稳定表达长效胰高血糖素样肽-1重组酿酒酵母的构建及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于肠道内吸收不充分,目前大多数肽类及蛋白质药物仍然通过非肠道途径给药。治疗用肽类和蛋白质通常用于治疗慢性疾病,长期注射给药会产生明显的不良结果。相对于这种不方便且存在潜在问题的给药方法,口服途径具有患者自我给药优势,可大大提高患者接受性和依从性,同时可避免注射给药带来的疼痛、不适和感染的可能。因此,开发有效而成功的口服给药系统以使这类药物发挥最大治疗潜力成为制药研究的一个重要课题。将表达肽类和蛋白药物的重组微生物用作药物释放系统是一个创新性的途径。细菌和酵母都可成为胃肠道中释放药物的新型载体。
     胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)称为肠促胰岛素,是一种分泌自肠道细胞的肽激素,具有血糖依赖性促胰岛素分泌、刺激β-细胞增殖等多种生理功能。在2型糖尿病的临床治疗中具有较好的应用前景。但由于体内二肽基肽酶-Ⅳ(DPP-Ⅳ)的快速降解和肾脏代谢作用,导致其半衰期很短,使其临床应用受到了很大限制。因而,开发长效药用GLP-1类似物已成为受关注的一个热点。
     酿酒酵母(面包酵母)本身富含维生素、消化酶等,我国台湾、香港等地素有饮用酵母茶或酵母饮料的悠久历史。若使其胞内再能稳定表达多肽类糖尿病治疗药物,以酿酒酵母细胞作为药物载体——缓释“胶囊”,研发治疗性功能酵母饮品、食品或生物药物,使人们在品尝美味饮品或食品的同时,起到预防和治疗糖尿病等慢性疾病的作用,前景十分诱人。
     本研究旨在构建一种胞内稳定表达多肽类糖尿病治疗药物的酿酒酵母,为研发治疗性功能酵母饮品、食品或生物药物奠定基础。首先从构建以质粒pUC18作为骨架的整合型载体入手,以酿酒酵母染色体中多拷贝串联排列的rDNA序列作为外源基因多拷贝整合的位点,设计两对引物扩增rDNA序列中位于25S和5S rDNA之间的一段2.2kb的同源重组热点区域,得到AB和CD两条rDNA片段。将AB、CD分别连接到pUC18的SacI/EcoRI和PstI位点,得到pUC18-Sr。以质粒pYX212作为模板,设计两对引物U1/U2和T1/T1,分别扩增得到营养标记基因URA3和包括组成型磷酸丙糖异构酶(triose-phosphate isomerase,TPI)启动子在内的表达盒(TPI cassette)片段,将URA3基因和表达盒依次连接到pUC18-Sr的SalI/XbaI和XbaI/KpnI位点,得到载体pNK1。此外,将表达盒和来自于质粒pYEX的选择标记Leu2-d基因片段依次连入载体pUC18-Sr的XbaI/KpnI和平端化的XbaI位点,得到载体pNK2。
     为检验载体pNK1和pNK2的功能,将来自质粒pEGFP-N1的绿色荧光蛋白基因(GFP)的BamHI/HpaI片段连接到pNK1和pNK2的BamHI/XmaI位点,构建表达载体pNK1-GFP和pNK2-GFP。将两个载体线性化后转化酿酒酵母,在Ura和Leu选择培养基可以筛选到相应载体的酵母转化子。结果表明选择标记基因功能正常。通过荧光显微镜能够观察到过夜培养的转化子有绿色荧光,表明TPI启动子能够驱动绿色荧光蛋白基因表达。此外,利用Southern blot证明了GFP基因能够整合到酵母染色体中。在非选择性压力下,转化子经过近50代培养后,分别有99%的含有URA3基因的转化子和100%含有Leu-2d基因的转化子仍然能够在各自的选择培养基上生长。表明两种整合载体都能够保证整合于酵母的染色体中的GFP基因的遗传稳定性。在细胞浓度相同条件下,通过荧光显微镜观察到含有pNK1-GFP的转化子中有58%的细胞发出绿色荧光。故选择pNK1来进行人的重组胰高血糖素样肽-1类似物的表达。
     以本实验室构建的十拷贝长效口服GLP-1(recombinant oval long-actingGLP-1,rolGLP-1)融合基因作为外源基因,利用多拷贝酿酒酵母整合载体pNK1构建表达载体pNK-GLP。用表达载体转化蛋白酶缺陷型酿酒酵母BJ2407,通过Ura~-营养缺陷培养基筛选转化子。随机挑取三个转化子,经过Southern blot鉴定和生长活力测定,选择转化子SG2用于进一步研究。小量培养的转化子SG2经过玻璃珠破碎,SDS-PAGE后,利用Western blot检测到一条约36kDa的蛋白条带,大小与预期相符,表明rolGLP-1融合蛋白得到表达。经过1:1接种培养的SG2裂解后,用Ni-NTA分离rolGLP-1融合蛋白。根据Bradford定量法和蛋白光密度分析算出rolGLP-1融合蛋白表达量的估计值为0.84mg/g湿细胞。在非选择培养基中的连续培养和Western blot鉴定表明,SG2中的rolGLP-1融合基因保持着良好的稳定性。利用冷冻干燥技术处理培养至对数期末的SG2,用冻干的SG2进行降低高血糖大鼠血糖水平的研究。
     Wistar大鼠禁食10小时后,腹腔注射60mg/kg链脲佐菌素构建高血糖模型大鼠。造模成功的大鼠血糖水平为25.1±3.5mM。对高血糖大鼠分别进行5g重组酵母SG2/kg剂量灌胃;0.5 g重组酵母SG2/kg剂量灌胃和0.1 g重组酵母SG2/kg剂量灌胃;阳性对照组进行0.1g二甲双胍/kg剂量灌胃;模型组进行5g酵母BJ2407/kg剂量灌胃,所有处理持续20天。体内活性分析结果表明,模型组大鼠血糖依然维持高水平(26.2±2.9mM)。0.5 g重组酵母SG2/kg和0.1 g重组酵母SG2/kg处理组大鼠血糖水平没有明显降低。0.1g二甲双胍/kg和5g重组酵母SG2/kg服药量能够显著降低高血糖大鼠血糖水平。二甲双胍组大鼠血糖值由灌胃前的25.1±3.9mM下降到19.1±4.3mM;5g重组酵母SG2/kg处理组大鼠血糖水平由24.8±4.0mM下降到21.2±3.8mM。此外,大鼠饮水量、摄食量和体重等异常体征也明显改善。
     综上所述,本研究以rDNA序列为整合位点分别构建了含有不同营养缺陷型选择标记和相同组成型启动子的多拷贝整合载体pNK1和pNK2,并以载体pNK1构建了含有十拷贝长效rolGLP-1融合基因的表达载体,通过转化酿酒酵母BJ2407得到稳定表达长效rolGLP-1融合蛋白的重组酵母SG2。生物活性试验结果表明,口服重组酵母SG2能够降低高血糖大鼠血糖水平,为进一步研发糖尿病预防和治疗性酵母饮品、食品或生物药物奠定了基础。
Currently,most peptide and protein drugs are still administered by the parenteral route because of insufficient absorption from the gastrointestinal tract.Therapeutic peptides and proteins are usually used for chronic conditions,and the use of injections during long-term treatment has obvious drawbacks.In contrast to this inconvenient and potentially problematic method of drug administration,the oral route offers the advantages of self-administration with a high degree of patient acceptability and compliance,and avoids the pain,discomfort,and possibility of infections caused by injectable dosage forms.Therefore,developing the effective and successful oral delivery system,in order to maximize the therapeutic potential of this class of agents, has been an ongoing topic in pharmaceutical research.It is an innovative way that recombinant microorganisms expressing therapeutic peptides and proteins are used as drug delivery system.Both bacteria and yeasts could be used as a new drug delivery vehicles to the gastrointestinal tract.
     Glucagon-like peptide-1(GLP-1),so-called incretin,is a peptide hormone secreted from gut endocrine cells.It has lots of physiological actions,including glucose-dependent insulinotropic effect,stimulation ofβ-cell proliferation and so on. Therefore,GLP-1 has great therapeutic potential to treat diabetes type 2.However, the clinical application of native GLP-1 is limited by its very short half-life in vivo due principally to its rapid degradation by dipeptidyl peptidaseⅣ(DPPⅣ) and renal clearance.Accordingly,developing long-acting therapeutic GLP-1 analogs is of considerable interest.
     S.cerevisiae(baker yeast) is rich in vitamins,digestive enzymes and so on.As we know,it is a long history that S.cerevisiae is used as tea or beverage in Taiwan, Hong Kong and other places.If S.cerevisiae cells could be utilized as a drug vehicle, or named sustained release "capsules",to intracellularly stably express therapeutic polypeptide drugs for diabetes type 2,we might develop its therapeutic use as functional drinks and food,and even biodrug.Thus,we can prevent and treat diabetes or other chronic diseases as we enjoy these delicious drinks or food.This strategy would be very attractive.
     This study aims to construct recombinant S.cerevisiae intracellularly stably expressing polypeptide for the treatment of diabetes type 2 in order to lay the foundation for the development of the therapeutic use of yeast as drinks,food or biodrug.We start with the construction of yeast integrating vector containing the backbone of the multiple plasmid pUC18.For targeted integration of foreign gene into reiterated multi-copy rDNA sequence on yeast chromosome,we firstly designed two pairs of primers to amply two rDNA fragment,AB and CD.These two fragment located in a 2.2kb recombination hot region between 25SrDNA gene and 5SrDNA gene.Two fragments of AB and CD were successively cloned into EcoRⅠ/SacⅠand PstⅠsites of pUC18.The plasmid named pUC18-Sr was obtained.Using vector pYX212 as a template,two pairs of primers,U1-U2 and T1-T2,were designed to amply auxotropic selective marker URA3 gene and expression cassette containing TPI promoter,respectively.Afterwards,amplied URA3 gene and expression cassette fragment,were ligated into SalI/XbaI and XbaI/KpnI sites of pUC18-Sr.The vector pNK1 was obtained.In addition,expression cassette fragment and selective marker Leu2-d gene fragment from pYEX were successively ligated into XbaI/KpnI and blunted XbaI sites of pUC18-Sr.Vector pNK2 was generated.
     To test the function of vectors pNK1 and pNK2,BamHI/HpaI fragment from plasmid pEGFP-N1 containing green fluorescent protein gene(GFP) was ligated into BamHI/XmaI site in expression cassette to construct expression vectors pNK1-GFP and pNK2-GFP.The linearized pNK1-GFP and pNK2-GFP were transformed into Saccharomycess cerevisiae.The transformants containing URA3 gene were selected on Ura selective medium.The transformants containing Leu-2d gene were selected on Leu selective medium.The results showed that the function of two selective genes is normal.After transformants were cultured overnight,green fluorescence from transforms was observed by fluorescence microscope,indicating promoter TPI might drive the expression of GFP gene.Furthermore,the results of Southern blot demonstrated that GFP gene was integrated into yeast genome.Under the non-selective condition,Above 99%transformant containing URA3 gene SG2 and 100%transforms containing Leu-2d gene still grew on Ura~- selective medium and on Leu~- selective medium,respectively,throughout sequential passage of 50 generations. The above results indicated that both pNK1 and pNK2 guarantee the mitotic stability of GFP gene integrated into yeast chromosome.Because 58%cells from transformants containing pNK1-GFP were of green fluorescence by fluorescence microscope observation in the same cell concentration,pNK1 was selected to express recombinant oral long-acting glucagons-like peptide-1(rolGLP-1).
     Utilizing a ten-tandem-copy rolGLP-1 fusion gene constructed in our lab as a foreign gene,the expression vector pNK-GLP was constructed by introducing rolGLP-1 fusion gene into multi-copy Yip(pNK1).The linearized pNK-GLP was transformed into protease-deficient S.cerevisiae BJ2407,and the transformants were selected on auxotrophic(Ura~-) selective plate.Three transformants were randomly selected.Then,the positive transformants were identified by Southern blot.After growth determination in YPD medium,transformant SG2 was selected and used for further research.The small-scale cultures of transformant SG2,using glass beads,was broken.The cell lysate separated on the SDS-PAGE were analyzed by West blot,an approx.36kD protein band corresponding to the predictive molecular weight was detected.The analysis result indicated that the rolGLP-1 fusion protein was intracellularly expressed in transformant SG2.After growth in YPD medium with the inoculum and medium ratio of 1:1,SG2 was disrupted.The cell lysate was applied to Ni-NTA resin column,and rolGLP-1 fusion protein was purified.The expression level of rhGLP-1 analogue fusion protein was assessed by densitometric scaning,and the amount of rolGLP-1 fusion protein evaluated by Bradford method reached 0.84mg/g wet cells.After SG2 continuously growing in non-selective medium, rolGLP-1 fusion gene was of mitotically stable,and still was expressed in SG2 by analysis of Western blot.The SG2 cells in late exponential phase were dried by freeze-drying technique,and then lyophilized SG2 cells were used for the assessment of glucose-lowering effects in hyperglycemic rats.
     After 10h fasting,Wistar rats were intravenously infected with 60mg streptozotocin/kg to induce the hyperglycemia.The serum glucose level of hyperglycemic rat was 25.1±3.5mM.The hyperglycemic rats were administered various doses(5g/kg,0.5g/kg,0.1g/kg) of recombinant yeast SG2,positive control group were given 0.1g/kg Metformin Hydrochloride and model group were given 5g/kg yeast BJ2407 by gastric gavages for 20 days.The analysis of in vivo activity indicated that serum glucose value of rats in model group still retained high level (26.2±2.9mM).Oral administration of recombinant yeast SG2 at 0.5g/kg/d and 0.1g/kg/d could not obviously lower serum glucose level.Taking 0.1g/kg/d Metformin Hydrochloride or 5g/kg/d SG2 significantly lowered serum glucose level. Oral administration of 0.1g/kg/d Metformin Hydrochloride decreased serum glucose level of hyperglycemic rats from 25.1±3.9 to 19.1±4.3mM(P<0.01).Oral administration of SG2 at 5g/kg/d for 20 days also lowered serum glucose level of hyperglycemic rats from 24.8±4.0 to 21.2±3.8mM(P<0.05).In addition,the abnormal changes of drinking amount,food intake and body weight of hyperglycemic rats also were significantly improved.
     In summary,two multi-copy integration vectors of pNK1 and pNK2,using strategy based on integration into the ribosomal DNA cluster,were successfully constructed in this study.They contain,except for constitutive promoter TPI, auxotrophic selective marker URA3 gene and Leu-2d gene,respectively.Whereafter, the expression vector containing ten-tandem-copy rolGLP-1 fusion gene,pNK-GLP, was constructed and transformed into S.cerevisiae BJ2407.recombinant yeast SG2 stably expressing rolGLP-1 fusion protein was obtained.Meanwhile,the result of bioactivity test indicated that oral administration of recombinant yeast SG2 could lower serum glucose level of hyperglycemic rats.It laid the well foundation for further development of the use of recombinant S.cerevisiae as beverage,food or biodrug for the prevention and treatment of diabetes type 2.
引文
[1]Bell GI,Sanchchez-pescador R,Laybourn PJ,et al.Exon duplication and divergence in the human preproglucagon gene.Nature,1983,304(5924):368-371
    [2]Timothy JK,Joel FH.The glucagons-like peptides.Endocr Rev,1999,20(6):876-913
    [3]Creultzfeldt W.The incretin concept today.Diabetologia,1979,16(2):75-85
    [4]Lund PK,Goodman RH,Montminy MR,et al.Pancreatic preproglucagon cDNA contains two glucagons-related coding sequences arranged in tandem.Proc Natl Acad Sci USA,1982,79(2):345-349
    [5]Bell GI.The glucagons superfamily:precurcer structure and gene organization.Peptides,1986,7(S1):27-36
    [6]Mojsov S,Heinrich G,Wilson IB,et al.Preproglucagon gene expression in pancreas and intestine diversifies at the level of posttranscriptional processing.J Biol Chem,1986,261(25):11880-11889
    [7]Bell GI,Santerre RF,Mullenbach GT.Hamster preproglucagon contains the sequence of glucagon and two related peptides.Nature,1983,302(5910):716-718
    [8]Drucker DJ.Biological actions and therapeutic potential of the glucagon-like peptides.Gastroenterology,2002,122(2):531-544
    [9]Fehmann HC,Goke R,Goke B.Cell and molecular biology of the incretin hormones glucagon-like peptide-Ⅰ and glucose dependent insulin releasing polypeptide.Endocr Rev,1995,16(3):390-410
    [10]Ahren B.Gut peptides and type 2 diabetes mellitus treatment.Curr Diab Rep,2003,3(5):365-372
    [11]Orskov C.Glucagon-like peptide-1,a new hormone of the enteroinsular axis.Diabetologia,1992,35(8):701-711
    [12]Hermaan C,Goke R,Richter G,et al.Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients.Digestion,1995,56(2):117-126
    [13]Herrmann-Rinke C,Voge A,Hess M,et al.Regulation of glucagon-like peptide-1 secretion from rat ileum by neurotransmitters and peptide.J Endocrinol,1995,147(1):25-31
    [14]Anini Y,Brubaker PL.Muscarinic receptors control glucagons-like peptide-1 secretion by human endocrine L cells.Endocrinology,2003,144(7):3244-3250
    [15]Sugiyama K,Manaka H,Kato T,et al.Stimulation of truncated glucagon-like peptide-1release from the isolated perfused canine ileum by glucose absorption.Digestion,1994,55(1):24-28
    [16]Orskov C,Andreasen J,Hoist JJ.All products of proglucagon are elevated in plasma form uremic patients.J Clin Endocrinol Metab,1992,74(2):379-384
    [17]Hassan M,Eskilsson A,Nilsson C,et al.In vivo dynamic distribution of 131I-glucagon-like peptide-1(7-36) amide in the rat studied by gamma camera.Nucl Med Biol,1999,26(4):413-420
    [18]Mentlein R,Dipeptidyl-peptidase Ⅳ(CD26)-role in the inactivation of regulatory peptides.Regal Pept,1999,85(1):9-24
    [19]Mentlein R,Gallwitz B,Schmidt WE.Dipeptidyl-peptidase Ⅳ hydrolyses gastric inhibitory polypeptide,glucagon-like peptide-1(7-36) amide,peptide histidine methionine and is responsible for their degradation in human serum.Eur J Biocbem,1993,214(2):829-835
    [20]Conarello SL,Li Z,Ronan J,et al.Mice lacking dipeptidyl peptidase Ⅳ are protected against obesity and insulin resistance.Proc Natl Acad Sci USA,2003,100(11):6825-6829
    [21]Naush I,Mentlein R,Heymann E.The degradation of bioactive peptides and proteins by dipeptidyl peptidase Ⅳ from human placenta.Biol Chem Hoppe Seyler,1990,371(11):1113-1118
    [22]Hupe-Sodmann K,Goke R,Goke B,et al.Endoproteolysis of ghcagon-like peptide (GLP)-1(7-36) amide by ectopeptidases in RINm5F cells.Peptides,1997,18(5):625-632
    [23]Nathan DM,Schreiber E,Fogel H,et al.Insulinotropic action of glucagon-like peptide-1(7-37) stimulation of proinsulin geneexpression and proinsulin biosynthesis in insulinoma βTC-1 cells.Endocrinol,1992,130(1):159-166
    [24]Weir GC,mojsov S,Hendrick GK,et al.Glucagon-like peptide-1(7-37) action on endocrine pancreas.Diabetes,1989,38(3):338-342
    [25]Wang Y,Egan JM,Raygada M,et al.Glucagons-like peptide-1 affect gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046-38 cell.Endocrinology,1995,136(2):4910-4917
    [26]Perfetti R,Merkel P.Glucagons-like peptide-1:a major regulator of pancreatic β-cell function.Euro J Endocrinol,2000,143(6):717-725
    [27]Nie Y,Nakashima M,Brubaker PL,et al.Regulation of pancreatic PC1 and PC2 associated with increased glucagons and GLP-1 immunoreactivity in diabetic rats.J Clin Invest,2000,105(7):955-965
    [28]Xu G,Stoffers DA,Habener JF,et al.Exendin-4 stimulates both beta-cell replication and neogenesis,resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats.Diabetes,1999,48(12):2270-2276
    [29]Hui H Nourparvar A,Zhao X,et al.Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A-and a phosphatidylinositol 3-kinase dependent pathway.Endocrinology,2003,144(4):1444-1455
    [30]Farilla L,Bulotta A,Hirshberg B,et al.Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets.Endocrinology,2003,144(12):5149-5158
    [31]Nauck MA,Heimesaat MM,Orskov C,et al.Preserved incretin activity of glucagons-like peptide-(7-36)amide but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.J Clin Invest,1993,91(1):301-307
    [32]Komastsu R,Matsuyama T,Nanba M,et al.Glucagonostatic and insulinotropic action of glucagons-like peptide-(7-36)amide.Diabetes,1989,38(7):902-909
    [33]Creutzfeidt WO,Kleine N,Willms B,et al.Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagons-like peptide-1(7-36) amide in type Ⅰdiabetic patients.Diabetes Care,1996,19(6):580-586
    [34]Holst JJ.Glucagons-like peptide-1(GLP-1) a newly discovered GI hormone.Gastroenterology,1994,107(6):1948-1955
    [35]Turton MD,O'Shea D,Gunn I,et al.A role for glucagons-like peptide-1 in the central regulation of feeding.Nature,1996,379(6560):69-72
    [36]Holst JJ.Enteroglucagon.Annu Rev Physiol,1997,59(1):257-271
    [37]Drucker DJ,Nauck MA.The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes.Lancet,2006,368(9548):1696-1705
    [38]Pannacciulli N,Le DS,Salbe AD,et al.Postprandial glucagon-like peptide-1(GLP-1)response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans.Neuroimage,2007,35(2):511-517
    [39]Gutniak M,Orskov C,Holst JJ,et al.Antidiabeto-genic effect of glucagons-like peptide-(7-36) amide in normal subjects and patients with diabetes mellitus.NEngl J Med,1992,326(20):1316-1322
    [40]Orskov C,Wettergren A,Holst JJ.Biological effects and metabolic rates of glucagons-like peptide-1(7-36) amide and glucagons-like peptide-1(7-37) in healthy subjects are indistinguishable.Diabetes,1993,42(5):658-661
    [41]Perry T,Lahiri DK,Chen D,et al.A novel neurotrophic property of glucagons-like peptide-1:a promoter of nerve growth factor-mediated differentiation in PC12 cells.J Pharmacol Exp Ther,2002,300(3):958-966
    [42]Martin E,Daniela RJ,Rolf DF,et al.Glucagons-like peptide-1 improves insulin and proinsulin binding on RINm5F cells and human monocytes.Am J Physiol Endocrinol Metab,2000,279(1):E88-E94
    [43]Nystrom T,GutniakMK,ZhangQ,et al.Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease.Am J Physiol Endocrinol Metab,2004,287(6):E1209-E1215
    [44]Bose AK,Mocanu MM,Carr RD,et al.Glocagon-like Peptide 1 can directly protect the heart against ischemia/reperfusion injury.Diabetes,2005,54(1):146-151
    [45]Steiner DF.The proprotein convertases.Curr Opin Chem Bio,1998,2(1):31-39
    [46]Zhou A,Webb G,Zhu X,et al.Proteolytic processing in the secretory pathway.J Biol Chem,1999,274(30):20745-20748
    [47]Wettergren A,Pridal L,Wojdemann M,et al.Amidated and non-amidated glucagon-like peptide-1(GLP-1):non-pancreatic effects(cephalic phase acid secretion) and stability in plasma in humans.Regul Pept,1998,77(1-3):83-87
    [48]Martinez A,Burrell MA,Kuijk M,et al.Localization of amidating enzymes(PAM) in rat gastrointestinal tract.J Histochem Cytochom,1993,41(11):1617-1622
    [49]Thornton K,Gorenstein G Structrue of glucagon-like peptide-1(7-36) amide in a dodecylphocholine micelle as determined by 2D NMR.Biochem,1994,33(12):3532-3539
    [50]Parker JC,Andrews KM,Rescek DM,et al.Stevenson RW,Singleton DH,Suleske RT.Structure-fuction anaysis of a series of glucagon-like peptide-1 analogues.J Pept Res,1998,52(5):398-409
    [51]Neidigh JW,Fesinmeyer RM,Prickett KS,et al.Exendin-4 and glucagon-like-peptide-1:NMR structural comparisons in the solution and micelle-associated states.Biochemistry,2001,40(44):13188-13200
    [52]Grandt D,Sieburg B,Sievert J.Is GLP-1(9-36) amide an endogenous antagonist at GLP-1receptor.Digestion,1994,55(5):302-309
    [53]Suzuki S,Kawai K,Ohashi S,et al.Comparison of the effects of various C-terminal and N-terminal fragment peptides of glucagon-like peptide-1 on insulin and glucagon release from the isolated perfused rat pancreas.Endocrinology,1989,125(6):3109-3014
    [54]Furuse M,Bungo T,Shimojo M,et al.Effects of various N-terminal fragments of glucagon-like peptide-1(7-36) on food intake in the neonatal chick.Brain Res,1998,807(1-2):214-217
    [55]Siegel EG,Gallwitz B,Scharf G,et al.Biological activity of GLP-1 analogues with N-terminal modifications.Regul Pept,1999,79(2-3):93-102
    [56]Gallwitz B,Witt M,Paetzold G,et al.Structure/activity characterization of glucagons-like peptide-1.Eur J Biochem,1994,225(3):1151-1156
    [57]Gallwitz B,Ropeter T,Morys-Wortman C,et al.GLP-1 analogues resistant to degradation by dipeptidyl petidase Ⅳ in vitro.Regul Pept,2000,86(1-3):103-111
    [58]Doyle ME,Greig NH,Holloway HW,et al.Insertion of an N-terminal 6-aminohexanoic acid after the 7 amino acid position of glucagon-like peptide-1 produces a long-acting hypoglycemic agent.Endocrinology,2001,142(10):4462-4488
    [59]Thorens B.Expression cloning of the pancreatic beta-cell receptoe for the gluco-incretin hormone glucagons-like peptide-1.Proc Natl Acad Sci USA,1992,89(18):9841-8645
    [60]Stoffel M,Espinosa R 3rd,Le Beau MM,et al.Human glucagon-like peptide-1 receptor gene.Localization to chromosome band 6p21 by fluorescence in situ hybridization and linkage of a highly polymorphic simple tandem repeat DNA polymorphism to other markers on chromosome 6.Diabetes,1993,42(8):1215-1218
    [61]Sandhu H,Wiesenthal SR,MacDonnald PE,et al.Glucagons-like peptide-1 increase insulin sensitivity in depancreatized dogs.Diabetes,1999,48(5):1045-1053
    [62]Tibaduiza EC,Chen C,Beinborn M.A small molecule ligand of the glucagons-like peptide-1 receptor targets its amino-terminal hormone binding domain.J Biol Chem,2001, 276(41):37787-37793
    [63]Lopez de Maturana R,Willshaw A,Kuntzsch A,et al.The isolated N-terminal domain of the glucagons-like peptide-1(GLP-1) receptor binds exendin peptides with much higher affinity than GLP-1.J Biol Chem,2003,278(12):10195-10200
    [64]Fuhlendorff J,Johansen NL,Melberg SG,et al.The antiparallel pancreatic polypeptide fold in the binding of neuropeptide Y to Y1 and Y2 receptors.J Biol Chem,1990,265(20):11706-11712
    [65]Holz GG,Leech CA,Heller RS,et al.cAMP-dependent mobilization of intracellular Ca2+stores by activation of ryanodine receptors in pancreatic beta-cells A Ca2+ signaling system stimulated by the insulinotropic hormone glucagons-like peptide-1(7-37).J Biol Chem,1999,274(20):14147-14156
    [66]Bode HP,Moomann B,Dabew R,et al.Glucagons-like peptide-1 elevates cytosolic calciumin pancreatic β-cells independently of protein kinase A.Endocrinology,1999,140(9):3919-3927
    [67]Leech CA,Holz GG,Chepurny O,et al.Expression of cAMP-regulated guaninenucleotide exchange factors in pancreatic β-cells.Biochem Biophys Res Commun,2000,278(1):44-47
    [68]Hui HX,Wright C,Perfetti R.Glucagons-like peptide-1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin secreting cells.Diabetes,2001,50(4):755-796
    [69]Jean B,Sylvain F,Christopher JR,et al.Protein kinase C ξ activation mediates glucagons-like peptide-1 induced pancreatic β-cell proliferation.Diabetes,2001,50(10):2237-2243
    [70]Lenhard JM,Gottschalk WK.Preclinical developments in type 2 diabetes.Adv Drug Deliv Rev,2002,54(9):1199-1212
    [71]Nauck MA,Heimesaat MM,Orskov C,et al.Preserved incretin activity of glucagons-like peptide-(7-36)amide but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.J Clin Invest,1993,91(1):301-307
    [72]Nauck MA,Kleine N,Orskov C,et al.Normalization of fasting hyperglycemia by exogenous glucagon-like peptide-1(7-36) in type 2(non-insulin-dependent) diabetic patients.Diabetologia,1993,36(8):741-744
    [73]Ahren B.New strategy in type 2 diabetes tested in clinical trials:Glucagon-like peptide 1(GLP-1) affects basic caused of the disease.Lakartidningen,2005,102(8):545-549
    [74]Gutniak M,Orskov C,Hoist JJ,et al.Antidiabeto-genic effect of glucagons-like peptide-(7-36) amide in normal subjects and patients with diabetes mellitus.NEngl J Med,1992,326(20):1316-1322
    [75]Raufman JP.Bioactive peptides from lizard venoms.Regul Pept,1996,61(1):1-18
    [76]Gang X,Doris AS,Joel FH,et al.Exendin-4 stimulates both β-cell replication and neogenesis,resulting in increased β-cell mass and improved glucose tolerance in diabetic rats.Diabetes,1999,48(12):2270-2276
    [77]Thorkildsen C,Larsen SN,Meier E,et al.GLP-1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/dbmice.J Pharmacol Exp Ther,2003,307(2):490-496
    [78]Knudsen LB,Agerso H,Bjenning C,et al.GLP-1 derivatives as novel compounds for the treatment of type 2 diabetes.Drugs Future,2001,26(7):677-685
    [79]Knudsen LB,Kiel D,Teng M,et al.Small-molecule agonist for the glucagon-like peptide-1receptor.Proc Natl Acad Sci USA,2007,104(3):937-942
    [80]Chen D,Liao JY,Li N,et al.A nonpeptidic agonist of glucagon-like peptide-1 receptors with efficacy in diabetic db/db mice.Proc Natl Acad Sci USA,2007,104(3):943-948
    [81]Ohneda A,Ohneda K,Ohneda M,et al.The structure-function relationship of GLP-1related peptides in the endocrine function of the canine pancreas.Tohoku J Exp Med,1991,165(3):209-221
    [82]Hareter A,Hoffmann E,Bode HP,et al.The positive charge of the imidazole side chain of histidine7 is crucial for GLP-1 action.Endocr J,1997,44(5):701-705
    [83]Gallwitz B,Ropeter T,Morys-Wortmann C,et al.GLP-1-analogues resistant to degradation by dipeptidyl-peptidase Ⅳ in vitro.Regul Pept,2000,86(1-3):103-111
    [84]O'Harte FP,Mooney MH,Kelly CM,et al.Degradation and glycemic effects of His(7)-glucitol glucagonlike peptide-1(7-36)amide in obese diabetic ob/ob mice.Regul Pept,2001,96(3):95-104
    [85]Green BD,Mooney MH,Gault VA,et al.N-terminal His(7)-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase Ⅳ-stable analogues with potent antihyperglycaemic activity.J Endocrinol,2004,180(3):379-388
    [86]Ritzel U,Leonhardt U,Ottleben M,et al.A synthetic glucagons-like peptide-1 analog with improved plasma stability.J Endocrinol,1998,159(1):93-102
    [87]Wettergren A,Wojdemann M,Holst JJ.The inhibitory effect of glucagon-like peptide-1(7-36)amide on antral motility is antagonized by its N-terminally truncated primary metabolite GLP-1(9-36)amide.Peptides,1998,19(5):877-882
    [88]Adelhorst K,Hedegaard BB,Knudsen LB,et al.Structure activity studies of glucagon-like peptide-1.J Biol Chem,1994,269(9):6275-6278
    [89]Green BD,Mooney MH,Gault VA,et al.Lys9 for Glu9 substitution in glucagon-like peptide-1(7-36)amide confers dipeptidylpeptidase Ⅳ resistance with cellular and metabolic actions similar to those of established antagonists glucagonlike peptide-1(9-36)amide and exendin(9-39).Metabolism,2004,53(2):252-259
    [90]Green BD,Gault VA,Irwin N,et al.Metabolic stability,receptor binding,cAMP generation,insulin secretion and antihyperglycaemic activity of novel N-terminal Glu9-substituted analogues of glucagon-like peptide-1.J Biol Chem,2003,384(12):1543-1551
    [91]Watanabe Y,Kawai K,Ohashi S,et al.Structure-activity relationships of glucagon-like peptide-1(7-36)amide:insulinotropic activities in perfused rat pancreases,and receptor binding and cyclic AMP production in RINm5F cells.J Endocrinol,1994,140(1):45-52
    [92]Agerso H,Vicini P.Pharmacodynamics of NN2211,a novel long acting GLP-1 derivative.Eur J Pharm Sci,2003,19(2-3):141-150
    [93]Claus BJ,Malene H,Jeppe S,et al.Bedtime administration of NN2211,a long-acting GLP-1 derivative,substantially reduces fasting and postprandial glycemia in type-2diabetes.Diabetes,2002,51(2):424-429
    [94]Rolin B,Lersen MO,Gotfredsen CF,et al.The long-acting GLP-1 derivative NN2211ameliorates glycemia and increases beta-cell mass in diabetic mice.Am J Physiol Endocrinol Metab,2002,283(4):E745-E752
    [95]Elbrond B,Jakobsen G,Larsen S,et al.Pharmacokinetics,pharmacodynamics,safety,and tolerability of a single-dose of NN2211,a long-acting glucagon-like peptide 1 derivative,in healthy male subjects.Diabetes Care,2002,25(8):1398-1404
    [96]Bayes M,Rabasseda X,Prous JR.Gateways to clinical trials.Methods Find Exp Clin Pharmacol,2003,25(7):565-597
    [97]Kim JG,Baggio LL,Bridon DP et al.Development and characterization of a glucagons-like peptide 1-albumin conjugate.Diabetes,2003,52(3):751-759
    [98]Giannoukakis N.CJC-1131 ConjuChem.Curt Opin Investig Drugs,2003,4(10):1245-1249
    [99]Chou JZ,Place GD,Waters DG,et al.A radioimmunoassay for LY315 902,an analog of glucagon-like insulinotropic peptide,and its application in the study of canine pharmacokinetics.J Pharm Sci,1997,86(7):768-773
    [100]Juhl CB,Hollingdal M,Sturis J,et al.Bedtime administration of NN2211,a long-acting GLP-1 derivative,substantially reduces fasting and postprandial glycemia in type 2diabetes.Diabetes,2002,51(2):424-429
    [101]Lee SH,Lee S,Youn YS,et al.Synthesis,characterization,and pharmacokinefic studies of PEGylated glucagon-like peptide-1.Bioconjng Chem,2005,16(2):377-380
    [102]Holst JJ,Deacon CF.Inhibition of the activity of dipeptidyl-peptidase Ⅳ as a treatment for type-2 diabetes mellitus.Diabetes,1998,47(11):1633-1670
    [103]Pospisilik JA,Stafford SG,et al.Long-term treatment with the dipeptidyl peptidase Ⅳinhibitor P32/98 causes sustained improvements in glucose tolerance,insulin sensitivity,hyperinsulinemia,and beta-call glucose responsiveness in VDF(fa/fa) Zucker rats.Diabetes,2002,51(4):943-950
    [104]Sudre B,Broqua P,White RB,et al.Chronic inhibition of circulating dipeptidyl peptidase Ⅳby FE999011 delays the occurrence of diabetes in male zucker diabetic fatty rats.Diabetes,2002,51(5):1461-1469
    [105]Reimer MK,Holst JJ,Ahren B.Long-term inhibition of dipeptidyl peptidase Ⅵ improves glucose tolerance and preserves islet function in mice.Eur J Endocrinol,2002,146(5):717-727
    [106]Bo A,Erik S,Hillevi L,et al.Inhibition of dipeptidyl peptidase Ⅳ improves metabolic control over a 4-week study period in type 2 diabetes.Diabetes Care,2002,25(5):869-873
    [107]Takasaki K,Iwase M,Nakajima T,et al.K579,a slowbinding inhibitor of dipeptidyl peptidase Ⅳ,is a long-acting hypoglycemic agent.Eur J Pharmacol,2004,486(3):335-342
    [108]Wargent E,Stocker C,Augstein P,et al.Improvement of glucose tolerance in Zucker diabetic fatty rats by long-term treatment with the dipeptidyl peptidase inhibitor P32/95:comparison with and combination with rosiglitazone.Diabetes Obes Metab,2005,7(2):170-81
    [109]Jeanfavre DD,Woska JR,Pargellis CA,et al.Effect of denxycoformycin and Val-boroPro on the associated catalytic activities of lymphocyte CD26 and ecto-adenosine deaminase.Biocbem Pharmacol,1996,52(11):1757-1765
    [110]Korom S,De Meester I,Maas E,et al.CD26 expression and enzymatic activity in recipients of kidney allografts.Transplant Proc,2002,34(5):1753-1754
    [111]Rose CA,Kim Y.Precipitation of insulinotropin in the presence of protamine:Effect of phenol and zinc on the isophane ratio and the insulinotropin concentration in the supermatant.Pharm Res,1995,12(9):1284-1288
    [112]Choi Suna,Baudys Miroslav,Kim Sung Wan.Control of blood glucose by novel GLP-1delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats.Pharmaceutical Research,2004,21(5):827-831
    [113]张志珍,杨生生,毛积芳.重组人胰高血糖素样肽-1的表达、纯化及其生物学活性.中国生物化学与分子生物学报,2002,18(1):5-8
    [114]黄静,徐近,左翼等.重组人以高血糖素样肽-1的表达及生物学活性.中国生物工程杂志,2006,26(1):50-55
    [115]左翼,黄静,卞慧芳等.人胰高血糖素样肽-1串联体的克隆及其表达.华东师范大学学报,2006,4(1):110-122
    [116]Hou J,Yan R,Ding D,et al.Oral administration of a fusion protein containing eight GLP-1analogues produced in Escherichia coli BL21(DE3) in streptozotocin-induced diabetic rats.Biotechnol Lett,2007,29(10):1439-1446
    [117]Egel-Mitania M,Andersena AS,Diersb I,et al,Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains.Enzyme and Microbial Technology,2000,26(9-10):671-677
    [118]陈家琪,高智慧,朱元元等.重组胰高血糖素样肽-1与人血清白蛋白融合蛋白的纯化及活性研究.微生物学通报,2007,34(5):871-874
    [119]Jianhua Hou,Ruixiang Yan,Liquan Yang,Zhiqiang Wu,Cuiyan Wang,Dongfeng Ding,Na Li,Chunxiao Ma,Minggang Li.High-level Expression of Fusion Protein Containing Ten Tandem Repeated GLP-1 Analogues in Yeast Pichia pastoris and Its Biological Activity in Diabetic Rats Model.Bioscience Biotechnology and Biochemistry,2007,71(6):1462-1469
    [120]王晖,钱江潮,庄英萍等.不同拷贝数及间隔肽序列对毕赤酵母分泌表达.华东理工大学学报,2008,34(1):40-46
    [121]Sugita K,Endo-Kasahara S,Tada Y,et al.Genetically modified rice seeds accumulating GLP-1 analogue stimulate insulin secretion from a mouse pancreatic beta-cell line.FEBS lett,2005,579(5):1085-1088
    [122]Yasuda H,Tada Y,Hayashi Y,et al.Expression of the small peptide GLP-1 in transgenic plants.Transgenic Res,2005,14(5):677-684
    [123]BURCELIN R,ROLLAND E,DOLCI W,et al,Encapsulated,Genetically Engineered Cells,Secreting Glucagon-like Peptide-1 for the Treatment of Non-insulin-dependent Diabetes Mellitus.ANNALS NEW YORK ACADEMY OF SCIENCES,1999,875(6):277-285
    [124]Gabor F,Boguer E,Weissenboeck A,et al.The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery.Adv Drug Deliv Rev,2004,56(4):459-480
    [125]Lipka E,Crison J,Amidon GL.Transmembrane transport of pepride type compounds:prospects for oral delivery.J Control Release,1996,39(2-3):121-129
    [126]Hunter J,Hirst BH.Intestinal secretions of drugs:the role of P-glycoprotein and related drug efflux systems in limiting oral chug absorption.Adv Drug Deliv Rev,1997,25(2-3):129-157
    [127]Brayden D J,O'Mahony DJ.Novel oral drug delivery gateways for biotechnology products:polypetides and vaccines.Pharm Sci Technol Today,1998,1(7):291-299
    [128]Fagerholm U,Lennernas H.Experimental estimation of the effective unstirred water layer thickness in the human jejunum and its importance in oral drug absorption.Eur J Pharm Sci,1995,3(5):247-253
    [129]Lathed AW,Artursson P,Gr°asj J,et al.Diffusion of drugs in native and purified delivery system,gastrointestinal mucus.J Phatm Sci,1997,86(6):660-665
    [130]Pauletti GM,Gangwar S,Knipp GT,et al.Structural requirements for intestinal the contents of this review absorption of peptide drugs.J Control Release,1996,41(1-2):3-17
    [131]Pauletti GM,Gangwar S,Siahaan TJ,et al.Improvement of oral peptide bioavailability:peptidomimetics and prodrug strategies.Adv Drug Deliv Rev,1997,27(2-3):235-56
    [132]Lapierre LA.The molecular structure of the tight junction.Adv Drug Deliv Rev,2000,41(3):255-264
    [133]Ward PD,Tippin TK,Thakker DR.Enhancing paracellular permeability by modulating epithelial tight junctious.Pharm Sci Technol Today,2000,3(10):346-358
    [134]Benet LZ,Wu C-Y,Hebert MF,et al.Intestinal drug metabolism and antitransport processes:a potential paradigm shift in oral drug delivery.J Control Release,1996,39(2-3):139-143
    [135]Burton PS,Goodwin JT,Conradi RA,et al.In vitro permeability of peptidomimetics drugs:the role of polarized efflux pathways as additional barriers to absorption.Adv Drug Deliv Rev,1997,23(1-3):143-156
    [136]Sun J,He Z-G,Cheng G,et al.Multidrug resistance P-glycoprotein:crucial significance in drug disposition and interaction.Med Sci Monit,2004,10(1):RA5-14
    [137]Langguth P,Bohner V,Heizmann J,et al.The challenge of proteolytic enzymes in Intestinal peptide delivery.J Control Release,1997,46(1-2):39-57
    [138]Conradi RA,Hilgers AR,Ho NF,et al.The influence of peptide structure on transport across Caen-2 cells.Ⅱ.Peptide bond modification which results in improved permeability.Pharm Res,1992,9(3):435-439
    [139]Fasano A,Uzzau S.Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model.J Clin Invest,1997,99(6):1158-1164
    [140]Hugger ED,Audns KL,Borchardt RT.Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers.J Pharm Sci,2002,91(9):1980-1990
    [141]Caliph SM,Charman WN,Porter CJ.Effect of short-,medium-,and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats.J Pharm Sci,2000,89(8):1073-1084
    [142]O'Driscoll CM.Lipid-based formulations for intestinal lymphatic delivery.Eur J Pharm Sci,2002,15(5):405-415
    [143]Whitehead K,Shen Z,Mitragotri S.Oral delivery of macromolecules using intestinal patches:applications for insulin delivery.J Control Release,2004,98(1):37-45
    [144]Gangwar S,Pauletti GM,Wang B,et al.Prodrug strategies to enhance the intestinal absorption of peptides.Drug Discov Today,1997,2(4):148-155
    [145]Bundgaard H.Prodrugs as a means to improve the delivery of peptide drugs.Adv Drug Deliv Rev,1992,8(1):1-38
    [146]Borchard RT.Optimising oral absorption of peptides using prodrug strategies.J Control Release,1999,62(1-2):231-238
    [147]Mizuma T,Koyanagi A,Awazu S.Intestinal transport and metabolism of glucose conjugated kyotorphin and cyclic kyotorphin:metabolic degradation is crucial to intestinal absorption of peptide drugs.Biochim Biophys Acta,2000,1475(1):90-98
    [148]Roberts MJ,Bentley MD,Harris JM.Chemistry for peptide and protein PEGylation.Adv Drug Deliv Rev,2002,54(4):459-476
    [149]Hinds KD,Kim SW.Effects of PEG conjugation on insulin properties.Adv Drug Deliv Rev,2002,54(4):505-530
    [150]Cefalu WT.Concept,strategies,and feasibility of noninvasive insulin delivery.Diabetes Care,2004,27(1):239-246
    [151]Owens DR,Zinman B,Bolli G.Alternative routes of insulin delivery.Diabet Med,2003,20(11):886-898
    [152]Wang J,Chow D,Heiati H,et al.Reversible lipidisation for the oral delivery of salmon calcitonin.J Control Release,2003,88(3):369-380
    [153]Rubio-Aliaga I,Daniel H.Mammalian peptide transporters as targets for drug delivery.Trends Pharmacol Sci,2002,23(9):434-440
    [154]Friedrichen GM,Nielsen CU,Steffansen B,et al.Model prodrugs designed for the intestinal peptide transporter:a synthetic approach for coupling of hydroxyl containing compounds to dipeptides.Eur J Pharm Sci,2001,14(1):13-19
    [155]Russel-Jones GJ,Arthur L,Walker H.Vitamin B12-mediated transport of nanoparticles across Caco-2 cells.Int J Pharm,1999,179(2):247-255
    [156]Baird AW,Campion DP,O'Brien L,et al.Oral delivery of pathogens from the intestine to the nervous system.J Drug Target,2004,12(2):71-78
    [157]Van der Lubben IM,Verhoef JC,Borchard G,et al.Chitosan and its derivatives in mucosal drug and vaccine delivery.Eur J Pharm Sci,2001,14(3):201-207
    [158]Aungst BJ,Saitoh H,Burcham DL,et al.Enhancement of the intestinal absorption of peptides and non peptides.J Control Release,1996,41(1):19-31
    [159]Bernkop-Schn(u|¨)rch A,Kast CE,Guggi D.Permeation enhancing polymers in oral delivery of hydrophilic macromolecules:thiomer/GSH systems.J Control Release,2003,93(2):95-103
    [160]Lehr C-M.Lectin-mediated drug delivery:the second generation of bioadhesives.J Control Release,2000,65(1-2):19-29
    [161]Marsh(u|¨)tz MK,Bernkop-Schn(u|¨)rch A,Thiolated polymers:self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion.Eur J Pharm Sci,2002,15(4):387-394
    [162]Marsch(u|¨)tz MK,Caliceti P,Bernkop-Schn(u|¨)rch A.Design and in vivo evaluation of an oral delivery system for insulin.Pharm Res,2000,17(12):1468-1474
    [163]Gabor F,Bernkop-Schn(u|¨)rch A,Hamilton G.Bioadhesion to the intestine by means of E.coli K99-fimbriae:gastrointestinal stability and specificity of adherence.Eur J Pharm Sci,1997,5(4):233-242
    [164]Jung T,Kamm W,Breitenbach A,et al.Biodegradable nanoparticles for oral delivery of peptides:is there a role for polymers to affect mucosal uptake? Eur J Pharma Sci,2000,10(1):35-38
    [165]Russel-Jones GJ.The potential use of receptor-mediated endocytosis for oral drug delivery.Adv Drug Deliv Rev,2001,46(1-3):59-73
    [166]Norris DA,Puri N,Sinko PJ.The effect of physical barriers and properties on the oral absorption of particulates.Adv Drug Deliv Rev,1998,34(2-3):135-154
    [167]Pan Y,Li Y-J,Zhao H-Y,et al.Bioadhesive polysaccharide in protein delivery system:chitosan nanoparticles improve the intestinal absorption of insulin in vivo.Int J Pharm,2002,249(1-2):139-147
    [168]Yang L,Chu JS,Fix JA.Colon-specific drug delivery:new approaches and in vitro/in vivo evaluation.Int J Pharm,2002,235(1-2):1-15
    [169]Dorkoosh FA,Verhoef JC,Borchard G,et al.Development and characterisation of a novel peroral peptide drug delivery system.J Control Release,2001,71(3):307-318
    [170]Molin,S.Environmental potential of suicide genes.Curr.Opin.Biotechnol,1993,4(3):299-305
    [171]Canganella F,Paganini S,Ovidi M,et al.A microbiolosy investigation on probiotic pharmaceutical products used for human health.Microbiol.Res,1997,152(2):171-179
    [172]Harms HK,Bertele-Harms RM,Bruer-Kleis D.Enzymesubstitution therapy with the yeast Saccharomyces cerevisiae in congenital sucrase-isomaltase deficiency.N Engl J Meal,1987,316(21):1306-1309
    [173]Bergogne-Berezin E.Treatment and prevention of antibiotic associated diarrhoea.Int J Antimicrob Agents,2000,16(4):521-526
    [174]Schreuder MP,Deen C,Boersma WJA,et al.Yeast expressing hepatitis B virus surface antigen determinants on its surface:implications for a possible oral vaccine.Vaccine,1996,14(5):383-388
    [175]郑敏,张飞雄,刘丽.酵母表达系统表达外源基因的研究进展.首都师范大学学报,1999,20(4):73-78
    [176]Meilhoc E,Masson JM,Tessie J.High efficiency transformation of intact yeast cells by electroporation.BiolTechnology,1990,8(3):223-227
    [177]Danhash N,Gardner DCJ,Oliver SG Heritable damage to yeast caused by transformation.BiolTechnology,1991,9(2):179-182
    [178]Beggs JD.Transformation of yeast by a replicating hybrid plasmid.Nature,1978,275(5676):104-109
    [179]Loison G,Vidal A,Findeli A,et al.High level of expression of a protective antigen of schistosomes in Saccharomyces cerevisiae.Yeast,1989,5(6):497-507
    [180]Loison G,Nguyen-Juilleret M,Alouani F,et al.Plasmid-transformed URA3 FUR1double-mutants of S.cerevisiae:an auto-selection system applicable to the production of foreign proteins.Bio/Technology,1986,4(5):433-437
    [181]Webster TD,Dickson RC.Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin resistance gene of Tn903.Gene,1983,26(2-3):243-252
    [182]Henderson RCA,Cox BS,Tubb R.The transformation of brewing yeasts with a plasmid containing the gene for copper resistance.Curr Genet,1985,9(2):133-138
    [183]Bussey H,Meaden P.Selection and stability of yeast transformants expressing cDNA of an M1 killer toxin-immunity gene.Curr Genet,1985,9(4):285-291
    [184]Murray AW,Szostak JW.Pedigree analysis of plasmid segregation in yeast.Cell,1983,34(3):961-970
    [185]Orr-Weaver TL,Szostak JW,Rothstein RJ.Genetic applications of yeast transformations with linear and gapped plasmids.Meth Enzymol,1983,101(1):228-245
    [186]Lopes TS,Hakaart G-J,Koerts AJ,et al.Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saceharomyces cerevisiae.Gene,1991,105(1):83-90
    [187]Jacobs E,Rutgers T,Voet P,et al.Simultaneous synthesis and assembly of various hepatitis B surface proteins in Saccharomyces cerevisiae.Gene,1989,80(2):279-291
    [188]Shuster JR,Lee H,Moyer DL.Integration and amplification of DNA at yeast delta sequences.Yeast,1990,6(1):S79
    [189]Benton BM,Eng W-K,Dunn JJ,et al.Signal mediated import of bacteriophage T7 RNA polymerase into the Saccharomyces cerevisiae nucleus and specific transcription of target genes.Mol Cell Bin,1990,10(1):353-360
    [190]Tuite MF,Dobson MJ,Roberts NA,et al.Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae.EMBO J,1982,1(5):603-608
    [191]Schena M,Picard D,Yamamoto KR.Vectors for constitutive and inducible gene expression in yeast.Meth Enzymol,1991,194(3):389-398
    [192]Butler JS,Sadhale PP,Platt T.RNA processing in vitro produces mature 3′ ends of a variety of Saccharomyces cerevisiae mRNAs.Mol Cell Biol,1990,10(6):2599-2605
    [193]Romanos MA,Makoff AJ,Fairweather NF,et al.Expression of tetanus toxin fragment C in yeast:gene synthesis is required to eliminate fortuitous polyadenylation sites in AT-rich DNA.Nucleic Acids Res,1991,19(7):1461-1467
    [194]Kniskern PJ,Hagopian A,Montgomery DL,et al.Unusually high-level expression of a foreign gene(hepatitis B virus core antigen) in Saccharomyces cerevisiae.Gene,1986,46(1):135-141
    [195]Cousens LS,Shuster JR,Gallegos C,et al.High level expression of proiusulin in the yeast,Saccharomyces cerevisiae.Gene,1987,61(3):265-275
    [196]King K,Dohlman HG,Thorner J,et al.Control of yeast mating signal transduction by a mammalian β2-adrenergic receptor and Gsα subunit.Science,1990,250(1):121-123
    [197]Walhout AJ,Vidal MA.Genetic strategy to eliminate self-activator baits prior to high-throughput yeast two-hybrid screens.Genome Res,1999,9(11):1128-1134
    [198]Gavin AC,Boche M,Krause R,et al.Functional organization of the yeast proteome by systematic analysis of protein complexes.Nature,2002,415(10):141-147
    [199]Sambrook J,Russell D W & Irwin N.Molecular Cloning:a Laboratory Manual,3rd edn.Cold Spring Harbor,NY:Cold Spring Harbor Laboratory,2000:166-168
    [200]Ausubel F M,et.al.精编分子生物学实验指南.第3版.北京:科学技术出版社,1999:365-366
    [201]Yang S,Li X,Ding D,et al.A method for filling-in the cohesive ends of double-stranded DNA using pfu DNA polymerase.Biotechnol Appl Biochem,2005,42(pt3):223-226
    [202]LOPES T S,De WIJS I J,STEENHAUER S I,et al.Factor affecting the miotic stability of high-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae.Yeast,1996,12(5):467-477
    [203]陈向岭,袁汉英,胡翔华 等通过同源重组构建酿酒酵母新型表达质粒.中国科学C 辑 生命科学,2005,35(1):37-43
    [204]Yang F,Moss LG,Phillips GN.The molecular structure of green fluorescent protein.Nat.Biotechnol,1996,14(10):1246-1251
    [205]Towbin H,Staehelin T,Gordon J.Electropboretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets:procedure and some applications,Proc Natl Acad Sci USA,1979,76(9):4350-4354
    [206]Piyaviriyakul P,Panyim S,and Eurwilaichitr L.High intracellular expression of giant catfish growth hormone under the control of PGK promoter in Saccharomyces cerevisiae.World Journal of Microbiology & Biotechnology,2002,18(8):773-777
    [207]Hitzeman RA,Hagie FE,Levine HL,et al.Expression of a human gene for interferon in yeast.Nature,1981,293(5835):717-722
    [208]Koro CE,Bowlin SJ,Bourgeois N,et al.Glycemic control from 1988 to 2000 among U.S.adults diagnosed with type 2 diabetes:a preliminary report.Diabetes Care,2004,27(1):17-20
    [209]Monnier L,Lapinski H,Colette C.Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients:variations with increasing levels of HbAlc.Diabetes Care,2003,26(3):881-885
    [210]Hall JF,Webb TJB.Factors affecting the survival of lyophilized brewery strains.J Inst Brew,1975,81(6):471-475
    [211]Cerrutti P,Segnviade M,Huergo M,et al.Commercial baker's yeast stability as affected by intracellular content of trehalose,dehydration procedure and the physical properties of external matrices.Appl Microbiol Biotechnol,2000,54(4):575-580
    [212]Yu DM,Wu R,Yin W,et al.A study on Experimental Diabetes Animal Models Induced by Streptozotocin.Chin J Diabetes,1995,3(2):105-109
    [213]Yamamato A,Taniguchi T,Rikyuu K,et al.Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats.Pharm Res,1994,11(10):1496-1500
    [214]Bernkop-Schnurch A.Chitosan and its derivatives:potential excipients for peroral peptide delivery systems.Int J Pharm,2000,194(1):1-13
    [215]Stoll BR,Leipold HR,Milstein S,et al.Amechanistic analysis of carrier-mediated oral delivery of protein therapeutics.J Control Rel,2000,64(1-3):217-228
    [216]Alur H,Beal JD,Pather SI,et al.Evaluation of a novel,natural oligosaccharide gum as a sustained-release and mucoadhesive component of calcitonin buccal tablets.J Pharm Sci,1999,88(12):1313-1319
    [217]Gutniak MK,Larsson H,Heiber SJ,et al.Potential therapeutic levels of glucagon-like peptide 1 achieved in humans by a buccal tablet.Diabetes Care,1996,19(8):843-848

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700