armstrong R. Theoretical models for the combustion of alloyable materials[J]. Metal Trans A, 1992, 2339-2347.
    [72] Grachev V V. Filtration combustion in a self-propagating high-temperature synthesis (SHS) reactor[J]. Inter J SHS. 1995, 4(3):245-253.
    [73] Gatica J E, Dimitriou P A. Melting effects on reaction front propagation in gasless combustion[J]. Inter J SHS. 1995, 4(2):123-136.
    [74]袁润章.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社. 1994:1-231.
    [75] Imarm M A. The third pacificrim international conference on advanced materials and processing[C]. New York:TMS, 1998.
    [76] Dumez M C, Marin-Ayral R M. La synthesis auto-propagee haute pression appliquéaux intermetalliques de type nickel-aluminum[J]. Mater Re Bull. 1994, 29(6):611-617.
    [77] Nikolaev A G, Formia O N. Physico-chemical properties of nickel monoaluninide by SHS compaction of coated powders[J]. Powd Metel. 1994, 3:161-170.
    [78] Gibbs J W. On the Equilibrium of Heterogeneous Substances[J]. Collected Works, Longmans Green and Co. 1928.
    [79] Kossel W. Zur theorie des kristallwachstums. Nachr Ges Wiss. G?ttingen. Math-Physik Kl. 1927:135-143.
    [80] Frank F C. Growth and perfection of crystal[M]. John Wiley, New York, 1958.
    [81] Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibriumstructure of their surfaces [J]. Phil Trans Roy Soc. 1951, A243:299-358.
    [82] Jackson K A. In liquid metal and solidification[M]. American Society for Metals. Oh, 1958:174.
    [83] Parker R L. Crystal growth mechanisms: energetics, kinetics, and transport. Solid State Phys[M]. 1970, 25:151-299.
    [84] Tiller W A, Jackson K A. The redistribution of solute atoms during the solidification of metals[J]. Acta Metal. 1953, 1:428-473.
    [85] Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy[J]. J Appl Phy. 1964, 35:444-451.
    [86] Chernov A A. Stability of faceted shapes[J]. J Crystal Growth. 1974, 24-25:11-31.
    [87] Cahn J W, Hilling W B, Sears G W. The molecular mechanism of solidification[J]. Acta Metal. 1964, 12:1421-1439.
    [88]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.
    [89] Hartman P. Crystal Growth, An Introduction[M]. North Holland, Amsterdam, 1973.
    [90]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社,1995.
    [91] Stoica C, Van Enckevort W J P, Meekes H. Interlaced spiral growth and step splitting on a steroid crystal[J]. J Crystal. Growth. 2007, 299:322-329.
    [92] Tan K E, Finnis M W, Horsfield A P. Why TiC(111) is observed to be Ti terminated[J]. Surf Sci. 1996, 348:49-54.
    [93] Hugosson H W, Eriksson O. Surface energies and work functions of the transition metal carbides[J]. Surf Sci. 2004, 557(1-3):243-254.
    [94] Johansson L I. Electronic and structural properties of transition-metal carbide and nitride surfaces[J]. Surf Sci Rep. 1995, 21:177-250.
    [95] Arya A, Carter E A. Structure, bonding, and adhesion at the ZrC(100)/Fe(110) interface from First princples[J]. Surf Sci. 2004, 560:103-120.
    [96] Liu Z G, Guo J T, Ye L L. Formation mechanism of TiC by mechanical alloying[J]. Appl Phys Lett. 1994, 65(21):2666-2668.
    [97] Gangler J J. Some Physical Properties of Eight Refractory Oxides and Carbides[J]. J Am Ceram Soc. 1950, 33(12):367-374.
    [98] Song G M, Wang Y J, Zhou Y. Elevated temperature ablation resistance and thermophysical properties of tungsten matrix composites reinforced with ZrC particles[J]. J Mater Sci. 2001, 11(3):472-476.
    [99] Song G M, Wang Y J, Zhou Y. The mechanical and thermophysical properties of ZrC/W composites at elevated temperature[J]. Mater Sci Eng A. 2002, 334:223-232.
    [100] Wang Y J. Strength properties and fracture behavior of ZrC particle-reinforcedtungsten composite[J]. Trans Nonferr Metal China. 2001, 11(6):858-872.
    [101] Luo A H, Dean L J. Creep behavior of a tungsten-3.6% rhenium-0.33% zirconium carbide alloy[J]. J Mater Sci Lett. 1998, 17(30):1739-1741.
    [102] Takida T, Mabuchi M. Mechanical properties of a ZrC-dispersed Mo alloy processed by mechanical alloying and spark plasma sintering[J]. Mater Sci Eng A. 2000, 276:269-272.
    [103] Hashimoto S, Yamaguchi A, Yasuda M. Fabrication and properties of novel composites in the Al-Zr-C[J]. J Mater Sci. 1998, 33:4835-4842.
    [104] Nakata H, Choh T. Fabrication and mechanical properties of in situ formed carbide particulate reinforce aluminum composite[J]. J Mater Sci. 1995, 30:1719-1727.
    [105] Nickel H, Gulden T D. Concluding remarks: coated fuel particle[J]. Nucl Tech. 1977, 35:567-573.
    [106] Sarkar S K. Solubility of Oxygen in ZrC[J]. J Am Ceram Soc. 1972, 55:628-630.
    [107] Telle R, Petzow G. Reaction sintering of boron carbide with silicon and titanium[J]. Powd Metal. 1986, 2:1155-1156.
    [108] Kobayashi H, Shimosaka K. Low-temperature synthesis of ZrC powder by cyclic reaction of Mg in ZrO2-Mg-CH4[J]. J Am Ceram Soc. 1993, 76:2389-2391.
    [109] Khatri S, Koczak M. Formation of TiC in situ processed composites via solid-gas, solid-liquid and liquid-gas reaction in molten Al-Ti[J]. Mater Sci Eng A. 1993, 162:153-162.
    [110] Birol Y. In situ processing of TiCp-Al composites by reacting graphite with Al-Ti melts[J]. J Mater Sci. 1999, 24:1653-1657.
    [111] Kennedy A R, Weston D P. Reaction in Al-Ti-C powders and its relation to the formation and stability of TiC in Al at high temperature[J]. Scripta Mater. 2000, 42:1187-1192.
    [112] Wang H Y, Jiang Q C, Li X L. In situ synthesis of TiC/Mg composites in molten magnesium[J]. Scripta Mater. 2003, 48:1349-1354.
    [113] Nukami T, Flemings M C. In situ synthesis of Tic particulate-reinforced aluminum matrix composites[J]. Metal Mater Trans A. 1995, 26(7):1877-1884.
    [114] Zheng Q J, Reddy R G. Assessment of thermodynamic stability of reinforcements in aluminum alloy melts[J]. High Temp Mater and Proc. 2003, 22(1):35-45.
    [115] Deevi S, Mnuir Z A. Mechanism of synthesis of titanium nitride by self-sustaining reactions[J]. J Mater Re. 1990, 5(10):2177-2183.
    [1] Lee W C. Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum[J]. J Am Ceram Soc. 1997, 80(1):53-61.
    [2] Choi Y, Rhee S W. Effect of aluminum addition on the combustion reaction of titanium and carbon to form TiC[J]. J Mater Sci. 1993, 28:6669-6675.
    [3] Gotman I et al. Fabrication of Al matrix in situ composites via self-propagating synthesis[J]. Mater Sci Eng A. 1994, 187:189-199.
    [4]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,第2版,2002.
    [5] Knacke O. Thermochemical properties of inorganic substances[M]. Berlin: Springer-verlag, 1991.
    [6] Yang Y F, Wang H Y. Effect of Ni content on the reaction behaviors of self-propagating high-temperature synthesis in the Ni-Ti-B4C system[J]. Int J Refractor Met Hard Mater. 2008, 26:77-83.
    [7] Merzhanov A G. Self-propagating high-temperature synthesis: twenty years of search and finding in combustion and plasma synthesis of high-temperature materials. Edited by Munir Z A and Holt J B. New York: VCH, 1990:1-153.
    [8] Banerje A, Reif W. Development of Al-Ti-C grain refiners Containing TIC[J]. Metal Mater Trans A. 1986, 17(12):2127-2137.
    [9] Jarfors L, Fredrikson H. On the thermodynamics and kinetics of carbides in the aluminium-rich corner of the Al-TiC phase diagram[J]. Mater Sci Eng A. 1991, 135:119-123.
    [10] Okolovich E V. Propagation of the combustion zone in melting condensed mixtures[J]. Combust Explos Shock Waves. 1978, 13(3):264-272.
    [11] Yu R, He L L. Effects of Si and Al on twin boundary energy of TiC[J]. Acta Mater. 2003, 51:2477-2484.
    [12] Leela-adison U, Choi S M. AlZrC2 synthesis[J]. Ceram Int. 2006, 32:431-439.
    [13] Li B Y, Rong L J. A recent development in producing porous Ni–Ti shape memory alloys[J]. Intermetallics. 2000, 8:881-884.
    [14] Yi H C, Moore J J. A novel technique for producing NiTi shape memory alloy using the thermal explosion mode of combustion synthesis[J]. Scripta Metal. 1988, 22 :1889-1892.
    [15] Lee S H, Lee J H. Effect of heating rate on the combustion synthesis ofintermetallics[J]. Mater Sci Eng A. 2000, 281:275-285.
    [16] Philpot K A, Munir Z A. An investigation of the synthesis of nickel aluminides through gasless combustion[J]. J Mater Sci. 1987, 22:159-169.
    [17] Song I H, Kim D K, Hahn Y D. The effect of a dilution agent on the dipping exothermic reaction process for fabricating a high-volume TiC-reinforced aluminum composite[J]. Scripta Mater. 2003, 48:413-418.
    [18] Nukami T. In situ synthesis of TiC particulate-reinforced aluminum matrix composites[J]. Metal Mater Trans A. 1995, 26:1877-1884.
    [19] Tong X C, Fang H S. Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology: PartⅠ. Microstructural evolution[J]. Metal Mater Trans A. 1998, 29(3):875-891.
    [20] Tong X C, Fang H S. Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology: PartⅡ. Mechanical behavior[J]. Metal Mater Trans A. 1998, 29(3):893-902.
    [21]吕维洁,张荻.原位合成钛基复合材料的制备、微结构及力学性能[M].北京:高等教育出版社,2005.
    [22] Dunmead S D, Ready D W, Semier C E. Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems[J]. J Am Ceram Soc. 1989, 72(12):2318-2324.
    [23]张二林,杨波,曾松岩. Al-Ti-C系中反应生成TiC机理研究[J].材料工程. 1998, 2:3-5.
    [24] Wang H Y, Jiang Q C, Li X L. In situ synthesis of TiC/Mg composites in molten magnesium[J]. Scripta Mater. 2003, 48:1349-1353.
    [25]范群成.用燃烧波淬熄法对自蔓延高温合成机理的研究[博士论文].西安:西安交通大学,1999.
    [26] Barin Ihsan. Thermochemical data of pure substances[M]. Weinheim: VCH, 1989.
    [1]斯温. M V编,郭景坤译.陶瓷的结构与性能[M].北京:科学出版社,1998.
    [2] Yen B K. X-ray diffraction study of mechanichemical synthesis and formation mechanisms of zirconium carbide and zirconium silicides[J]. J Alloy Compd. 1998, 268:266-269.
    [3] Tsuchida T, Yamamoto S. MA-SHS and SPS of ZrB2-ZrC composites[J]. Solid State Ionics. 2004, 172:215-216.
    [4] Bandyopadhyay T K, Das K. Processing and characterization of ZrC-reinforced steel-based composites[J]. J Mater Proce Tech. 2006, 178:335-341.
    [5] Tsuchida T, Yamamoto S. Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures[J]. J Europ Ceram Soc. 2004, 24:45-51.
    [6] Song M S, Huang B. Formation and growth mechanism of ZrC hexagonal platelets synthesized by self-propagating reaction[J]. J Crystal Growth. 2008, 310:4290-4294.
    [7] Varin R A, Winnicka M B. Plasticity of structural intermetallic compounds[J]. Mater Sci Eng A. 1991, 137: 93-103.
    [8] Kematick R J, Franzen H F. Thermodynamic study of the Zirconium-Aluminum system[J]. J Solid State Chem. 1984, 54:226-234.
    [9] Murray J, Peruzzi A, Abriata J P. The Al-Zr (Aluminum-Zirconium) system [J]. J Phase Equilibria. 1992, 13(3):277-289.
    [10] Laik A, Bhanumurthy K. Intermetallics in the Zr-Al diffusion zone[J]. Intermetallics. 2004, 12:69-74.
    [11] Kidson G V, Miller G D. A study of the interdiffusion of Aluminum and Zirconium[J]. J Nucl Mater. 1964, 1(12):61-69.
    [12]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,第2版,2002.
    [13] Knacke O. Thermochemical properties of inorganic substances[M]. Berlin: Springer-verlag, 1991.
    [14] Anselmi-Tamburini U, Spinolo G. Combustion synthesis of Zr-Al intermetallic compounds[J]. J Alloy Compd. 1997, 247:190-194.
    [15] Yeh C L, Chuang H C. Combustion characteristics of SHS process of titanium nitride with TiN dilution[J]. Ceram Int. 2004, 30:705-714.
    [16] Dunmead S D, Readey D W. Kinetics of combustion synthesis in the Ti-C andTi-C-Ni systems[J]. J Am Ceram Soc. 1989, 72:2318-2324.
    [17] Yang Y F, Wang H Y. Effect of Ni content on the reaction behaviors of self-propagating high-temperature synthesis in the Ni-Ti-B4C system[J]. Int J Refractor Met Hard Mater. 2008, 26:77-83.
    [18] Merzhanov A G. Self-propagating high-temperature synthesis: twenty years of search and finding in combustion and plasma synthesis of high-temperature materials. Edited by Munir Z A and Holt J B. New York: VCH, 1990:1-153.
    [19] Hashimoto S, Yamaguchi A. Fabrication and properties of novel composites in the system Al-Zr-C[J]. J Mater Sci. 1998, 33:4835-4842.
    [20] Leela-adisorn U, Choi S M. AlZrC2 synthesis[J]. Ceram Int. 2006, 32:431-439.
    [21] Lin Z J, Zhuo M J. Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics[J]. Acta Mater. 2006, 54:3843-3851.
    [22] Okolovich E V. Propagation of the combustion zone in melting condensed mixtures[J]. Combust Explos Shock Waves. 1978, 13(3):264-272.
    [23] Choi Y, Rhee S W. Effect of aluminum addition on the combustion reaction of titanium and carbon to form TiC[J]. J Mater Sci. 1993. 28:6669-6675.
    [24] Mukasyan A S, Epstein P, Dinka P. Solution combustion synthesis of nanometerials[J]. Proceed Combust Inst. 2007, 31:1789-1795.
    [25] Gesing T M, Jeitschko W. The crystal structures of Zr3Al3C5, ScAl3Cr, and UAl3Cr and their relations to the structures of U2Al3C4 and Al4C3[J]. J Solid State Chem. 1998, 140:396-401.
    [26] Lee S H, Lee J H, Lee Y H. Effect of heating rate on the combustion synthesis of intermetallics[J]. Mater Sci Eng A. 2000, 281:275-285.
    [27] Wang H Y, Jiang Q C. In situ synthesis of TiC/Mg composites in molten magnesium[J]. Scripta Mater. 2003, 48: 1349-1354.
    [28] Wang H Y, Jiang Q C. In situ synthesis of TiC from nanopowders in a molten magnesium alloy[J]. Mater Re Bull. 2003, 38:1387-1392.
    [29] Benoit C, Ellen H et al. TiC nucleation/growth process during SHS reactions[J]. Powd Tech. 2005, 157:92-99.
    [30] Wang T, Jin Z P. Thermodynamic assessment of the Al-Zr binary system[J]. J Phase Equilibria. 2001, 22(5):544-551.
    [31] Nes E. Precipitation of the Metastable Cubic Al3Zr-Phase in Subperitectic Al-Zr Alloys[J]. Acta Metal. 1972, 20:499-506.
    [32] Desch P B, Schwartz R B. Mechanical alloying to produce L12 phases in the Al-Zr system[J]. Scripta Mater. 1996, 34:37-43.
    [33] Cantor B. Impurity effects on heterogeneous nucleation[J]. Mater Sci Eng A. 1997, 226-228:151-156.
    [34] Minato K, Fukuda K. Deterioration of ZrC-coated fuel particle caused by failure of pyrolytic carbon layer[J]. J Nucl Mater. 1998, 252:13-21.
    [35] Offerman S E, Van Dijk N H et al. Grain nucleation and growth during phase transformation[J]. Science. 2002, 298:1003-1005.
    [36] Xu J H, Freeman A J. Band filling and structural stability of cubic trialuminides: YAl3, ZrAl3, and NbAl3[J]. Phys Rev B. 1989, 40:11927-11930.
    [37] Guo J Q. Ohtera K. New metastable phases in rapidly solidified Al-Zr and Al-Ti alloys with high solute contents[J]. Mater Sci Eng A. 1994, 181-182: 1397-1404.
    [38] Colinet C, Pasturel A. Phase stability and electronic structure in ZrAl3 compound[J]. J Alloy Compd. 2001, 319:154-161.
    [39] Pretorius R, Vredenberg A M. Prediction of phase formation sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule[J]. J Appl Phys. 1991, 70:3636-3646
    [40] Bene R W. First nucleation rule for solid-state nucleation in metal-metal thin-film systems[J]. Appl Phys Lett. 1982, 41(6): 529-531.
    [1] Johansson L I. Electronic and structural properties of transition-metal carbide and nitride surfaces[J]. Surf Sci Rep. 1995, 21:177-250.
    [2] Jackson K A. Crystal growth kinetics[J]. Mater Sci Eng. 1984, 65:7-13.
    [3] Kossel W. Zur theorie des kristallwachstums. Nachr Ges Wiss. G?ttingen. Math-Physik Kl. 1927:135-143.
    [4] Frank F C. Growth and perfection of crystal[M]. John Wiley. New York, 1958.
    [5] Cabrera N. Growth and perfection of crystal[M]. John Wiley, New York, 1958.
    [6] Jackson K A. In liquid metal and solidification[M] American Society for Metals. Oh, 1958:174.
    [7] Tiller W A, Jackson K A. The redistribution of solute atoms during the solidification of metals[J]. Acta Metal. 1953, 1:428-473.
    [8] Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy[J]. J Appl Phy. 1964, 35:444-451.
    [9] Hartman P. Crystal Growth, An Introduction[M]. North Holland, Amsterdam, 1973:367.
    [10]张二林. Al/TiCp复合材料反应生成热力学和动力学过程的研究[博士论文].哈尔滨:哈尔滨工来大学, 1996.
    [11] Wang H M. Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy[J]. Mater Sci Eng A. 1992, 156:109-116.
    [12] Jiang Q C, Li X L. Fabrication of TiC particulate reinforced magnesium matrix composites[J]. Scripta Mater. 2003, 48:713-717.
    [13]吕维洁,张小农,张荻.原位合成TiC/Ti基复合材料增强体的生长机制[J].金属学报. 1999, 35:536-540.
    [14] Y.W. Yuan. The effect of vapor phase on the growth of TiC whiskers prepared by chemical vapor deposition[J]. J Crystal Growth. 1998, 193:585-591.
    [15] Motojima S. Preparation of micro-coiled TiC fibers by metal impurity-activated chemical vapor deposition[J]. Mater Sci Eng B. 1995, 34:159-163.
    [16] Feng X, Bai Y J. Easy synthesis of TiC nanocrystallite[J]. J Crystal Growth. 2004, 264:316-319.
    [17] Gu Y L, Chen L Y. A simple protocol for bulk synthesis of TiC hollow spheres from carbon nanotubes[J]. Carbon. 2004, 42:235-238.
    [18] Khina B B. Limits of applicability of the“diffusion-controlled product growth”kinetic approach to modeling SHS[J]. Physical B. 2005, 355:14-31.
    [19] Locci A M, Cincotti A. Advanced modelling of self-propagating high-temperature synthesis: the case of the Ti–C system[J]. Chem Eng Sci. 2004, 59:5121-5128.
    [20]张克从,张乐潓.晶体生长科学与技术[M].北京:科学出版社,1997.
    [21] Offerman S E, Van Dijk N H. Grain nucleation and growth during phase transformations[J]. Science. 2002, 298:1003-1005.
    [22] Cochepin B, Heian E. TiC nucleation/growth processes during SHS reactions[J]. Powd Tech. 2005, 157:92-99.
    [23] Cochepin B, Gauthier V. Crystal growth of TiC grains during SHS reactions[J]. J Crystal Growth. 2007, 304:481-486..
    [24]严有为,魏伯康. Fe-Ti-C熔体中TiC颗粒的原位合成及长大过程研究[J].金属学报. 1999, 35:909-912.
    [25] Cahn J W, Hilling W B, Sears G W. The molecular mechanism of solidification[J]. Acta Metal. 1964, 12:1421-1439.
    [26] Dunmead S D, Ready D W, Semier C E. Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems[J]. J Am Ceram Soc. 1989, 72(12):2318-2324.
    [27]傅恒志,刘林,方晓华.镍基高温合金中MC碳化物生长规律研究[J].西北工业大学学报. 1987, 5:279-286.
    [28] Tan K E, Finnis M W. Why TiC(111) is observed to be Ti terminated[J]. Surf Sci. 1996, 348:49-54.
    [29] Aono M, Ohshima C. Quantitative surface atomic geometry and two-dimensional surface electron distribution analysis by a new technique in low-energy ion scattering[J]. Jpn J Appl Phys. 1981, 20:L829-832.
    [30] Higashi I. Crystal growth of borides and carbides of transition metals from molten aluminum solutions[J]. J Crystal Growth. 1976, 33:207-211.
    [31] Auer S, Frenkel D. Prediction of absolute crystal nucleateon rate in hard-sphere colloids[J]. Nature. 2001, 409:1020-1023.
    [32] Hartman P. Modern PBC theory, In: Mrophology of crystals[M], edⅠ. Sunagawa, Terra Scientific Publishing Company Tokyo, 1987.
    [33] Hartman P, Bennema P. The attachment energy as a habit controlling factor[J]. J Crystal Growth. 1980, 49:145-156.
    [34]刘林,傅恒志. Ni基高温合金中MC碳化物生长的理论形貌[J].材料科学进展. 1989, 3(5):396-399.
    [1] William M, Hinrichs C H. Preparation of ZrCx single crystal by arc melting floating zone technique[J]. J Crystal Growth. 1988, 87:101-106.
    [2] Kato A. Some common aspects of the growth of TiN, ZrN, TiC and ZrC whiskers in chemical vapor deposition[J]. J Crystal Growth. 1980, 49: 199-203.
    [3] Song M S, Huang B. Formation and growth mechanism of ZrC hexagonal platelets synthesized by self-propagating reaction[J]. J Crystal Growth. 2008, 310:4290-4294.
    [4] Cui X M, Nam Y S. Fabrication of zirconium carbide (ZrC) ultra-thin fibers by electrospinning[J]. Mater Lett. 2008, 62:1961-1964.
    [5] Shen G Z, Chen D. Synthesis of ZrC hollow nanospheres at low temperature[J]. J Crystal Growth. 2004, 262:277-280.
    [6] Dudley M, Huang X R. The mechanism of micropipe nucleation at inclusions in silicon carbide[J]. Appl Phys Lett. 1999, 75:784-786.
    [7]胡维杰,宁桂玲等编译.结晶过程[M].大连:大连理工大学出版社,1991.
    [8] Offerman S E, Van Dijk N H. Grain nucleation and growth during phase transformations[J]. Science. 2002, 298:1003-1005.
    [9] Cochepin B, Heian E. TiC nucleation/growth processes during SHS reactions[J]. Powd Tech. 2005, 157:92-99.
    [10] Cochepin B, Gauthier V. Crystal growth of TiC grains during SHS reactions[J]. J Crystal Growth. 2007, 304:481-486.
    [11]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社, 2000.
    [12] Arya A, Carter E A. Structure, bonding, and adhesion at the ZrC(100)/Fe(110) interface from first principles[J]. Surf Sci. 2004, 560:103-120.
    [13] Price D L. Total energies and bonding for crystallographic structures in titanium-carbon and tungsten-carbon systems[J]. Phys Rev B. 1989, 39:4945-4957.
    [14] Hartman P. Crystal Growth, An Introduction[M]. North Holland, Amsterdam, 1973.
    [15] Jackson K A. Constitutional supercooling surface roughening[J]. J. Crystal Growth. 2004, 264:519-529.
    [16] Elwenspoek M, Bennema P. Orientational order in naphthalene crystal-solution interfaces[J]. J Crystal Growth. 1987, 83:297-305.
    [17] Chen C S, Liu C P. Influence of growth temperatue on microstructure and mechanical properties of nanocrystalline zirconium carbide films[J]. Thin Solid Films. 2005, 479:130-136.
    [18] Cabrera N. In: Growth and Perfection of Crystals[M]. John Wiley, New York, 1958.
    [19] Lighthill M J, Whitham G B. On kinematics waves[J]. Proce Roy Soc A. 1955, 229:281-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700