蒿甲醚抗溶剂结晶过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒿甲醚是一种大环内酯结构的活性药物组分,被世界卫生组织推荐为疟疾治疗的专用药。结晶是蒿甲醚生产的关键过程,纯度、晶形、多晶型、粒度及粒度分布是蒿甲醚产品的关键质量控制指标,影响其生产过程的下游工艺操作及其产品的生物利用度。本文在充分调研的基础上,通过热力学和动力学实验,结合过程分析技术,对蒿甲醚结晶过程进行了系统的应用基础研究。
     本文采用重量法测定了蒿甲醚在7种有机溶剂体系和乙醇-水、甲醇-水双组元溶剂体系的溶解度数据,研究了溶解度与温度和溶剂组成之间的关系,并采用理想溶液模型和经验方程lnx=A+BT+CT2,建立了蒿甲醚在7种有机溶剂体系和乙醇-水、甲醇-水双组元混合溶剂体系的溶解度模型。
     基于多晶型筛选实验开展了对蒿甲醚多晶型的研究,通过X射线粉末衍射和X射线单晶衍射表征,结合分子动力学模拟对所确定的两种蒿甲醚多晶型进行了分析,结果表明,其晶胞结构分别为单斜晶系、P21空间群和三斜晶系、P-1空间群,并分别采用AE模型和BFDH模型对蒿甲醚的晶习进行了模拟预测。
     过饱和度是结晶过程的推动力,决定晶体的成核与生长过程。本文采用UV-Vis光纤光谱仪和自行设计的装置,结合正交信号校正技术,对蒿甲醚的UV-Vis光谱数据进行了预处理和模型化,并建立了蒿甲醚在乙醇-水抗溶剂结晶过程的UV-Vis在线浓度检测方法。结果表明,该模型和检测方法具有较强的实用性。
     本文采用在线浊度仪研究了蒿甲醚乙醇-水混合体系抗溶剂结晶过程的亚稳区,建立了亚稳区宽度预测模型。采用在线聚焦激光反射测量仪研究了蒿甲醚抗溶剂结晶过程的成核与生长,结合矩量法,对蒿甲醚抗溶剂结晶过程动力学的实验数据进行了分析和回归,得到了蒿甲醚抗溶剂结晶过程的动力学参数。
     最后,本文采用冷热台显微观测系统,研究并确定了蒿甲醚抗溶剂结晶过程蒿甲醚晶体的生长方式。
     上述研究结果,将为蒿甲醚生产中的抗溶剂结晶过程提供必要的基础数据。
β-artemether is an important macrocyclic lactone active pharmaceutical ingredient, and recommended by WHO for treating of malaria. Crystallization is the crucial process for separation and purification ofβ-artemether. Purity, crystal shape, polymorphism, and crystal size distribution (CSD) are crucial product quality factors, and these factors greatly impact both downstream processing and bioavailability ofβ-artemether product. In this study, after considerable investigation, thermodynamics and kinetics experiments were conducted for systematic studies ofβ-artemether crystallization using process analytical technology.
     In this work, the solubilities ofβ-artemether in seven organic solvents, ethanol + water, and methanol + water solvent mixtures were measured using the gravimetric method, and the experimental solubility data were correlated with empirical equation and idea solution model, models for prediction of solubility were developed.
     Polymorphism ofβ-artemether was investigated, and two crystal structures ofβ-artemether were confirmed using X-ray powder diffraction technique, X-ray single crystal diffraction technique, and molecular kinetics simulation method. One is monoclinic crystal with spacegroup of P21, the other is triclinic crystal with spacegroup of P-1. The crystal habit ofβ-artemether was predicted based on AE model BFDH model.
     Supersaturation is the driving force of crystallization, which determines nucleation and crystal growth. The method for on line measurement of solution concentration was developed successfully. In this method, UV-Vis fiber spectroscopy coupled with a circulated system was designed for acquiring of raw UV-Vis spectra, and the model for prediction of solute concentration was developed based on OSC corrected UV-Vis spectra.
     The metastable zone width (MSZW) was measured by on line turbidimeter, and the calibrated model for prediction of MSZW was developed. The nucleation and crystal growth were investigated using Focused Beam Reflectance Measurement (FBRM), the experimental kinetics data were analyzed and calibrated by moment method, and the parameters for kinetics equation were obtained based on experimental kinetics data.
     The crystal growth mechanism was confirmed according to the findings observed using the hot stage camera system.
     Research results of this study would provide the fundamental data for the manufacturing ofβ-artemther.
引文
[1] Costa, R., Moggridge, G.D., and Saraiva, P.M. Chemical product engineering: An emerging paradigm within chemical engineering[J]. AIChE Journal, 2006, 52(6): 1976-1986
    [2]王静康,化学工程手册——结晶[M].北京:化学工业出版社, 1996
    [3] Granberg, R.A., Bloch, D.G., and Rasmuson, A.C. Crystallization of paracetamol in acetone-water mixtures[J]. Journal of Crystal Growth, 1999, 199: 1287-1293
    [4] Barrett, P., Smith, B., Worlitschek, J., et al. A review of the use of process analytical technology for the understanding and optimization of production batch crystallization processes[J]. Organic Process Research & Development, 2005, 9(3): 348-355
    [5] Ulrich, J. and Jones, M.J. Industrial crystallization - Developments in research and technology[J]. Chemical Engineering Research & Design, 2004, 82(A12): 1567-1570
    [6] Van Dooren, G.G. and McFadden, G.I. Malaria - Differential parasite drive[J]. Nature, 2007, 450(7172): 955-956
    [7] WHO. Momograph on good agricultural and collection practices(GACP) for artemisia annua L.[M]. Switerland: WHO press, 2006
    [8] Chen, L.W., Wang, C.Z., Wu, Q.W. Crystal Structure Analysis of Artemether[J]. Chinese Journal of Pharmaceuticals, 2001, 31(10): 450-452
    [9] Qu, H.Y., Louhi-Kultanen, M., Rantanen, J., et al. Solvent-mediated phase transformation kinetics of an anhydrate/hydrate system[J]. Crystal Growth & Design, 2006, 6(9): 2053-2060
    [10]骆健美,金志华,岑沛霖.维他霉素在不同溶剂中溶解度的测定与关联[J].高校化学工程学报, 2008, 22(5): 733-738
    [11]李殿卿,刘大壮,王福安.对羧基苯甲醛、苯甲酸、对苯二甲酸和间苯二甲酸在N,N-二甲基甲酰胺的溶解度[J].高校化学工程学报, 2001, 15(3): 258-261
    [12] Mullin, J.W., Crystallization[M]. London: Elsevier Butterworth-Heinemann, 2001
    [13] Long, B.W., Wang, L.S., and Wu, J.-S. Solubilities of 1,3-benzenedicarboxylic acid in water + acetic acid solutions[J]. Journal of Chemical & Engineering Data, 2004, 50(1): 136-137
    [14] Sun, H. and Wang, J. Solubility of lovastatin in acetone + water solvent mixtures[J].Journal of Chemical & Engineering Data, 2008, 53(6): 1335-1337
    [15] Guo, K., Yin, Q., Yang, Y., et al. Solubility of losartan potassium in different pure solvents from (293.15 to 343.15) K[J]. Journal of Chemical & Engineering Data, 2008, 53(7): 1467-1469
    [16] Shalmashi, A. and Eliassi, A. Solubility of L-(+)-ascorbic acid in water, ethanol, methanol, propan-2-ol, acetone, acetonitrile, ethyl acetate, and tetrahydrofuran from (293 to 323) K[J]. Journal of Chemical and Engineering Data, 2008, 53(6): 1332-1334
    [17] Baluja, S., Bhalodia, R., Bhatt, M., et al. Solubility of enrofloxacin sodium in various solvents at various temperatures[J]. Journal of Chemical and Engineering Data, 2008, 53(12): 2897-2899
    [18] Long, B. and Yang, Z. Measurements of the solubilties of m-phthalic acid in acetone, ethanol and acetic ether[J]. Fluid Phase Equilibria, 2008, 266(1-2): 38-41
    [19] Ren, B.Z., Chong, H.G., Li, W.R., et al. Solubility of potassium p- chlorophenoxyacetate in ethanol + water from (295.61 to 358.16) K[J]. Journal of Chemical & Engineering Data, 2005, 50(3): 907-909
    [20] O'Grady, D., Barrett, M., Casey, E., et al. The effect of mixing on the metastable zone width and nucleation kinetics in the anti-solvent crystallization of benzoic acid[J]. Chemical Engineering Research & Design, 2007, 85(A7): 945-952
    [21] Fujiwara, M., Nagy, Z.K., Chew, J.W., et al. First-principles and direct design approaches for the control of pharmaceutical crystallization[J]. Journal of Process Control, 2005, 15(5): 493-504
    [22] Lovette, M.A., Browning, A.R., Griffin, D.W., et al. Crystal shape engineering[J]. Industrial & Engineering Chemistry Research, 2008, 47(24): 9812-9833
    [23] Kossel, W. Zur Energetik von Oberfl?chenvorg?ngen[J]. Annalen der Physik, 1934, 413(5): 457-480
    [24] Frank, F.C. The influence of dislocations on crystal growth[J]. Discussions of the Faraday Society , 1949(5): 48 - 54
    [25] Zipp, G.L. and Rodriguez -Hornedo, N. Phenytoin crystal growth rates in the presence of phosphate and chloride ions[J]. Journal of Crystal Growth, 1992, 123(1-2): 247-254
    [26] Lechuga-Ballesteros, D. and Rodriguez -Hornedo, N. The relation between adsorption of additives and crystal growth rate of l-alanine[J]. Journal of Colloid and Interface Science, 1993, 157(1): 147-153
    [27] Li, L. and Rodriguez-Hornedo, N. Growth kinetics and mechanism of glycine crystals[J]. Journal of Crystal Growth, 1992, 121(1-2): 33-38
    [28] Zipp, G.L. and Rodriguez -Hornedo, N. The mechanism of phenytoin crystal growth[J]. International Journal of Pharmaceutics, 1993, 98(1-3): 189-201
    [29] Lechuga-Ballesteros, D. and Rodriguez-Hornedo, N. The influence of additives on the growth kinetics and mechanism of L-alanine crystals[J]. International Journal of Pharmaceutics, 1995, 115(2): 139-149
    [30] Mohan, R. and Myerson, A.S. Growth kinetics: a thermodynamic approach[J]. Chemical Engineering Science, 2002, 57(20): 4277-4285
    [31] Mullin, J.W. and S?hnel, O. Expressions of supersaturation in crystallization studies[J]. Chemical Engineering Science, 1977, 32(7): 683-686
    [32] Rodriguez-Hornedo, N. and Murphy, D. Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems[J]. Journal of Pharmaceutical Sciences, 1999, 88(7): 651-660
    [33] Woo, X.Y., Tan, R.B.H., Chow, P.S., et al. Simulation of mixing effects in antisolvent crystallization using a coupled CFD-PDF-PBE approach[J]. Crystal Growth & Design, 2006, 6(6): 1291-1303
    [34] Kim, Y., Haam, S., Shul, Y.G., et al. Pseudopolymorphic crystallization of L-ornithine-L-aspartate by drowning out[J]. Industrial & Engineering Chemistry Research, 2003, 42(4): 883-889
    [35] Kim, K.J. and Kim, J.K. Nucleation and supersaturation in drowning-out crystallization using a T-mixer[J]. Chemical Engineering & Technology, 2006, 29(8): 951-956
    [36] Rohani, S., Horne, S., and Murthy, K. Control of product quality in batch crystallization of pharmaceuticals and fine chemicals. Part 1: Design of the crystallization process and the effect of solvent[J]. Organic Process Research & Development, 2005, 9(6): 858-872
    [37] Lawrence, X.Y., R.A.L., Andre, S. R. Applications of process analytical technology to crystallization processes[J]. Advanced Drug Delivery Reviews, 2004, 56(3): 349-369
    [38] Rohani, S. Control of product quality in batch crystallization of pharmaceuticals and fine chemicals. part1: design of the crystallization process and the effect of solvent[J]. Organic Process Research & Development, 2005, 9(6): 858-872
    [39] Ng, Ka M., Kim Dam-Johansen, R.G. Chemical product design: toward a perspective through case studies[M], chapter 3: CAMD using a linear GC-method for the prediction of pure component properties: application to solvent selection[M]: Elsevier publisher, 2006.
    [40] Weissbuch, I., Addadi, L., Leiserowitz, L. Molecular recognition at crystal interfaces[J]. Science, 1991, 253 (5020): 637-645
    [41] Michaels, A.S. and Tausch, F.W. Modification of growth rate and habit of adipic acid crystals with surfactants[J]. The Journal of Physical Chemistry, 1961, 65(10): 1730-1737
    [42] Qu, H., Louhi-Kultanen, M., and Kallas, J. In-line image analysis on the effects of additives in batch cooling crystallization[J]. Journal of Crystal Growth, 2006, 289(1): 286-294
    [43] Yu, L.X., Lionberger, R.A., Raw, A.S., et al. Applications of process analytical technology to crystallization processes[J]. Advanced Drug Delivery Reviews, 2004, 56(3): 349-369
    [44] Borissova, A., Khan, S., Mahmud, T., et al. In situ measurement of solution concentration during the batch cooling crystallization of L-glutamic acid using ATR-FTIR spectroscopy coupled with chemometrics[J]. Crystal Growth & Design, 2009, 9(2): 692-706
    [45] Yu, Z.Q., Tan, R.B.H., and Chow, P.S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization[J]. Journal of Crystal Growth, 2005, 279(3-4): 477-488
    [46] Feng, L. and Berglund, K.A. ATR-FTIR for determining optimal cooling curves for batch crystallization of succinic acid[J]. Crystal Growth & Design, 2002, 2(5): 449-452
    [47] Lewiner, F., Klein, J.P., Puel, F., et al. On-line ATR FTIR measurement of supersaturation during solution crystallization processes. Calibration and applications on three solute/solvent systems[J]. Chemical Engineering Science, 2001, 56(6): 2069-2084
    [48] Kamat, M.S., Lodder, R.A., and DeLuca, P.P. Near-infrared spectroscopic determination of residual moisture in lyophilized sucrose through intact glass vials[J]. Pharmaceutical Research, 1989, 6(11): 961-965
    [49] Ana, P.F., Teresa, P.A., Jos, C.M., Monitoring complex media fermentations with near-infrared spectroscopy: Comparison of different variable selection methods. Biotechnology and Bioengineering , 2005, 91(4): 474-481.
    [50] Févotte, G., Calas, J., Puel, F., et al. Applications of NIR spectroscopy to monitoring and analyzing the solid state during industrial crystallization processes[J]. International Journal of Pharmaceutics, 2004, 273(1-2): 159-169
    [51] Li, R.F., Wang, X.Z., and Abebe, S.B. Monitoring batch cooling crystallization using NIR: development of calibration models using Genetic Algorithm and PLS[J]. Particle & Particle Systems Characterization, 2008, 25(4): 314-327
    [52] Thompson, D.R., Kougoulos, E., Jones, A.G., Wood-Kaczmar, M.W. Solution concentration measurement of an important organic compound using ATR-UV spectroscopy[J]. Journal of Crystal Growth, 2005, 276(1-2): 230-236
    [53] Nyvlt, J., Karel, M., Písaík S. Measurement of supersaturation. Crystal Research and Technology, 1994, 29(3): 409-415
    [54] Rawlings, J.B., Miller, S.M., and Witkowski, W.R. Model identification and control of solution crystallization processes: a review[J]. Industrial & Engineering Chemistry Research, 1993, 32(7): 1275-1296
    [55] Garcia, E., Veesler, S., Boistelle, R., et al. Crystallization and dissolution of pharmaceutical compounds: An experimental approach[J]. Journal of Crystal Growth, 1999, 198-199(Part 2): 1360-1364
    [56]伍川,黄培,时均.结晶过程中溶液溶解度的在线检测[J].南京化工大学学报, 2001, 23(3): 23-26
    [57] Tadayyon, A., Rohani, S. Determination of Particle Size Distribution by Par-Tec?100: Modeling and Experimental Results. 1998. p. 127-135
    [58] Ruf, A., Worlitschek, J., and Mazzotti, M. Modeling and experimental analysis of PSD measurements through FBRM[J]. Particle & Particle Systems Characterization, 2000, 17(4): 167-179
    [59] Yu, Z.Q., Chow, P.S., and Tan, R.B.H. Application of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) technique in the monitoring and control of anti-solvent crystallization[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 438-444
    [60] O'Sullivan, B., Barrett, P., Hsiao, G., et al. In situ monitoring of polymorphic transitions[J]. Organic Process Research & Development, 2003, 7(6): 977-982
    [61] De Anda, J.C., Wang, X.Z., Lai, X., et al. Classifying organic crystals via in-process image analysis and the use of monitoring charts to follow polymorphic and morphological changes[J]. Journal of Process Control, 2005, 15(7): 785-797
    [62] Li, R.F., Thomson, G.B., White, G., et al. Integration of crystal morphology modeling and on-line shape measurement[J]. AIChE Journal, 2006, 52(6): 2297-2305
    [63] Patience, D.B. and Rawlings, J.B. Particle-shape monitoring and control in crystallization processes[J]. AIChE Journal, 2001, 47(9): 2125-2130
    [64]任国宾,王静康,徐昭.同质多晶现象[J].中国抗生素杂志, 2005, 30(1): 32-37
    [65] Chemburkar, S.R., Bauer, J., Deming, K., et al. Dealing with the impact of ritonavirpolymorphs on the late stages of bulk drug process development[J]. Organic Process Research & Development, 2000, 4(5): 413-417
    [66] Gu, C.H. ,Victor Young, Jr., Grant, David J.W. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation [J]. Journal of Pharmaceutical Sciences, 2001, 90(11): 1878-1890
    [67] Scholl, J., Bonalumi, D., Vicum, L., et al. In situ monitoring and modeling of the solvent-mediated polymorphic transformation of L-glutamic acid[J]. Crystal Growth & Design, 2006, 6(4): 881-891
    [68] Wang, F., Wachter, J.A., Antosz, F.J., et al. An investigation of solvent-mediated polymorphic transformation of progesterone using in situ Raman spectroscopy[J]. Organic Process Research & Development, 2000, 4(5): 391-395
    [69]张朝阳,舒远杰,赵晓东,李海波,李金山.用Polymorph predictor方法模拟TATB的晶体结构[J].含能材料, 2004, 12(1): 48-51
    [70] Thun, J., Schoeffel, M., and Breu, J. Crystal structure prediction could have helped the experimentalists with polymorphism in benzamide. 2008, Taylor & Francis. 1359- 1370
    [71]张缨,王静康,冯天扬,黄向荣.晶体形貌预测方法与应用[J].化学工业与工程, 2002, 19(1): 119-123
    [72] Docherty, R. and Roberts, K.J. Modelling the morphology of molecular crystals; application to anthracene, biphenyl and [beta]-succinic acid[J]. Journal of Crystal Growth, 1988, 88(2): 159-168
    [73] Lin, C.H., Gabas, N., Canselier, J.P., et al. Prediction of the growth morphology of aminoacid crystals in solution: I. [alpha]-Glycine[J]. Journal of Crystal Growth, 1998, 191(4): 791-802
    [74] Docherty, R., Clydesdale, G., Roberts, K.J., Bennema, P. Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals[J]. Journal of Physics D: Applied Physics, 1991, 24(2): 89-99
    [75] Synder, Ryan C., Doherty, Michael F. Faceted crystal shape evolution during dissolution or growth[J]. AIChE Journal, 2007, 53(5): 1337-1348
    [76] Karunanithi, A.T., Achenie, L.E.K., and Gani, R. A computer-aided molecular design framework for crystallization solvent design[J]. Chemical Engineering Science, 2006, 61(4): 1247-1260
    [77] Perry, R.H., Green, D.W., and Maloney, J.O., Perry's chemical engineer's handbook[M].New York: McGraw-Hill, 1984
    [78] Miller, S.M., Modelling and quality control strategies for batch cooling crystallizers. 1993, the university of texas at austin: Texas.
    [79] Lindenberg, C., Krattli, M., Cornel, J., et al. Design and optimization of a combined cooling/antisolvent crystallization process[J]. Crystal Growth & Design, 2009, 9(2): 1124-1136
    [80] Qu, H.Y., Kohonen, J., Louhi-Kultanen, M., et al. Spectroscopic monitoring of carbamazepine crystallization and phase transformation in ethanol-water solution[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 6991-6998
    [81] Kitamura, M. and Sugimoto, M. Anti-solvent crystallization and transformation of thiazole-derivative polymorphs - I: effect of addition rate and initial concentrations[J]. Journal of Crystal Growth, 2003, 257(1-2): 177-184
    [82] Yi, Y.J. and Myerson, A.S. Laboratory scale batch crystallization and the role of vessel size[J]. Chemical Engineering Research & Design, 2006, 84(A8): 721-728
    [83] Luo, X.D., Bossi, A., Flippen-Anderson, J.L., Gillards, R. Configurations of antimalarials derived from Qinghaosu: dihydro-qinghaosu, artemether and artesunic acid[J]. Helvvetica Chimica Acta, 1984, 67(6): 1515-1522
    [84]赵藻藩,周性尧,张悟铭,赵文宽,仪器分析[M].北京:高等教育出版社, 1990
    [85]于世林,高效液相色谱方法及应用[M].北京:化学工业出版社, 2000
    [86] Fidder, H., Terpstra, J., and Wiersma, D.A. Dynamics of Frenkel excitons in disordered molecular aggregates[J]. Journal of Chemical Physics, 94(10): 6895-6907
    [87] Spano, F.C. and Mukamel, S. Nonlinear susceptibilities of molecular aggregates: enhancement of .chi.(3) by size[J]. Physical Review A: Atomic, Molecular, and Optical Physics 1989, 40(10): 5783-5801
    [88] Pawlik, A., Ouart, A., Kirstein, S., et al. Synthesis and UV/Vis spectra of J-aggregating 5,5 ',6,6 '-tetrachlorobenzimidacarbocyanine dyes for artificial light-harvesting systems and for asymmetrical generation of supramolecular helices[J]. European Journal of Organic Chemistry, 2003(16): 3065-3080
    [89] Pollanen, K., Hakkinen, A., Reinikainen, S.P., et al. ATR-FTIR in monitoring of crystallization processes: comparison of indirect and direct OSC methods[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 76(1): 25-35
    [90] Wold, S., Antti, H., Lindgren, F., et al. Orthogonal signal correction of near-infrared spectra[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1-2): 175-185
    [91]张海东,赵文杰,刘木华.基于正交信号校正与偏最小二乘(OSC/PLS)的苹果糖度近红外检测[J].食品科学, 2005, 26(6): 189-192
    [92]任芊,解国玲,董守龙,黄友之. OSC-PLS算法在近红外光谱定量分析中应用的研究[J].北京理工大学学报, 2005, 25(3): 272-275
    [93] Borissova, A., Dashova, Z., Lai, X., et al. Examination of the semi-batch crystallization of benzophenone from saturated methanol solution via aqueous antisolvent drowning-out as monitored in-process using ATR FTIR spectroscopy[J]. Crystal Growth & Design, 2004, 4(5): 1053-1060
    [94] Gron, H., Borissova, A., and Roberts, K.J. In-process ATR-FTIR spectroscopy for closed-loop supersaturation control of a batch crystallizer producing monosodium glutamate crystals of defined size[J]. Industrial & Engineering Chemistry Research, 2003, 42(1): 198-206
    [95] Pollanen, K., Hakkinen, A., Reinikainen, S.P., et al. IR spectroscopy together with multivariate data analysis as a process analytical tool for in-line monitoring of crystallization process and solid-state analysis of crystalline product[J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38(2): 275-284
    [96] Randolph, Alan D., Larson, M.A. Theory of particulate processes[M]. San Diego: Academic Press, 1988
    [97] Nagy, Z.K., Fujiwara, M., Woo, X.Y., et al. Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments[J]. Industrial & Engineering Chemistry Research, 2008, 47(4): 1245-1252
    [98] Trifkovic, M., Sheikhzadeh, M., and Rohani, S. Multivariable real-time optimal control of a cooling and antisolvent semibatch crystallization process[J]. AIChE Journal, 2009, 55(10): 2591-2602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700