PSD-95小干扰RNA沉默效率评估与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言:突触后致密物蛋白质95(PSD-95)参与调节的谷氨酸受体相关信号转导是神经病理性疼痛中枢敏化机制的重要环节。
     目的:评估小干扰RNA(siRNA)对PSD-95基因的沉默效率以及PSD-95基因沉默对谷氨酸诱导的神经细胞毒性与信号转导的影响。
     方法:将化学合成的大鼠PSD-95基因特异的siRNA转染小鼠神经母细胞瘤/大鼠神经胶质细胞瘤杂交瘤细胞(NG108-15细胞),利用实时定量PCR评估转染试剂、转染方式、时间、细胞密度、siRNA剂量等对沉默效率的影响。利用谷氨酸刺激PSD-95基因沉默的NG108-15细胞,检测细胞生长活力与信号通路蛋白质表达与磷酸化的改变。
     结果:序列特异性最高的siRNA在最佳的转染条件下导致PSD-95基因表达水平下降91.5%;PSD-95基因沉默既增强了神经细胞对谷氨酸毒性耐受能力,又可抑制Ca~(2+)/钙调蛋白依赖的蛋白质激酶Ⅱα异构型的磷酸化。
     结论:PSD-95-siRNA可能成为有效控制神经病理性疼痛的基因治疗方法。
Introduction:Glutamate receptor-associated postsynaptic signal transduction,which is modulated by postsynaptic density protein 95(PSD-95),participates in the central sensitization of neuropathic pain.
     Objective:The PSD-95 gene silencing efficacy by small interfering RNA(siRNA) and its succedent influence on glutamate-induced toxicity or signal transduction are to be illustrated.
     Methods:Gene-specific siRNAs of rat PSD-95 were synthesized chemically for in vitro transfection into mouse neuroblastoma and rat glioma hybridoma(NG108-15) cells.The contributions of transfection agents,transfection methods,time course,cell density and siRNAs final concentration to the silencing efficacy were evaluated by real-time PCR. PSD-95 gene silenced NG108-15 cells were further stimulated by glutamate,with either the cell viability or the expression and phosphorylation of signal proteins to be assayed.
     Results:The siRNA,which is exclusively identical to rat PSD-95,decreased PSD-95 mRNA level by 91.5%under appropriate conditions.PSD-95 gene silencing enhanced cellular tolerance against the glutamate toxicity,meanwhile the phosphorylation of Ca~(2+)/Camodulin dependent protein kinaseⅡαisoform was attenuated.
     Conclusion:All results suggested the potential of PSD-95 gene specific siRNA in relieving neuropathic pain.
引文
1. Palay, S.L. Synapses in the central nervous system. The Journal of biophysical and biochemical cytology 2, 193-202(1956).
    
    2. Jordan, B.A., et al. Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3, 857-871 (2004).
    
    3. Ziff, E.B. Enlightening the postsynaptic density. Neuron 19, 1163-1174 (1997).
    
    4. Kennedy, M.B. Signal-processing machines at the postsynaptic density. Science (New York, N. Y 290, 750-754 (2000).
    
    5. Walikonis, R.S., et al. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20, 4069-4080 (2000).
    
    6. Sheng, M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A 98,7058-7061 (2001).
    
    7. Boeckers, T.M. The postsynaptic density. Cell Tissue Res 326,409-422 (2006).
    
    8. Hung, A.Y. & Sheng, M. PDZ domains: structural modules for protein complex assembly. J Biol Chem 277, 5699-5702 (2002).
    
    9. Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nature reviews 5, 771-781 (2004).
    
    10. Jemth, P. & Gianni, S. PDZ domains: folding and binding. Biochemistry 46, 8701-8708 (2007).
    
    11. Craven, S.E. & Bredt, D.S. PDZ proteins organize synaptic signaling pathways. Cell 93, 495-498(1998).
    
    12. Stathakis, D.G., Hoover, K.B., You, Z. & Bryant, P.J. Human postsynaptic density-95 (PSD95):location of the gene (DLG4) and possible function in nonneural as well as in neural tissues. Genomics 44, 71-82 (1997).
    
    13. Stathakis, D.G., et al. Genomic organization of human DLG4, the gene encoding postsynaptic density 95. JNeurochem 73, 2250-2265 (1999).
    
    14. Kim, E., Niethammer, M., Rothschild, A., Jan, Y.N. & Sheng, M. Clustering of Shaker-type K+channels by interaction with a family of membrane-associated guanylate kinases. Nature 378,85-88 (1995).
    
    15. Kim, E., Cho, K.O., Rothschild, A. & Sheng, M. Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17,103-113(1996).
    
    16. Aarts, M., et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95protein interactions. Science (New York, N.Y 298, 846-850 (2002).
    
    17. Sattler, R., et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science (New York, N. Y 284, 1845-1848 (1999).
    
    18. Huang, Y.Z., et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26,443-455 (2000).
    
    19. El-Husseini, A.E., Schnell, E., Chetkovich, D.M., Nicoll, R.A. & Bredt, D.S. PSD-95 involvement in maturation of excitatory synapses. Science (New York, N.Y290, 1364-1368 (2000).
    
    20. El-Husseini Ael, D., et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108,849-863 (2002).
    
    21. Beique, J.C., et al. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc Natl Acad Sci U S A 103, 19535-19540 (2006).
    
    22. Colbran, R.J. & Brown, A.M. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr Opin Neurobiol 14, 318-327 (2004).
    
    23. Suzuki, T., et al. A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins. Eur J Neurosci 21, 339-350 (2005).
    
    24. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature reviews 3, 175-190 (2002).
    
    25. Fink, C.C. & Meyer, T. Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr Opin Neurobiol 12, 293-299 (2002).
    
    26. Campbell, J.N. & Meyer, R.A. Mechanisms of neuropathic pain. Neuron 52, 77-92 (2006).
    
    27. Dougherty, P.M., Palecek, J., Zorn, S. & Willis, W.D. Combined application of excitatory amino acids and substance P produces long-lasting changes in responses of primate spinothalamic tract neurons. Brain Res Brain Res Rev 18, 227-246 (1993).
    
    28. Duggan, A.W. Release of neuropeptides in the spinal cord. Prog Brain Res 104, 197-223 (1995).
    
    29. Yoshimura, M. & Yonehara, N. Alteration in sensitivity of ionotropic glutamate receptors and tachykinin receptors in spinal cord contribute to development and maintenance of nerve injury-evoked neuropathic pain. Neuroscience research 56, 21-28 (2006).
    
    30. Gu, J.G, Albuquerque, C, Lee, C.J. & MacDermott, A.B. Synaptic strengthening through activation of Ca2+-permeable AMPA receptors. Nature 381, 793-796 (1996).
    
    31. South, S.M., et al. A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J Neurosci 23,5031-5040(2003).
    
    32. Kawasaki, Y., et al. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 24, 8310-8321(2004).
    
    33. Harris, J.A., Corsi, M., Quartaroli, M., Arban, R. & Bentivoglio, M. Upregulation of spinal glutamate receptors in chronic pain. Neuroscience 74, 7-12 (1996).
    
    34. Tomiyama, M., et al. Upregulation of mRNAs coding for AMPA and NMDA receptor subunits and metabotropic glutamate receptors in the dorsal horn of the spinal cord in a rat model of diabetes mellitus. Brain Res Mol Brain Res 136, 275-281 (2005).
    
    35. Kinloch, R.A. & Cox, P.J. New targets for neuropathic pain therapeutics. Expert Opin Ther Targets 9, 685-698 (2005).
    
    36. Hannon, G.J. RNA interference. Nature 418,244-251 (2002).
    
    37. Elbashir, S.M., et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498 (2001).
    
    38. Harborth, J., Elbashir, S.M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114,4557-4565 (2001).
    
    39. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-574 (2002).
    
    40. Lu, Z.J. & Mathews, D.H. Fundamental differences in the equilibrium considerations for siRNA and antisense oligodeoxynucleotide design. Nucleic acids research (2008).
    
    41. Tan, PH., Yang, L.C., Shih, H.C., Lan, K.C. & Cheng, J.T. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene therapy 12, 59-66 (2005).
    
    42. Wood, M.J., Trulzsch, B., Abdelgany, A. & Beeson, D. Therapeutic gene silencing in the nervous system. Hum Mol Genet 12 Spec No 2, R279-284 (2003).
    
    43. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34, 263-264 (2003).
    
    44. Lowenstein, P.R. Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends in immunology 23,23-30 (2002).
    
    45. Luo, M.C., et al. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Molecular pain 1, 29 (2005).
    
    46. Dorn, G, et al. siRNA relieves chronic neuropathic pain. Nucleic acids research 32, e49 (2004).
    
    47. Guo, W., et al. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J Neurosci 26, 126-137 (2006).
    
    48. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103-112 (2001).
    
    49. Krichevsky, A.M. & Kosik, K.S. RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci U S A 99, 11926-11929 (2002).
    
    50. Akama, K.T. & McEwen, B.S. Estrogen stimulates postsynaptic density-95 rapid protein synthesis via the Akt/protein kinase B pathway. J Neurosci 23,2333-2339 (2003).
    
    51. Nakagawa, T., et al. Quaternary structure, protein dynamics, and synaptic function of SAP97 controlled by L27 domain interactions. Neuron 44,453-467 (2004).
    
    52. Choi, D.W., Maulucci-Gedde, M. & Kriegstein, A.R. Glutamate neurotoxicity in cortical cell culture. J Neurosci 7, 357-368 (1987).
    
    53. Choi, D.W., Koh, J.Y. & Peters, S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 8, 185-196 (1988).
    
    54. Dorsett, Y. & Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3, 318-329 (2004).
    
    55. Gitlin, L., Karelsky, S. & Andino, R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418,430-434 (2002).
    
    56. Yu, J.Y., DeRuiter, S.L. & Turner, D.L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99, 6047-6052 (2002).
    
    57. Jackson, A.L., et al. Expression profiling reveals off-target gene regulation by RNAi. Nature biotechnology 21, 635-637 (2003).
    
    58. Semizarov, D., et al. Specificity of short interfering RNA determined through gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America 100,6347-6352 (2003).
    
    59. Jackson, A.L., et al. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA (New York, N. Y 12, 1179-1187 (2006).
    
    60. Jackson, A.L., et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA (New York, N. Y 12, 1197-1205 (2006).
    
    61. Song, J.H., Waataja, J.J. & Martemyanov, K.A. Subcellular targeting of RGS9-2 is controlled by multiple molecular determinants on its membrane anchor, R7BP. J Biol Chem 281, 15361-15369(2006).
    
    62. Dalby, B., et al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods (San Diego, Calif 22, 95-103 (2004).
    
    63. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nature medicine 11, 50-55 (2005).
    
    64. Palliser, D., et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89-94 (2006).
    
    65. Soutschek, J., et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173-178 (2004).
    
    66. Song, E., et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature biotechnology 23, 709-717 (2005).
    
    67. Dykxhoorn, D.M. & Lieberman, J. Knocking down disease with siRNAs. Cell 126, 231-235(2006).
    
    68. Coyle, J.T., et al. Excitatory amino acid neurotoxins: selectivity, specificity, and mechanisms of action. Based on an NRP one-day conference held June 30, 1980. Neurosciences Research Program bulletin 19, 1-427 (1981).
    
    69. Choi, D.W. Ionic dependence of glutamate neurotoxicity. J Neurosci 7, 369-379 (1987).
    
    70. Finkbeiner, S. & Stevens, C.F. Applications of quantitative measurements for assessing glutamate neurotoxicity. Proc Natl Acad Sci U S A 85,4071-4074 (1988).
    
    71. Clapham, D.E. Calcium signaling. Cell 80, 259-268 (1995).
    
    72. Berridge, M.J. Neuronal calcium signaling. Neuron 21, 13-26 (1998).
    
    73. Arundine, M. & Tymianski, M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell calcium 34, 325-337 (2003).
    
    74. Randall, R.D. & Thayer, S.A. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 12, 1882-1895 (1992).
    
    75. Mayford, M. Protein kinase signaling in synaptic plasticity and memory. Curr Opin Neurobiol 17, 313-317(2007).
    
    76. Rameau, G.A., et al. Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci 27,3445-3455 (2007).
    
    77. Beas-Zarate, C., Rivera-Huizar, S.V., Martinez-Contreras, A., Feria-Velasco, A. & Armendariz-Borunda, J. Changes in NMDA-receptor gene expression are associated with neurotoxicity induced neonatally by glutamate in the rat brain. Neurochem Int 39, 1-10 (2001).
    
    78. Wang, H., et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24, 10963-10973 (2004).
    
    79. Yu, S.P., Yeh, C., Strasser, U., Tian, M. & Choi, D.W. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science (New York, N. Y 284, 336-339 (1999).
    
    80. Laabich, A., Li, G. & Cooper, N.G Characterization of apoptosis-genes associated with NMDA mediated cell death in the adult rat retina. Brain Res Mol Brain Res 91, 34-42 (2001).
    
    81. Dave, J.R., Williams, A.J., Moffett, J.R., Koenig, M.L. & Tortella, F.C. Studies on neuronal apoptosis in primary forebrain cultures: neuroprotective/anti-apoptotic action of NR2B NMDA antagonists. Neurotox Res 5, 255-264 (2003).
    
    82. Watanabe, Y., et al. Post-synaptic density-95 promotes calcium/calmodulin-dependent protein kinase II-mediated Ser847 phosphorylation of neuronal nitric oxide synthase. Biochem J 372, 465-471 (2003).
    
    83. Yan, X.B., Song, B. & Zhang, G.Y Postsynaptic density protein 95 mediates Ca2+/calmodulin-dependent protein kinase 11-activated serine phosphorylation of neuronal nitric oxide synthase during brain ischemia in rat hippocampus. Neurosci Lett 355, 197-200 (2004).
    
    84. Hou, X.Y., Zhang, G.Y. & Zong, YY Suppression of postsynaptic density protein 95 expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-D-aspartate receptors and interactions of Src and Fyn with NR2A after transient brain ischemia in rat hippocampus. Neurosci Lett 343, 125-128 (2003).
    
    85. Hou, X.Y., Zhang, GY, Wang, D.G., Guan, Q.H. & Yan, J.Z. Suppression of postsynaptic density protein 95 by antisense oligonucleotides diminishes postischemic pyramidal cell death in rat hippocampal CA1 subfield. Neurosci Lett 385, 230-233 (2005).
    
    86. Cui, H., et al. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 27, 9901-9915 (2007).
    
    87. Wen, W, Wang, W. & Zhang, M. Targeting PDZ domain proteins for treating NMDA receptor-mediated excitotoxicity. Curr Top Med Chem 6, 711-721 (2006).
    
    88. Kolaj, M., Cerne, R., Cheng, G, Brickey, D.A. & Randic, M. Alpha subunit of calcium/calmodulin-dependent protein kinase enhances excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons. J Neurophysiol 72, 2525-2531 (1994).
    
    89. Meng, F., Guo, J., Zhang, Q., Song, B. & Zhang, G Autophosphorylated calcium/calmodulin-dependent protein kinase II alpha (CaMKII alpha) reversibly targets to and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B) in cerebral ischemia and reperfusion in hippocampus of rats. Brain research 967, 161-169 (2003).
    
    90. Park, C.S., Elgersma, Y., Grant, S.G. & Morrison, J.H. alpha-Isoform of calcium-calmodulin-dependent protein kinase II and postsynaptic density protein 95 differentially regulate synaptic expression of NR2A- and NR2B-containing N-methyl-d-aspartate receptors in hippocampus. Neuroscience 151, 43-55 (2008).
    
    91. Gardoni, F., Polli, F., Cattabeni, F. & Di Luca, M. Calcium-calmodulin-dependent protein kinase II phosphorylation modulates PSD-95 binding to NMDA receptors. Eur J Neurosci 24, 2694-2704 (2006).
    
    92. Morioka, M., et al. Glutamate-induced loss of Ca2+/calmodulin-dependent protein kinase II activity in cultured rat hippocampal neurons. J Neurochem 64,2132-2139 (1995).
    
    93. Leonard, A.S., Lim, I.A., Hemsworth, D.E., Home, M.C. & Hell, J.W Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 96, 3239-3244 (1999).
    
    94. Gardoni, F., et al. Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem 71, 1733-1741 (1998).
    
    95. Kornau, H.C., Schenker, L.T., Kennedy, M.B. & Seeburg, P.H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science (New York, NY 269,1737-1740(1995).
    
    96. Chung, H.J., Huang, Y.H., Lau, L.F. & Huganir, R.L. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24, 10248-10259(2004).
    
    97. Suzuki, T., Du, F., Tian, Q.B., Zhang, J. & Endo, S. Ca2+/calmodulin-dependent protein kinase Ilalpha clusters are associated with stable lipid rafts and their formation traps PSD-95. J Neurochem 104, 596-610 (2008).
    
    98. Garry, E.M., et al. Neuropathic sensitization of behavioral reflexes and spinal NMDA receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr Biol 13, 321-328(2003).
    
    99. Blom, N., Gammeltoft, S. & Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351-1362 (1999).
    
    100. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S. & Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633-1649(2004).
    
    101. Soto, D., et al. Protein kinase CK2 in postsynaptic densities: phosphorylation of PSD-95/SAP90 and NMDA receptor regulation. Biochemical and biophysical research communications 322, 542-550 (2004).
    
    102. Kalia, L.V. & Salter, M.W. Interactions between Src family protein tyrosine kinases and PSD-95. Neuropharmacology 45, 720-728 (2003).
    
    103. Kim, M.J., et al. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56,488-502 (2007).
    
    104. Gu, J., et al. Molecular pain, a new era of pain research and medicine. Molecular pain 1, 1 (2005).
    
    105. Kurreck, J. Antisense and RNA interference approaches to target validation in pain research. Curr Opin Drug Discov Devel 7, 179-187 (2004).
    
    106. Tao, F., Tao, Y.X., Mao, P. & Johns, R.A. Role of postsynaptic density protein-95 in the maintenance of peripheral nerve injury-induced neuropathic pain in rats. Neuroscience 117, 731-739(2003).
    
    107. Tao, F., et al. Knockdown of PSD-95/SAP90 delays the development of neuropathic pain in rats. Neuroreport 12,3251-3255 (2001).
    
    108. Liaw, W.J., et al. Knockdown of spinal cord postsynaptic density protein-95 prevents the development of morphine tolerance in rats. Neuroscience 123, 11-15 (2004).
    1.Mattick,J.S.& Makunin,I.V.Non-coding RNA.Hum Mol Genet 15 Spee No 1,R17-29(2006).
    2.Mattick,J.S.& Makunin,I.V.Small regulatory RNAs in mammals.Hum Mol Genet 14 Spee No 1,R121-132(2005).
    3.Lu,C.,et al.Elucidation of the small RNA component of the transcriptome.Science(New York,N.Y309,1567-1569(2005).
    4.Bartel,D.P.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell 116,281-297(2004).
    5.Martinez,J.,Patkaniowska,A.,Urlaub,H.,Luhrmann,R.& Tuschl,T.Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.Cell 110,563-574(2002).
    6.Lewis,B.P.,Burge,C.B.& Barrel,D.P.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.Cell 120,15-20(2005).
    7.Du,T.& Zamore,P.D.microPrimer:the biogenesis and function of microRNA.Development (Cambridge,England) 132,4645-4652(2005).
    8.Lee,Y.,Han,J.,Yeom,K.H.,Jin,H.& Kim,V.N.Drosha in primary microRNA processing.Cold Spring Harbor symposia on quantitative biology 71,51-57(2006).
    9.Pillai,R.S.,Bhattacharyya,S.N.& Filipowicz,W.Repression of protein synthesis by miRNAs:how many mechanisms? Trends in cell biology 17,118-126(2007).
    10.Pillai,R.S.,et al.Inhibition of translational initiation by Let-7 MicroRNA in human cells.Science (New York,N.Y 309,1573-1576(2005).
    11.Lewis,B.P.,Shih,I.H.,Jones-Rhoades,M.W.,Barrel,D.P.& Burge,C.B.Prediction of mammalian microRNA targets.Cell 115,787-798(2003).
    12.Grimson,A.,et al.MicroRNA targeting specificity in mammals:determinants beyond seed pairing.Molecular cell 27,91-105(2007).
    13.Long,D.,et al.Potent effect of target structure on microRNA function.Nat Struct Mol Biol 14,287-294(2007).
    14.Landgraf,P.,et al.A mammalian microRNA expression atlas based on small RNA library sequencing.Cell 129,1401-1414(2007).
    15.Lim,L.P.,et al.Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.Nature 433,769-773(2005).
    16.Farh,K.K.,et al.The widespread impact of mammalian MicroRNAs on mRNA repression and evolution.Science(New York,N.Y 310,1817-1821(2005).
    17.Bushati,N.& Cohen,S.M.microRNA functions.Annual review of cell and developmental biology 23,175-205(2007).
    18.Bartel,D.P.& Chen,C.Z.Micromanagers of gene expression:the potentially widespread influence of metazoan microRNAs.Nat Rev Genet 5,396-400(2004).
    19.Hornstein,E.& Shomron,N.Canalization of development by microRNAs.Nat Genet 38 Suppl,S20-24(2006).
    20.Krichevsky,A.M.,King,K.S.,Donahue,C.P.,Khrapko,K.& Kosik,K.S.A microRNA array reveals extensive regulation of microRNAs during brain development.RNA(New York,N.Y 9,1274-1281(2003).
    21.Cheng,L.C.,Tavazoie,M.& Doetsch,F.Stem cells:from epigenetics to microRNAs.Neuron 46,363-367(2005).
    22. Kawasaki, H. & Taira, K. Functional analysis of microRNAs during the retinoic acid-induced neuronal differentiation of human NT2 cells. Nucleic Acids Res Suppl, 243-244 (2003).
    
    23. Smirnova, L., et al. Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21, 1469-1477(2005).
    
    24. Kosik, K.S. & Krichevsky, A.M. The Elegance of the MicroRNAs: A Neuronal Perspective. Neuron 47,779-782 (2005).
    
    25. Krichevsky, A.M., Sonntag, K.C., Isacson, O. & Kosik, K.S. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24, 857-864 (2006).
    
    26. Klein, M.E., Impey, S. & Goodman, R.H. Role reversal: the regulation of neuronal gene expression by microRNAs. Curr Opin Neurobiol 15, 507-513 (2005).
    
    27. Giraldez, A.J., et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science (New York, N. 7308, 833-838(2005).
    
    28. Schratt, G.M., et al. A brain-specific microRNA regulates dendritic spine development. Nature 439,283-289 (2006).
    
    29. Conaco, C., Otto, S., Han, J.J. & Mandel, G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc NatlAcadSci USA 103,2422-2427 (2006).
    
    30. Martin, K.C. & Kosik, K.S. Synaptic tagging -- who's it? Nature reviews 3, 813-820 (2002).
    
    31. Ashraf, S.I. & Kunes, S. A trace of silence: memory and microRNA at the synapse. Curr Opin Neurobiol 16, 535-539 (2006).
    
    32. John, B., et al. Human MicroRNA targets. PLoS Biol 2, e363 (2004).
    
    33. Kuwabara, T., Hsieh, J., Nakashima, K., Taira, K. & Gage, F.H. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779-793 (2004).
    
    34. Gregory, R.I., et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240 (2004).
    
    35. Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14, 2162-2167(2004).
    
    36. Dostie, J., Mourelatos, Z., Yang, M., Sharma, A. & Dreyfuss, G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA (New York, N.Y 9, 180-186 (2003).
    
    37. Rogaev, E.I. Small RNAs in human brain development and disorders. Biochemistry (Mosc) 70, 1404-1407 (2005).
    
    38. Abelson, J.F., et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science (New York, N.Y310, 317-320 (2005).
    
    39. Aruga, J., Yokota, N. & Mikoshiba, K. Human SLITRK family genes: genomic organization and expression profiling in normal brain and brain tumor tissue. Gene 315, 87-94 (2003).
    
    40. Aruga, J. & Mikoshiba, K. Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol Cell Neurosci 24, 117-129(2003).
    
    41. Chan, J.A., Krichevsky, A.M. & Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer research 65, 6029-6033 (2005).
    
    42. Cummins, J.M., et al. The colorectal microRNAome. Proc Natl Acad Sci U S A 103, 3687-3692(2006).
    
    43. Bentwich, I., et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37, 766-770 (2005).
    
    44. Johnston, R.J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845-849 (2003).
    
    45. Chang, S., Johnston, R.J., Jr., Frokjaer-Jensen, C, Lockery, S. & Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430,785-789 (2004).
    
    46. Frith, M.C., Pheasant, M. & Mattick, J.S. The amazing complexity of the human transcriptome. Eur J Hum Genet 13, 894-897 (2005).
    
    47. Luciano, D.J., Mirsky, H., Vendetti, N.J. & Maas, S. RNA editing of a miRNA precursor. RNA (New York, N.Y 10, 1174-1177 (2004).
    
    48. Yang, W., et al. Modulation of microRNA processing and expression through RNA editing by ADAR deammases.Nat Stuct Mol Biol 13, 13-21 (2006).
    
    49. Blow, M.J., et al. RNA editing of human microRNAs. Genome biology 7, R27 (2006).
    
    50. Frey, U. & Morris, R.G. Synaptic tagging and long-term potentiation. Nature 385, 533-536 (1997).
    
    51. Aakalu, G., Smith, W.B., Nguyen, N., Jiang, C. & Schuman, E.M. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30,489-502 (2001).
    
    52. Kang, H. & Schuman, E.M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science (New York, AT 273, 1402-1406 (1996).
    
    53. Huber, K.M., Kayser, M.S. & Bear, M.F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science (New York, N.Y 288, 1254-1257 (2000).
    
    54. Ashraf, S.I., McLoon, A.L., Sclarsic, S.M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124, 191-205 (2006).
    
    55. Steward, O. & Worley, P.F. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30,227-240 (2001).
    
    56. Steward, O., Wallace, C.S., Lyford, GL. & Worley, P.F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21,741-751 (1998).
    
    57. Jin, P., et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature neuroscience 7, 113-117 (2004).
    
    58. Bai, G., Ambalavanar, R., Wei, D. & Dessem, D. Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Molecular pain 3, 15 (2007).
    
    59. Gu, J., et al. Molecular pain, a new era of pain research and medicine. Molecular pain 1, 1 (2005).
    
    60. Dorn, G., et al. siRNA relieves chronic neuropathic pain. Nucleic acids research 32, e49 (2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700