代谢因子对胰岛和下丘脑内分泌相关电生理反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内分泌细胞及神经内分泌细胞是机体内一类主要可兴奋性细胞,其生理功能为分泌相关激素或神经递质。各种类型分泌细胞在接受刺激产生分泌活动前,均表现出膜电位、电阻等一系列电信号的改变。因此,揭示分泌细胞电生理特性的研究对于探讨其细胞内分泌调控机制显得尤为重要。机体内分泌系统和神经内分泌系统受多种代谢因子的调节,如碳水化合物,氨基酸及脂肪酸以及多种代谢相关因子(如Leptin,Adiponectin,Ghrelin,Obestatin)等。为探讨机体代谢相关因子对内分泌及神经内分泌细胞电生理特性和分泌活动的影响,本研究选择经典内分泌细胞胰腺β细胞为代表,研究了物质代谢中脂肪酸对细胞电生理特性及分泌功能的影响,探讨脂肪酸直接影响β细胞的机制;选择经典生长轴的生长激素细胞,研究了新近发现的胃肠激素Ghrelin及Obestatin对生长素细胞的上层调控神经内分泌细胞——GHRH神经元的电生理特性及其功能的影响,探讨机体代谢因子Ghrlein对生长激素分泌的间接调控的机制。
     本文共分为三章。在第1章和2章,采用原代培养的大鼠胰腺β细胞,研究了脂肪酸对胰腺β细胞电生理特性的影响及其机制。第3章采用eGFP-GHRH转基因小鼠,在新鲜制备的下丘脑脑片上检测Ghrelin及Obestatin对小鼠GHRH细胞在完整神经网络中突触反应的影响。
     第一章长链脂肪酸对大鼠胰腺β细胞上电压依赖性钾电流的影响
     1.采用制霉菌素穿孔的全细胞电流记录方法,检测到长链脂肪酸可显著性减小I_K电流,并引起此电流的快速失活,另外,时间曲线显示此效应为可逆性。
     2.采用RT-PCR方法检测到GPR40 mRNA在大鼠胰岛组织、MIN6小鼠β细胞株和INS-1大鼠β细胞株上均有高水平GPR40 mRNA的表达。
     3.采用GPR40特异性siRNA下调MIN6细胞GPR40 mRNA的表达后,细胞的电压依赖性钾电流无明显改变,但亚油酸诱导的电压依赖性钾电流降低效应则被显著抑制。给予受体后分子信号的激动剂,即膜通透性cAMP的激动剂,8-bromo-cAMP,在正常MIN6细胞和siRNA-GPR40处理后MIN6细胞上,均可观察到类似亚油酸诱导的钾电流抑制效应。
     4.ELISA检测结果显示,亚油酸呈浓度依赖性增加MIN6β细胞株胰岛素的分泌。而相同浓度的甲基亚油酸盐并不影响胰岛素分泌及亚油酸的促胰岛素分泌效应。
     结论:①亚油酸通过与细胞膜上GPR40受体结合,显著降低大鼠胰腺β细胞上电压依赖性钾电流并加快其失活。②亚油酸的快速效应可引起胰腺β细胞内钙离子浓度增高,胰岛素释放显著增加。
     第二章亚油酸对大鼠胰腺β细胞上电压依赖性钙电流的影响
     1.制霉菌素穿孔全细胞电流记录法,记录体外原代培养大鼠胰腺β细胞上VDCC电流,细胞外液中加入亚油酸可逆性引起VDCC电流的显著降低。
     2.与GPR40无结合效应的甲基亚油酸盐对大鼠胰腺β细胞VDCC电流无任何影响,而在此基础上,再给予亚油酸,可观察到同样的VDCC电流降低。
     3.亚油酸降低胰腺β细胞上VDCC电流的信号传导途径研究显示,PKC和PKA阻断剂的存在并不影响大鼠胰腺β细胞上的VDCC电流以及亚油酸降低钙电流的效应。Thapsigargin预培养30分钟,可阻断亚油酸诱导的细胞膜上VDCC电流的改变。
     4.[Ca~(2+)]_i测定试验显示,β细胞内钙浓度的基础水平不受Thapsigargin的影响;亚油酸显著增高[Ca~(2+)]_i,而甲基亚油酸并不影响细胞内钙离子浓度的改变。
     5.肪酸与GPR40结合,可激活细胞内PLC—IP_3途径,继而增加细胞内钙的释放。采用PLC阻断剂U73122可完全阻断亚油酸降低β细胞VDCC电流的效应,同时,亚油酸在β细胞上引起的一过性[Ca~(2+)]_i增高也被完全消除。
     结论:亚油酸刺激细胞内钙释放,通过钙诱导的VDCC失活显著降低大鼠胰腺β细胞上电压依赖性钙电流。
     第三章Ghrelin和Obestatin对GFP-GHRH转基因小鼠GHRH神经元Glutamatergic及GABAergic突触反应的影响
     1.Ghrelin及obestatin对GHRH神经元eEPSCs的影响,试验分别检测了16和19个神经元,结果显示,1μM Ghrelin和Obestatin均不影响GHRH神经元上的eEPSCs。
     2.Ghrelin对GHRH神经元eIPSCs的影响,在记录的49个细胞中,26个细胞(约53.06%)的eIPSCs在Ghrelin处理后,较对照电流明显降低,余24个神经元对Ghrelin并不敏感。另外,Ghrelin对eIPSCs的降低效应呈剂量依赖性。
     3.GHSR-1A特异性拮抗剂BIM28163对eIPSCs无影响,但可完全阻断Ghrelin对GHRH细胞eIPSCs的抑制效应。
     4.Obestatin不影响GHRH神经元的eIPSCs,但可完全阻断Ghrelin对GHRH细胞eIPSCs的抑制效应。
     5.为了排除GHRH神经元本身对Ghrelin不敏感的可能性,也采用了先给予Ghrelin,然后Ghrelin与Obestatin联合给药的方式,在6个记录的GHRH神经元中,均观察到Obestatin对Ghrelin的拮抗效应。另外,相同条件下Ghrelin双次给药均可引起GHRH神经元上eIPSCs电流降低的结果用以排除受体失活导致假阳性结果的可能性。
     6.放射免疫法测定小鼠下丘脑脑片培养液中GHRH含量,Ghrlein对基础水平GHRH的释放无影响,但可在28 mM KCl协同作用下刺激GHRH的释放。
     结论:①Ghrelin对GHRH细胞的兴奋性神经递质突触反应无影响,但显著降低GHRH细胞对抑制性神经递质的突触反应,提示Ghrelin可参与调节GHRH神经元兴奋性的增加;②Obestatin阻断Ghrelin对GHRH神经元eIPSCs的抑制效应提示Obestatin阻断Ghrelin促GH分泌的机制发生在下丘脑水平;③Ghrlein对基础水平GHRH的释放无影响,但在KCl协同作用下刺激GHRH释放,提示其在GHRH分泌释放中的调节作用。
     综上所述,本研究首次阐明了长链脂肪酸通过与细胞膜上特异性受体结合,对胰腺β细胞电压依赖性K~+电流及Ca~(2+)电流产生影响,并刺激胰岛素的分泌,为糖尿病的临场治疗提供新的思路。另外,本研究利用eGFP-GHRH转基因小鼠,首次在下丘脑片上观察到Ghrelin对GHRH单个细胞电生理特性的影响以及Obestatin对Ghrelin增加GHRH兴奋性的拮抗效应。并首次在小鼠下丘脑片上证实Ghrelin可促进GHRH的释放,为Ghrelin刺激GH分泌的下丘脑机制提供了直接证据。
Endocrine and neuroendocrine cells are typical excitable cells in our body.Their main physiological function is releasing relevant hormones, neuro-hormones,or neurotransmitters.As excitable cells,membrane electrophysiological properties,such as cross-membrane potential and resistance,have been changed by stimulatory or inhibitory factors before hormone secretion is changed.It is therefore vital to clarify modification of ion channels and signaling systems by regulatory factors in these cells. Endocrine and neuroendocrine systems are under constant influence of body metabolic factors,such as levels of carbohydrates,amino acids,and fatty acids,and also under regulation by metabolic regulatory hormones, such as ghrelin,obestatin,leptin,adiponectin,etc.In order to clarify the regulatory mechanisms in these cells,current study selected a typical and important endocrine cell-pancreaticβcell,and a neuroendocrine cell-hypothalamic GHRH neuron as experimental cell models.Effect of metabolic factor,free fatty acids on beta cells have been investigated to search for endocrine cell function changing mechanism;and effects of key metabolic regulatory hormones,ghrelin and obestatin,on GHRH neurons to search for a better understanding of GH level control by metabolic regulatory hormones.
     This study is divided into three chapters.In the fist and second chapters,for further understanding of mechanisms underlying the effect of FFAs on pancreaticβ-cell functions,we focus on the clarification of effect of FFAs on ion channels in pancreaticβ-cells.In chapter 3,we investigated the effects of Ghrelin and Obestatin on glutamatergic and GABAergic synaptic responses recorded from mouse GHRH neurons expressing eGFP under the control of the GHRH promoter.
     Chapter 1 The effect of long chain FFAs on the voltage-gated K~+ currents in rat pancreaticβ- Cells
     In this study,we investigated the action of linoleic acid on voltage-gated K~+ currents and voltage-dependent Ca~(2+) currents(VDCC). A long-chain unsaturated FFA,linoleic acid(10μM),reversibly decreased the amplitude of K~+ currents(down to less than 10%).This reduction was significantly reduced by the treatment of GPR40-specific small interfering RNA,whereas the cAMP-induced reduction of K~+ current was not affected.
     We conclude that linoleic acid reduces the voltage-gated K~+ current in ratβ-cells through GPR40,leading to an increase in[Ca~(2+)]_i and insulin secretion.
     Chapter 2 The effect of lioleic acid on the voltage-dependent Ca~+ currents in rat pancreaticβ- Cells
     In this chapter,we examined the effect of linoleic acid on the VDCC in primary cultured ratβ-cells.The VDCC was identified as high-voltage-gated Ca~(2+) channels due to there being no-difference in current amplitudes under holding potential of-70 mV or -40 mV. Linoleic acid(10μM) significantly inhibited VDCC currents inβ-cells, an effect which was fully reversible upon washout.Methyl-linoleic acid, which does not activate GPR40,neither did alter VDCC currents in ratβ-cells nor did influence linoleic acid-induced inhibition of VDCC currents.Linoleic acid-induced inhibition of VDCC currents was not blocked by pretreatment ofβ-cells with either the specific protein kinase A inhibitor,H89,or the PKC inhibitor,chelerythrine.However, pre-incubation ofβ-cells with thapsigargin,which depletes intracellular Ca~(2+) stores,completely abolished linoleic acid-induced decrease in VDCC currents.Measurement of intracellular Ca~(2+) concentration([Ca~(2+)]_i) illustrated that linoleic acid induced an increase in[Ca~(2+)]i and that thapsigargin pre-incubation inhibited this increase.Methyl-linoleic acid neither induced increase in[Ca~(2+)]_i nor blocked linoleic acid-induced increase in[Ca~(2+)]_i.
     These results suggest that linoleic acid stimulates Ca~(2+) release from intracellular Ca~(2+) stores and inhibits VDCC currents in rat pancreaticβ-cells via Ca~(2+) -induced inactivation of VDCC.
     Chapter 3 Glrenlin and Obestatin Modulate Glutamatergic and GABAergic Synaptic Inputs onto GHRH Neurons in eGFP-GHRH Transgenic Mice
     In this study,we found Both Ghrelin and Obestatin had no effect on glutamatergic synaptic transmission in the recorded 16 and 19 neurons respectively.Ghrelin dramatically decreased GABAergic synaptic transmission in 53%of the recorded GHRH neurons:26 neurons displayed a significantly decreased GABA response during ghrelin application while the response was not modified in other 23 neurons.This effect was dose dependent between 10 nM and 1μM.Ghrelin-induced inhibition of GABAergic synaptic currents in GHRH neurons was abolished by pretreatment with the specific GHSR-1A inhibitor, BIM28163.Obestatin had no effect by itself on GABAergic synaptic transmission but it blocked Ghrelin-induced decrease in GABA responses in 75%of tested neurons.In 4 neurons,Ghrelin was applied first and inhibition on GABA response was obtained with full recovery after wash; the combination of the Ghrelin and Obestatin peptides were then applied showing a total abolishment of Ghrelin-induced inhibition on GABA responses.This result indicates that Obestatin-induced inhibition occurs in Ghrelin-responding cells.Effect of Obestatin on Ghrelin-induced inhibition was not due to desensitization of the GHS-R since,in another 4 neurons,two successive applications of ghrelin led to similar extend of decreases in the GABA responses.GHRH assay results showed that Ghrelin had no effect on basal GHRH release from hypothalamic explants but significantly increased the GHRH response to 28 mM KCl.
     In summary,the marked inhibitory effect of Ghrelin on GABAergic transmission is likely to result in an increased excitability of GHRH neurons by act on GHSR-1A,thereby driving an increased secretion of GH from pituitary somatotropes.In parallel,Obestatin counteracts Ghrelin action by directly antagonizing Ghrelin effects on GABAergic transmission on hypothalamic GHRH neurons.
     In present study,we first investigated the direct effect of FFAs on ion channels in pancreaticβcells by activating on the specific receptor, GPR40,which may provide new therapeutic targets for the treatment of type 2 diabetes.We also revealed the modulatory effects of Ghrelin and Obestatin on the neurotransmitter synaptic inputs to GHRH neurons in ARC nucleus,which contributed to the direct efference of Ghrelin on GHRH neurons,stimulating GH release.Last,the concentration of GHRH from static incubated mouse hypothalamic explants was at the first time detected by radio-immunoassay in incubation medium and showed an enhancement of secretion by ghrelin.
引文
[1]Ashcroft FM:Ca~(2+) channels and excitation-contraction coupling.Curr Opin Cell Biol 1991,3:671-675.
    [2]Rorsman P:The pancreatic beta-cell as a fuel sensor:an electrophysiologist's viewpoint.Diabetologia 1997,40:487-495.
    [3]Su J,Yu H,Lenka N,Hescheler J,Ullrich S:The expression and regulation of depolarization-activated K~+ channels in the insulin-secreting cell line INS-1.Pflugers Arch 2001,442:49-56.
    [4]Satin LS:Localized calcium influx in pancreatic beta-cells:its significance for Ca2~+-dependent insulin secretion from the islets of Langerhans.Endocrine 2000,13:251-262.
    [5]van den Pol AN,Strecker GJ,Dudek FE:Excitatory and inhibitory amino acids and synaptic transmission in the suprachiasmatic nucleus.Prog Brain Res 1996,111:41-56.
    [6]van den Pol AN,Trombley PQ:Glutamate neurons in hypothalamus regulate excitatory transmission.J Neurosci 1993,13:2829-2836.
    [7]van den Pol AN,Smith AD,Powell JF:GABA axons in synaptic contact with dopamine neurons in the substantia nigra:double immunocytochemistry with biotin-pcroxidasc and protein A-colloidal gold.Brain Rcs 1985,348:146-154.
    [8]van den Pol AN,Gorcs T:Glycine and glycine receptor immunoreactivity in brain and spinal cord.J Neurosci 1988,8:472-492.
    [9]van den Pol AN,Finkbeiner SM,Cornell-Bell AH:Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro.J Neurosci 1992,12:2648-2664.
    [10]Obrietan K,van den Pol AN:GABA activity mediating cytosolic Ca~(2+) rises in developing neurons is modulated by cAMP-dependent signal transduction.J Ncurosci 1997,17:4785-4799.
    [11]Obrietan K,van den Pol A:GABAB receptor-mediated regulation of glutamate-activated calcium transients in hypothalamic and cortical neuron development.J Ncurophysiol 1999,82:94-102.
    [12]Rentsch J,Chiesi M:Regulation of ob gene mRNA levels in cultured adipocytes.FEBS Lett 1996,379:55-59.
    [13]Seufert J:Leptin effects on pancreatic beta-cell gene expression and function. Diabetes 2004,53 Suppl 1:S152-158.
    [14]Statnick MA,Beavers LS,Conner LJ,Comminola H,Johnson D,Hammond CD,Rafaeloff-Phail R,Seng T,Suter TM,Sluka JP,et al:Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes.Int J Exp Diabetes Res 2000,1:81-88.
    [15]Kojima M,Hosoda H,Date Y,Nakazato M,Matsuo H,Kangawa K:Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Nature 1999,402:656-660.
    [16]Zhang JV,Ren PG,Avsian-Kretchmer O,Luo CW,Rauch R,Klein C,Hsueh AJ:Obestatin,a peptide encoded by the ghrelin gene,opposes ghrelin's effects on food intake.Science 2005,310:996-999.
    [17]Karnieli E,Armoni M:Regulation of glucose transporters in diabetes.Horm Res 1990,33:99-104.
    [18]Wyne KL:Free fatty acids and type 2 diabetes mellitus.Am J Med 2003,115Suppl 8A:29S-36S.
    [19]Olofsson CS,Salehi A,Gopel SO,Holm C,Rorsman P:Palmitate stimulation of glucagon secretion in mouse pancreatic alpha-cells results from activation of L-type calcium channels and elevation of cytoplasmic calcium.Diabetes 2004,53:2836-2843.
    [20]Cherrington AD,Sindelar D,Edgerton D,Steiner K,McGuinness OP:Physiological consequences of phasic insulin release in the normal animal.Diabetes 2002,51 Suppl 1:S103-108.
    [21]Brun T,Assimacopoulos-Jeannet F,Corkey BE,Prentki M:Long-chain fatty acids inhibit acetyl-CoA carboxylase gene expression in the pancreatic beta-cell line INS-1.Diabetes 1997,46:393-400.
    [22]Brunham LR,Kruit JK,Verchere CB,Hayden MR:Cholesterol in islet dysfunction and type 2 diabetes.J Clin Invest 2008,118:403-408.
    [23]Gilbertson TA,Fontenot DT,Liu L,Zhang H,Monroe WT:Fatty acid modulation of K~+ channels in taste receptor cells:gustatory cues for dietary fat.Am J Physiol 1997,272:C1203-1210.
    [24]Kojima M,Hosoda H,Matsuo H,Kangawa K:Ghrelin:discovery of the natural endogenous ligand for the growth hormone secretagogue receptor.Trends Endocrinol Metab 2001,12:118-122.
    [25]Kojima M,Kangawa K:Structure and function of ghrelin.Results Probl Cell Differ 2008,46:89-115.
    [26]Wren AM,Small C J,Fribbens CV,Neary NM,Ward HL,Seal LJ,Ghatei MA,Bloom SR:The hypothalamic mechanisms of the hypophysiotropic action of ghrelin.Neuroendocrinology 2002,76:316-324.
    [27]Brazeau P,Vale W,Burgus R,Ling N,Butcher M,Rivier J,Guillemin R:Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone.Science 1973,179:77-79.
    [28]Rivier J,Spiess J,Thorner M,Vale W:Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour.Nature 1982,300:276-278.
    [29]Takaya K,Ariyasu H,Kanamoto N,Iwakura H,Yoshimoto A,Harada M,Mori K,Komatsu Y,Usui T,Shimatsu A,et al:Ghrelin strongly stimulates growth hormone release in humans.J Clin Endocrinol Metab 2000,85:4908-4911.
    [30]Peino R,Baldelli R,Roddguez-Garcia J,Rodriguez-Segade S,Kojima M,Kangawa K,Arvat E,Ghigo E,Dieguez C,Casanueva FF:Ghrelin-induced growth hormone secretion in humans.Eur J Endocrinol 2000,143:R11-14.
    [31]Bevan P:Insulin signalling.J Cell Sci 2001,114:1429-1430.
    [32]Rorsman P,Eliasson L,Renstrom E,Gromada J,Barg S,Gopel S:The Cell Physiology of Biphasic Insulin Secretion.News Physiol Sci 2000,15:72-77.
    [33]Hu S,Wang S:Effect of insulinotropie agent nateglinide on Kv and Ca(~(2+))channels in pancreatic beta-cell.Eur J Pharmacol 2001,427:97-104.
    [34]Itoh Y,Kawamata Y,Harada M,Kobayashi M,Fujii R,Fukusumi S,Ogi K,Hosoya M,Tanaka Y,Uejima H,et al:Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40.Nature 2003,422:173-176.
    [35]Briscoe CP,Tadayyon M,Andrews JL,Benson WG;Chambers JK,Eilert MM,Ellis C,Elshourbagy NA,Goetz AS,Minnick DT,et al:The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids.J Biol Chem 2003,278:11303-11311.
    [36]Sawzdargo M,George SR.,Nguyen T,Xu S,Kolakowski LF,O'Dowd BF:A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1.Biochem Biophys Res Commun 1997,239:543-547.
    [37]Poitout Ⅴ:The ins and outs of fatty acids on the pancreatic beta cell.Trends Endocrinol Metab 2003,14:201-203.
    [38]Chalfie M,Tu Y,Euskirchen G,Ward WW,Prasher DC:Green fluorescent protein as a marker for gene expression.Science 1994,263:802-805.
    [39]Akaike N,Harata N:Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms.Jpn J Physiol 1994,44:433-473.
    [40]Oleson DR,DeFelice LJ,Donahoe RM:A comparison of K~+ channel characteristics in human T cells:perforated-patch versus whole-cell recording techniques.J Membr Biol 1993,132:229-241.
    [41]Falke LC,Gillis KD,Pressel DM,Misler S:'Perforated patch recording'allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca~(2+) currents in pancreatic islet B cells.FEBS Lett 1989,251:167-172.
    [42]MacDonald PE,Wheeler MB:Voltage-dependent K~+ channels in pancreatic beta cells:role,regulation and potential as therapeutic targets.Diabetologia 2003,46:1046-1062.
    [43]Chen C,Zhang J,Vincent JD,Israel JM:Two types of voltage-dependent calcium current in rat somatotrophs are reduced by somatostatin.J Physiol 1990,425:29-42.
    [44]Gopel SO,Kanno T,Barg S,Rorsman P:Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets.J Physiol 2000,528:497-507.
    [45]MacDonald PE,Salapatek AM,Wheeler MB:Temperature and redox state dependence of native Kv2.1 currents in rat pancreatic beta-cells.J Physiol 2003,546:647-653.
    [46]Zunlder B J,Trube G,Ohno-Shosaku T:Forskolin-induced block of delayed rectifying K~+ channels in pancreatic beta-calls is not mediated by cAMP.Pflugers Arch 1988,411:613-619.
    [47]Cheng K,Chan WW,Barreto A,Jr.,Convey EM,Smith RG:The synergistic effects of His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 on growth hormone (GH)-releasing factor-stimulated GH release and intracellular adenosine 3',5'-monophosphate accumulation in rat primary pituitary cell culture.Endocrinology 1989,124:2791-2798.
    [48]Eberhardson M,Tengholm A,Grapengiesser E:The role of plasma membrane K~+ and Ca~(2+) permeabilities for glucose induction of slow Ca~(2+) oscillations in pancreatic beta-cells.Biochim Biophys Acta 1996,1283:67-72.
    [49]Philipson LH,Rosenberg MP,Kuznetsov A,Lancaster ME,Wodey JF,3rd,Roe MW,Dukes ID:Delayed rectifier K~+ channel overexpression in transgenic islets and beta-cells associated with impaired glucose responsiveness.J Biol Chem 1994,269:27787-27790.
    [50]Philipson LH:Beta-cell ion channels:keys to endodermal excitability.Horm Metab Res 1999,31:455-461.
    [51]Boyd AE,3rd:Sulfonylurea receptors,ion channels,and fruit flies.Diabetes 1988,37:847-850.
    [52]Satin LS,Tavalin SJ,Smolen PD:Inactivation of HIT cell Ca~(2+) current by a simulated burst of Ca~(2+) action potentials.Biophys J 1994,66:141-148.
    [53]Bokvist K,Rorsman P,Smith PA:Effects of external tetraethylammonium ions and quinine on delayed rectifying K~+ channels in mouse pancreatic beta-cells.J Physiol 1990,423:311-325.
    [54]Smith RJ,Sam LM,Justen JM,Bundy GL,Bala GA,Bleasdale JE:Receptor-coupled signal transduetion in human polymorphonuclear neutrophils:effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness.J Pharmacol Exp Ther 1990,253:688-697.
    [55]Smith PA,Bokvist K,Arkhammar P,Berggren PO,Rorsman P:Delayed rectifying and calcium-activated K~+ channels and their significance for action potential repolarization in mouse pancreatic beta-cells.J Gen Physiol 1990,95:1041-1059.
    [56]Williams DL,Grill H J,Cummings DE,Kaplan JM:Vagotomy dissociates short- and long-term controls of circulating ghrelin.Endocrinology 2003,144:5184-5187.
    [57]Roduit R,Nolan C,Alarcon C,Moore P,Barbeau A,Delghingaro-Augusto V,Przybykowski E,Morin J,Masse F,Massie B,et al:A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli.Diabetes 2004,53:1007-1019.
    [58]Warnotte C,Gilon P,Nenquin M,Henquin JC:Mechanisms of the stimulation of insulin release by saturated fatty acids.A study of palmitate effects in mouse beta-cells.Diabetes 1994,43:703-711.
    [59]Roduit R,Masiello P,Wang SP,Li H,Mitchell GA,Prentki M:A role for hormone-sensitive lipase in glucose-stimulated insulin secretion:a study in hormone-sensitive lipase-deficient mice.Diabetes 2001,50:1970-1975.
    [60]van den Pol AN,Herbst RS,Powell JF:Tyrosine hydroxylase-immunoreactive neurons of the hypothalamus:a light and electron microscopic study.Neuroscience 1984,13:1117-1156.
    [61]Kotarsky K,Nilsson NE,Flodgren E,Owman C,Olde B:A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs.Biochem Biophys Res Commun 2003,301:406-410.
    [62]Kotarsky K,Nilsson NE,Olde B,Owman C:Progress in methodology.Improved reporter gene assays used to identify ligands acting on orphan seven-transmembrane receptors.Pharmacol Toxicol 2003,93:249-258.
    [63]Schnell S,Schaefer M,Schofl C:Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta-cells through activation of GPR40.Mol Cell Endocrinol 2007,263:173-180.
    [64]Latour MG,Alquier T,Oseid E,Tremblay C,Jetton TL,Luo J,Lin DC,Poitout Ⅴ:GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo.Diabetes 2007,56:1087-1094.
    [65]Zhang Y,Xu M,Zhang S,Yan L,Yang C,Lu W,Li Y,Cheng H:The role of G protein-coupled receptor 40 in lipoapoptosis in mouse beta-cell line NIT-1.J Mol Endocrinol 2007,38:651-661.
    [66]Rayasam GV,Tulasi VK,Davis JA,Bansal VS:Fatty acid receptors as new therapeutic targets for diabetes.Expert Opin Ther Targets 2007,11:661-671.
    [67]Steneberg P,Rubins N,Bartoov-Shifman R,Walker MD,Edlund H:The FFA receptor GPR40 links hyperinsulinemia,hepatic steatosis,and impaired glucose homeostasis in mouse.Cell Metab 2005,1:245-258.
    [68]Choquet D,Sarthou P,Primi D,Cazenave PA,Korn H:Cyclic AMP-modulated potassium channels in murine B cells and their precursors.Science 1987,235:1211-1214.
    [69]Walsh KB,Kass RS:Regulation of a heart potassium channel by protein kinase A and C.Science 1988,242:67-69.
    [70]MacDonald PE,Wang G,Tsuk S,Dodo C,Kang Y,Tang L,Wheeler MB,Cattral MS,Lakey JR,Salapatek AM,et al:Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1 voltage-dependent K~+ channels in neuroendocrine islet beta-cells through an interaction with the channel N terminus.Mol Endocrinol 2002,16:2452-2461.
    [71]MacDonald PE,Sewing S,Wang J,Joseph JW,Smukler SR,Sakellaropoulos G,Saleh MC,Chan CB,Tsushima RG,Salapatek AM,Wheeler MB:Inhibition of Kv2.1 voltage-dependent K~+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion.J Biol Chem 2002,277:44938-44945.
    [72]Fujiwara K,Maekawa F,Yada T:Oleic acid interacts with GPR40 to induce Ca~(2+) signaling in rat islet beta-cells:mediation by PLC and L-type Ca~(2+)channel and link to insulin release.Am J Physiol Endocrinol Metab 2005,289:E670-677.
    [73]Catterall WA:Structure and regulation of voltage-gated Ca~(2+) channels.Annu Rev Cell Dev Biol 2000,16:521-555.
    [74]Bootman MD,Higazi DR,Coombes S,Roderick HL:Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes.J Cell Sci 2006,119:3915-3925.
    [75]Bootman MD,Collins TJ,Peppiatt CM,Prothero LS,MacKenzie L,De Smet P,Travers M,Tovey SC,Seo JT,Berridge MJ,et al:Calcium signalling-an overview.Semin Cell Dev Biol 2001,12:3-10.
    [76]Reuter H:Calcium channel modulation by neurotransmitters,enzymes and drugs.Nature 1983,301:569-574.
    [77]Tsien RW:Calcium channels in excitable cell membranes.Annu Rev Physiol 1983,45:341-358.
    [78]Prentki M,Glennon MC,Geschwind JF,Matschinsky FM,Corkey BE:Cyclic AMP raises eytosolic Ca~(2+) and promotes Ca~(2+) influx in a clonal pancreatic beta-cell line(HIT T-15).FEBS Lett 1987,220:103-107.
    [79]Prentki M,Matschinsky FM:Ca~(2+),cAMP,and phospholipid-derived messengers in coupling mechanisms of insulin secretion.Physiol Rev 1987,67:1185-1248.
    [80]Ashcroft FM,Kelly RP,Smith PA:Two types of Ca channel in rat pancreatic beta-cells.Pflugers Arch 1990,415:504-506.
    [81]Davalli AM,Biancardi E,Pollo A,Socci C,Pontiroli AE,Pozza G,Clementi F,Sher E,Carbone E:Dihydropyridine-sensitive and -insensitive voltage-operated calcium channels participate in the control of glucose-induced insulin release from human pancreatic beta cells.J Endocrinol 1996,150:195-203.
    [82]Tsien RW,Tsien RY:Calcium channels,stores,and oscillations.Annu Rev Cell Biol 1990,6:715-760.
    [83]Hess P,Lansman JB,Tsien RW:Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists.Nature 1984,311:538-544.
    [84]Tsien RW,Fox AP,Hess P,McCleskey EW,Nilius B,Nowycky MC,Rosenberg RL:Multiple types of calcium channel in excitable cells.Soc Gen Physiol Ser 1987,41:167-187.
    [85]Tsien RW,Hess P,McCleskey EW,Rosenberg RL:Calcium channels:mechanisms of selectivity,permeation,and block.Annu Rev Biophys Biophys Chem 1987,16:265-290.
    [86]Tsien RW,Lipscombe D,Madison DV,Bley KR,Fox AP:Multiple types of neuronal calcium channels and their selective modulation.Trends Neurosci 1988,11:431-438.
    [87]Cowley MA,Smith RG,Diano S,Tschop M,Pronchuk N,Grove KL,Strasburger CJ,Bidlingmaier M,Esterman M,Heiman ML,et al:The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.Neuron 2003,37:649-661.
    [88]Liu Y,Liu D,Heath L,Meyers DM,Krafte DS,Wagoner PK,Silvia CP,Yu W,Curran ME:Direct activation of an inwardly rectifying potassium channel by arachidonic acid.Mol Pharmaco12001,59:1061-1068.
    [89]Dukes ID,Philipson LH:K~+ channels:generating excitement in pancreatic beta-cells.Diabetes 1996,45:845-853.
    [90]Rorsman P,Trube G:Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions.J Physiol 1986,374:531-550.
    [91]Macrez-Lepretre N,Morel JL,Mironneau J:Effects of phospholipase C inhibitors on Ca~(2+) channel stimulation and Ca~(2+) release from intracellular stores evoked by alpha 1A- and alpha 2A-adrenoceptors in rat portal vein myocytes.Biochem Biophys Res Commun 1996,218:30-34.
    [92]Budde T,Meuth S,Pape HC:Calcium-dependent inactivation of neuronal calcium channels.Nat Rev Neurosci 2002,3:873-883.
    [93]Findlay I:Physiological modulation of inactivation in L-type Ca~(2+) channels: one switch.J Physiol 2004,554:275-283.
    [94]Plant TD:Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells.J Physiol 1988,404:731-747.
    [95]Kelly RP,Sutton R,Ashcroft FM:Voltage-activated calcium and potassium currents in human pancreatic beta-cells.J Physiol 1991,443:175-192.
    [96]Soldatov NM:Ca~(2+) channel moving tail:link between Ca~(2+)-induced inactivation and Ca~(2+) signal transduction.Trends Pharmacol Sci 2003,24:167-171.
    [97]Feng DD,Luo Z,Roh SG,Hernandez M,Tawadros N,Keating DJ,Chen C:Reduction in voltage-gated K~+ currents in primary cultured rat pancreatic beta-cells by linoleic acids.Endocrinology 2006,147:674-682.
    [98]Chijiwa T,Mishima A,Hagiwara M,Sano M,Hayashi K,Inoue T,Naito K,Toshioka T,Hidaka H:Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase,N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide(H-89),of PC12D pheochromocytoma cells.J Biol Chem 1990,265:5267-5272.
    [99]Herbert JM,Augereau JM,Gleye J,Maffrand JP:Chelerythrine is a potent and specific inhibitor of protein kinase C.Biochem Biophys Res Commun 1990,172:993-999.
    [100]Henquin JC:Triggering and amplifying pathways of regulation of insulin secretion by glucose.Diabetes 2000,49:1751-1760.
    [101]Henquin JC,Boitard C,Efendic S,Ferrannini E,Steiner DF,Cerasi E:Insulin secretion:movement at all levels.Diabetes 2002,51 Suppl 1:S1-2.
    [102]Henquin JC,Ishiyama N,Nenquin M,Ravier MA,Jonas JC:Signals and pools underlying biphasic insulin secretion.Diabetes 2002,51 Suppl 1:S60-67.
    [103]Remizov O,Jakubov R,Dufer M,Krippeit Drews P,Drews G,Waring M,Brabant G,Wienbergen A,Rustenbeck I,Schofl C:Palmitate-induced Ca2~+-signaling in pancreatic beta-cells.Mol Cell Endocrinol 2003,212:1-9.
    [104]Argente J,Garcia-Segura LM,Pozo J,Chowen JA:Growth hormone-releasing peptides:clinical and basic aspects.Horm Res 1996,46:155-159.
    [105]Bowers CY,Momany FA,Reynolds GA,Hong A:On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone.Endocrinology 1984,114:1537-1545.
    [106]Micic D,Casabiell X,Gualillo O,Pombo M,Dieguez C,Casanueva FF:Growth hormone secretagogues:the clinical future.Horm Res 1999,51 Suppl 3:29-33.
    [107]Patchett AA,Nargund RP,Tata JR,Chen MH,Barakat KJ,Johnston DB,Cheng K,Chan WW,Butler B,Hickey G,et al.:Design and biological activities of L- 163,191(MK-0677):a potent,orally active growth hormone secretagogue.Proc Natl Acad Sci U S A 1995,92:7001-7005.
    [108]Tschop M,Smiley DL,Heiman ML:Ghrelin induces adiposity in rodents.Nature 2000,407:908-913.
    [109]Kojima M,Kangawa K:Ghrelin:structure and function.Physiol Rev 2005,85:495-522.
    [110]Guan XM,Yu H,Palyha OC,McKee KK,Feighner SD,Sifinathsinghji DJ,Smith RG.Van der Ploeg LH,Howard AD:Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues.Brain Res Mol Brain Res 1997,48:23-29.
    [111]Howard AD,Feighner SD,Cully DF,Arena JP,Liberator PA,Rosenblum CI,Hamelin M,Hreniuk DL,Palyha OC,Anderson J,et al:A receptor in pituitary and hypothalamus that functions in growth hormone release.Science 1996,273:974-977.
    [112]Guillaume V,Magnan E,Cataldi M,DutourA,Sauze N,Renard M,Razafindraibe H,Conte-Devolx B,Deghenghi R,Lenaerts V,et al.:Growth hormone(GH)-releasing hormone secretion is stimulated by a new GH-releasing hexapeptide in sheep.Endocrinology 1994,135:1073-1076.
    [113]Bresciani E,Rapetti D,Dona F,Bulgarelli I,Tamiazzo L,Loeatelli V,Torsello A:Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat.J Endocrinol Invest 2006,29:RC16-18.
    [114]Fujimiya M,Kojima H,Ichinose M,Arai R,Kimura H,Kashiwagi A,Chan L:Fusion of proinsulin-producing bone marrow-derived cells with hepatocytes in diabetes.Proc Natl Acad Sci U S A 2007,104:4030-4035.
    [115]Zizzari P,Longchamps R,Epelbaum J,Bluet-Pajot MT:Obestatin partially affects ghrelin stimulation of food intake and growth hormone secretion in rodents.Endocrinology 2007,148:1648-1653.
    [116]van den Pol AN,Gallyas F:Trauma-induced Golgi-like staining of neurons:a new approach to neuronal organization and response to injury.J Comp Neurol 1990,296:654-673.
    [117]Kim YI,Dudek FE:Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents:inhibitory synaptic mechanisms.J Physiol 1992,458:247-260.
    [118]Brann DW,Mahesh VB:Excitatory amino acids:evidence for a role in the control of reproduction and anterior pituitary hormone secretion.Endocr Rev 1997,18:678-700.
    [119]van den Pol AN:Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons.J Neurosci 1991,11:2087-2101.
    [120]van den Pol AN:Glutamate and GABA presence and action in the suprachiasmatic nucleus.J Biol Rhythms 1993,8 Suppl:S11-15.
    [121]Pinilla L,Gonzalez L,Tena-Sempere M,Dieguez C,Aguilar E:Gonadal and age-related influences on NMDA-induced growth hormone secretion in male rats.Neuroendocrinology 1999,69:11-19.
    [122]Muller EE,Locatelli V,Cocchi D:Neuroendocrine control of growth hormone secretion.Physiol Rev 1999,79:511-607.
    [123]GiustinaA,Veldhuis JD:Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human.Endocr Rev 1998,19:717-797.
    [124]Balthasar N,Mery PF,Magoulas CB,Mathers KE,Martin A,Mollard P,Robinson IC:Growth hormone-releasing hormone(GHRH) neurons in GHRH-enhanced green fluorescent protein transgenic mice:a ventral hypothalamic network.Endocrinology 2003,144:2728-2740.
    [125]Hamill OP,Marty A,Neher E,Sakmann B,Sigworth FJ:Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pflugers Arch 1981,391:85-100.
    [126]Endo H,Yamaguchi M,Farnsworth R,Thordarson G,Ogren L,Alonso FJ,Sakata M,Hirota K,Talamantes F:Mouse placental cells secrete immunoreactive growth hormone-releasing factor.Biol Reprod 1994,51:1206-1212.
    [127]Lippincott-Schwartz J,Patterson GH:Development and use of fluorescent protein markers in living cells.Science 2003,300:87-91.
    [128]Faingold CL:Role of GABA abnormalities in the inferior colliculus pathophysiology-audiogenic seizures.Hear Res 2002,168:223-237.
    [129]Storozhuk VM,Khorevin Ⅵ,Razumna NN,Tetko Ⅳ,Villa AP:The effects of activation of glutamate ionotropic connections of neurons in the sensorimotor cortex in a conditioned reflex.Neurosci Behav Physiol 2003,33:479-488.
    [130]van den Pol AN,Wuafin JP,Dudek FE:Glutamate,the dominant excitatory transmitter in neuroendocrine regulation.Science 1990,250:1276-1278.
    [131]Hermes ML,Buijs RM,Renaud LP:Electrophysiology of suprachiasmatic nucleus projections to hypothalamic paraventricular nucleus neurons.Prog Brain Res 1996,111:241-252.
    [132]Pinilla L,Gonzalez LC,Tena-Sempere M,Aguilar E:Cross-talk between excitatory and inhibitory amino acids in the regulation of growth hormone secretion in neonatal rats.Neuroendocrinology 2001,73:62-67.
    [133]Acs Z,Lonart G,Makara GB:Role of hypothalamic factors (growth-hormone-releasing hormone and gamma-aminobutyric acid) in the regulation of growth hormone secretion in the neonatal and adult rat.Neuroendocrinology 1990,52:156-160.
    [134]Eyigor O,Centers A,Jennes L:Distribution of ionotropic glutamate receptor subunit mRNAs in the rat hypothalamus.J Comp Neurol 2001,434:101-124.
    [135]Petralia RS,Wang YX,Wenthold RJ:The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1.J Neurosci 1994,14:6102-6120.
    [136]Petralia RS,Wang YX,Wenthold RJ:Histological and ultrastructural localization of the kainate receptor subunits,KA2 and GluR6/7,in the rat nervous system using selective antipeptide antibodies.J Comp Neurol 1994,349:85-110.
    [137]Petralia RS,Yokotani N,Wenthold RJ:Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody.J Neurosci 1994,14:667-696.
    [138]Petralia RS,Wenthold RJ:Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain.J Comp Neurol 1992,318:329-354.
    [139]Ohishi H,Akazawa C,Shigemoto R,Nakanishi S,Mizuno N:Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors,mGluR4 and mGluR7,in the rat brain.J Comp Neurol 1995,360:555-570.
    [140]Kiss J,Kocsis K,Csaki A,Gorcs TJ,Halasz B:Metabotropic glutamate receptor in GHRH and beta-endorphin neurones of the hypothalamic arcuate nucleus.Neuroreport 1997,8:3703-3707.
    [141]Ghosh PK,Baskaran N,van den Pol AN:Developmentally regulated gene expression of all eight metabotropic glutamate receptors in hypothalamic suprachiasmatic and arcuate nuclei--a PCR analysis.Brain Res Dev Brain Res 1997,102:1-12.
    [142]Kiss J,Csaba Z,Csaki A,Halasz B:Glutamatergic innervation of growth hormone-releasing hormone-containing neurons in the hypothalamic arcuate nucleus and somatostatin-containing neurons in the anterior periventricular nucleus of the rat.Brain Res Bull 2006,70:278-288.
    [143]Baccam N,Alonso G,Costecalde T,Fontanaud P,Molino F,Robinson IC,Mollard P,Mery PF:Dual-level afferent control of growth hormone-releasing hormone(GHRH) neurons in GHRH-green fluorescent protein transgenic mice.J Neurosci 2007,27:1631-1641.
    [144]Kuramochi M,Kohno D,Onaka T,Kato S,Yada T:Galanin-like peptide and ghrelin increase cytosolic Ca~(2+) in neurons containing growth hormone-releasing hormone in the arcuate nucleus.Regul Pept 2005,126:85-89.
    [1]Rorsman P,Trube G:Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions.J Physiol 1986,374:531-550.
    [2]Rorsman P,Eliasson L,Renstrom E,Gromada J,Barg S,Gopel S:The Cell Physiology of Biphasic Insulin Secretion.News Physiol Sci 2000,15:72-77.
    [3]Ariyasu H,Takaya K,Tagami T,Ogawa Y,Hosoda K,Akamizu T,Suda M,Koh T,Natsui K,Toyooka S,et al:Stomach is a major source of circulating ghrelin,and feeding state determines plasma ghrelin-like immunoreactivity levels in humans.J Clin Endocrinol Metab 2001,86:4753-4758.
    [4]Dukes ID,Philipson LH:K~+ channels:generating excitement in pancreatic beta-cells.Diabetes 1996,45:845-853.
    [5]Philipson LH:Beta-cell ion channels:keys to endodermal excitability.Horm Metab Res 1999,31:455-461.
    [6]Ko EA,Han J,Jung ID,Park WS:Physiological roles of K~+ channels in vascular smooth muscle cells.J Smooth Muscle Res 2008,44:65-81.
    [7]Miki T,Nagashima K,Seino S:The structure and function of the ATP-sensitive K~+ channel in insulin-secreting pancreatic beta-cells.J Mol Endocrinol 1999,22:113-123.
    [8]Ashcroft FM:K(ATP) channels and insulin secretion:a key role in health and disease.Biochem Soc Trans 2006,34:243-246.
    [9]Catterall W,Epstein PN:Ion channels.Diabetologia 1992,35 Suppl 2:S23-33.
    [10]Proks P,Lippiat JD:Membrane ion channels and diabetes.Curt Pharm Des 2006,12:485-501.
    [11]Bryan J,Crane A,Vila-Carriles WH,Babenko AP,Aguilar-Bryan L:Insulin secretagogues,sulfonylurea receptors and K(ATP) channels.Curr Pharm Des 2005,11:2699-2716.
    [12]Brunham LR,Kruit JK,Verchere CB,Hayden MR:Cholesterol in islet dysfunction and type 2 diabetes.J Clin Invest 2008,118:403-408.
    [13]Bresciani E,Rapetti D,Dona F,Bulgarelli I,Tamiazzo L,Locatelli V,Torsello A:Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat.J Endocrinol Invest 2006,29:RC16-18.
    [14]Matschinsky FM,Glaser B,Magnuson MA:Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities.Diabetes 1998,47:307-315.
    [15]Prentki M,Corkey BE:Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 1996,45:273-283.
    [16]Byrne JH:Quantitative aspects of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behavior in Aplysia californica.J Neurophysiol 1980,43:651-668.
    [17]Lim ST,Antonucci DE,Scannevin RH,Trimmer JS:A novel targeting signal for proximal clustering of the Kv2.1 K~+ channel in hippocampal neurons.Neuron 2000,25:385-397.
    [18]Christie MJ:Molecular and functional diversity of K~+ channels.Clin Exp Pharmacol Physiol 1995,22:944-951.
    [19]MacDonald PE,Wheeler MB:Voltage-dependent K~+ channels in pancreatic beta cells:role,regulation and potential as therapeutic targets.Diabetologia 2003,46:1046-1062.
    [20]MacDonald PE,Salapatek AM,Wheeler MB:Temperature and redox state dependence of native Kv2.1 currents in rat pancreatic beta-cells.J Physiol 2003,546:647-653.
    [21]Yellen G:The voltage-gated potassium channels and their relatives.Nature 2002,419:35-42.
    [22]MacDonald PE,Sewing S,Wang J,Joseph JW,Smukler SR,Sakellaropoulos G;Saleh MC,Chart CB,Tsushima RG;Salapatek AM,Wheeler MB:Inhibition of Kv2.1 voltage-dependent K~+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion.J Biol Chem 2002,277:44938-44945.
    [23]Patel SP,Campbell DL:Transient outward potassium current,'Ito',phenotypes in the mammalian left ventricle:underlying molecular,cellular and biophysical mechanisms.J Physiol 2005,569:7-39.
    [24]MacDonald PE,Wang G;Tsuk S,Dodo C,Kang Y,Tang L,Wheeler MB,Cattral MS,Lakey JR,Salapatek AM,et al:Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1 voltage-dependent K~+ channels in neuroendocrine islet beta-cells through an interaction with the channel N terminus.Mol Endocrinol 2002,16:2452-2461.
    [25]MacDonald PE,Ha XF,Wang J,Smukler SR,Sun AM,Gaisano HY, Salapatek AM,Backx PH,Wheeler MB:Members of the Kv1 and Kv2voltage-dependent K~+ channel families regulate insulin secretion.Mol Endocrinol 2001,15:1423-1435.
    [26]Herbst M,Sasse P,Greger R,Yu H,Hescheler J,Ullrich S:Membrane potential dependent modulations of calcium oscillations in insulin-secreting INS-1 cells.Cell Calcium 2002,31:115-126.
    [27]Catterall WA:Structure and regulation of voltage-gated Ca~(2+) channels.Annu Rev Cell Dev Biol 2000,16:521-555.
    [28]Bootman MD,Collins T J,Peppiatt CM,Prothero LS,MacKenzie L,De Smet P,Travers M,Tovey SC,Seo JT,Berridge MJ,et al:Calcium signalling--an overview.Semin Cell Dev Biol 2001,12:3-10.
    [29]Bootman MD,Higazi DR,Coombes S,Roderick HL:Calcium signalling during excitation-contraction coupling in mammalian atrial myoeytes.J Cell Sci 2006,119:3915-3925.
    [30]Reuter H:Calcium channel modulation by neurotransmitters,enzymes and drugs.Nature 1983,301:569-574.
    [31]Tsien RW:Calcium channels in excitable cell membranes.Annu Rev Physiol 1983,45:341-358.
    [32]Prentki M,Glennon MC,Geschwind JF,Matschinsky FM,Corkey BE:Cyclic AMP raises eytosolic Ca~(2+) and promotes Ca~(2+) influx in a clonal pancreatic beta-cell line(HIT T-15).FEBS Lett 1987,220:103-107.
    [33]Ashcroft FM:Ca2+ channels and excitation-contraction coupling.Curr Opin Cell Biol 1991,3:671-675.
    [34]Davalli AM,Biancardi E,Polio A,Socci C,Pontiroli AE,Pozza G,Clementi F,Sher E,Carbone E:Dihydropyridine-sensitive and -insensitive voltage-operated calcium channels participate in the control of glucose-induced insulin release from human pancreatic beta cells.J Endocrinol 1996,150:195-203.
    [35]Tsien RW,Tsien RY:Calcium channels,stores,and oscillations.Annu Rev Cell Biol 1990,6:715-760.
    [36]Hess P,Lansman JB,Tsien RW:Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists.Nature 1984,311:538-544.
    [37]Tsien RW,Fox AP,Hess P,McCleskey EW,Nilius B,Nowycky MC, Rosenberg RL:Multiple types of calcium channel in excitable cells.Soc Gen Physiol Ser 1987,41:167-187.
    [38]Tsien RW,Lipscombe D,Madison DV,Bley KR,Fox AP:Multiple types of neuronal calcium channels and their selective modulation.Trends Neurosci 1988,11:431-438.
    [39]Braun M,Ramracheya R,Bengtsson M,Zhang Q,Karanauskaite J,Partridge C,Johnson PR,Rorsman P:Voltage-gated ion channels in human pancreatic beta-cells:electrophysiological characterization and role in insulin secretion.Diabetes 2008,57:1618-1628.
    [40]Meats D,Rojas E:Properties of voltage-gated Ca~(2+) currents measured from mouse pancreatic beta-cells in situ.Biol Res 2006,39:505-520.
    [41]Cowley MA,Smith RG,Diano S,Tschop M,Pronchuk N,Grove KL,Strasburger CJ,Bidlingmaier M,Esterman M,Heiman ML,et al:The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.Neuron 2003,37:649-661.
    [42]Tsien RW,Hess P,McCleskey EW,Rosenberg RL:Calcium channels:mechanisms of selectivity,permeation,and block.Annu Rev Biophys Biophys Chem 1987,16:265-290.
    [43]Tsien RY:Fluorescence measurement and photochemical manipulation of cytosolic free calcium.Trends Neurosci 1988,11:419-424.
    [44]Bean BP:Classes of calcium channels in vertebrate cells.Annu Rev Physiol 1989,51:367-384.
    [45]Bhattacharjee A,Whitehurst RM,Jr.,Zhang M,Wang L,Li M:T-type calcium channels facilitate insulin secretion by erthaneing general excitability in the insulin-secreting beta-cell line,INS-1.Endocrinology 1997,138:3735-3740.
    [46]Smith RG,Van der Ploeg LH,Howard AD,Feighner SD,Cheng K,Hickey GJ,Wyvratt MJ,Jr.,Fisher MH,Nargund RP,Patchett AA:Peptidomimetic regulation of growth hormone secretion.Endoer Rev 1997,18:621-645.
    [47]Aicardi G;Polio A,Sher E,Carbone E:Noradrenergie inhibition and voltage-dependent facilitation of omega-conotoxin-sensitive Ca~(2+) channels in insulin-secreting RINm5F cells.FEBS Lett 1991,281:201-204.
    [48]Llinas R,Sugimori M,Lin JW,Cherksey B:Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction(FTX) from funnel-web spider poison.Proc Natl Acad Sci U S A 1989,86:1689-1693.
    [49]Magnelli V,Pollo A,Sher E,Carbone E:Block of non-L-,non-N-type Ca~(2+)channels in rat insulinoma RINm5F cells by omega-agatoxin IVA and omega-conotoxin MVIIC.Pflugers Arch 1995,429:762-771.
    [50]Vajna R,Klockner U,Pereverzev A,Weiergraber M,Chen X,Miljanich G,Klugbauer N,Hescheler J,Perez-Reyes E,Schneider T:Functional coupling between 'R-type' Ca~(2+) channels and insulin secretion in the insulinoma cell line INS-1.Eur J Biochem 2001,268:1066-1075.
    [51]Kojima M,Hosoda H,Date Y,Nakazato M,Matsuo H,Kangawa K:Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Nature 1999,402:656-660.
    [52]Zhang JV,Ren PG,Avsian-Kretchmer O,Luo CW,Rauch R,Klein C,Hsueh AJ:Obestatin,a peptide encoded by the ghrelin gene,opposes ghrelin's effects on food intake.Science 2005,310:996-999.
    [53]Kojima M,Hosoda H,Matsuo H,Kangawa K:Ghrelin:discovery of the natural endogenous ligand for the growth hormone secretagogue receptor.Trends Endocrinol Metab 2001,12:118-122.
    [54]Hosoda H,Kojima M,Mizushima T,Shimizu S,Kangawa K:Structural divergence of human ghrelin.Identification of multiple ghrelin-derived molecules produced by post-translational processing.J Biol Chem 2003,278:64-70.
    [55]Kojima M,Kangawa K:Ghrelin:structure and function.Physiol Rev 2005,85:495-522.
    [56]Date Y,Kojima M,Hosoda H,Sawaguchi A,Mondal MS,Suganuma T,Matsukura S,Kangawa K,Nakazato M:Ghrelin,a novel growth hormone-releasing acylated peptide,is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans.Endocrinology 2000,141:4255-4261.
    [57]Tschop M,Weyer C,Tataranni PA,Devanarayan V,Ravussin E,Heiman ML:Circulating ghrelin levels are decreased in human obesity.Diabetes 2001,50:707-709.
    [58]Williams DL,Grill HJ,Cummings DE,Kaplan JM:Vagotomy dissociates short- and long-term controls of circulating ghrelin.Endocrinology 2003, 144:5184-5187.
    [59]Sakata I,Nakamura K,Yamazaki M,Matsubara M,Hayashi Y,Kangawa K,Sakai T:Ghrelin-producing cells exist as two types of cells,closed- and opened-type cells,in the rat gastrointestinal tract.Peptides 2002,23:531-536.
    [60]Hosoda H,Kojima M,Matsuo H,Kangawa K:Ghrelin and des-acyl ghrelin:two major forms of rat ghrelin peptide in gastrointestinal tissue.Biochem Biophys Res Commun 2000,279:909-913.
    [61]Guan XM,Yu H,Palyha OC,McKee KK,Feighner SD,Sirinathsinghji DJ,Smith RG,Van der Ploeg LH,Howard AD:Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues.Brain Res Mol Brain Res 1997,48:23-29.
    [62]Gnanapavan S,Kola B,Bustin SA,Morris DG,McGee P,Fairclough P,Bhattacharya S,Carpenter R,Grossman AB,Korbonits M:The tissue distribution of the mRNA of ghrelin and subtypes of its receptor,GHS-R,in humans.J Clin Endocrinol Metab 2002,87:2988.
    [63]Gualillo O,Caminos J,Blaneo M,Garcia-Caballero T,Kojima M,Kangawa K,Dieguez C,Casanueva F:Ghrelin,a novel placental-derived hormone.Endocrinology 2001,142:788-794.
    [64]Mori K,Yoshimoto A,Takaya K,Hosoda K,Ariyasu H,Yahata K,Mukoyama M,Sugawara A,Hosoda H,Kojima M,et al:Kidney produces a novel acylated peptide,ghrelin.FEBS Lett 2000,486:213-216.
    [65]Barreiro ML,Gaytan F,Caminos JE,Pinilla L,Casanueva FF,Aguilar E,Dieguez C,Tena-Sempere M:Cellular location and hormonal regulation of ghrelin expression in rat testis.Biol Reprod 2002,67:1768-1776.
    [66]Tena-Sempere M,Barreiro ML,Gonzalez LC,Gaytan F,Zhang FP,Caminos JE,Pinilla L,Casanueva FF,Dieguez C,Aguilar E:Novel expression and functional role of ghrelin in rat testis.Endocrinology 2002,143:717-725.
    [67]Date Y,Nakazato M,Hashiguchi S,Dezaki K,Mondal MS,Hosoda H,Kojima M,Kangawa K,Arima T,Matsuo H,et al:Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion.Diabetes 2002,51:124-129.
    [68]Kojima M,Kangawa K:Structure and function of ghrelin.Results Probl Cell Differ 2008,46:89-115.
    [69]Peino R,Baldelli R,Rodfiguez-Garcia J,Rodriguez-Segade S,Kojima M, Kangawa K,Arvat E,Ghigo E,Dieguez C,Casanueva FF:Ghrelin-induced growth hormone secretion in humans.Eur J Endocrinol 2000,143:R11-14.
    [70]Takaya K,Ariyasu H,Kanamoto N,Iwakura H,Yoshimoto A,Harada M,Mori K,Komatsu Y,Usui T,Shimatsu A,et al:Ghrelin strongly stimulates growth hormone release in humans.J Clin Endocrinol Metab 2000,85:4908-4911.
    [71]Arvat E,Di Vito L,Broglio F,Papotti M,Muccioli G,Dieguez C,Casanueva FF,Deghenghi R,Camanni F,Ghigo E:Preliminary evidence that Ghrelin,the natural GH secretagogue(GHS)-receptor ligand,strongly stimulates GH secretion in humans.J Endocrinol Invest 2000,23:493-495.
    [72]Arvat E,Maccario M,Di Vito L,Broglio F,Benso A,Gottero C,Papotti M,Muccioli G,Dieguez C,Casanueva FF,et al:Endocrine activities of ghrelin,a natural growth hormone secretagogue(GHS),in humans:comparison and interactions with hexarelin,a nonnatural peptidyl GHS,and GH-releasing hormone.J Clin Endocrinol Metab 2001,86:1169-1174.
    [73]Hataya Y,Akamizu T,Takaya K,Kanamoto N,Ariyasu H,Saijo M,Moriyama K,Shimatsu A,Kojima M,Kangawa K,Nakao K:A low dose of ghrelin stimulates growth hormone(GH) release synergistically with GH-releasing hormone in humans.J Clin Endocrinol Metab 2001,86:4552.
    [74]Bennett PA,Thomas GB,Howard AD,Feighner SD,van der Ploeg LH,Smith RG,Robinson IC:Hypothalamic growth hormone seeretagogue-receptor (GHS-R) expression is regulated by growth hormone in the rat.Endocrinology 1997,138:4552-4557.
    [75]Guillaume V,Magnan E,Cataldi M,Dutour A,Sauze N,Renard M,Razafindralbe H,Conte-Devolx B,Deghenghi R,Lenaerts V,et al.:Growth hormone(GH)-releasing hormone secretion is stimulated by a new GH-releasing hexapeptide in sheep.Endocrinology 1994,135:1073-1076.
    [76]Wren AM,Small CJ,Fribbens CV,Neary NM,Ward HL,Seal LJ,Ghatei MA,Bloom SR:The hypothalamic mechanisms of the hypophysiotropic action of ghrelin.Neuroendocrinology 2002,76:316-324.
    [77]Nakazato M,Murakami N,Date Y,Kojima M,Matsuo H,Kangawa K,Matsukura S:A role for ghrelin in the central regulation of feeding.Nature 2001,409:194-198.
    [78]Tschop M,Smiley DL,Heiman ML:Ghrelin induces adiposity in rodents.Nature 2000,407:908-913.
    [79]Wren AM,Seal LJ,Cohen MA,Brynes AE,Frost GS,Murphy KG,Dhillo WS,Ghatei MA,Bloom SR:Ghrelin enhances appetite and increases food intake in humans.J Clin Endocrinol Metab 2001,86:5992.
    [80]Cherrington AD,Sindelar D,Edgerton D,Steiner K,McGuinness OP:Physiological consequences of phasic insulin release in the normal animal.Diabetes 2002,51 Suppl 1:S103-108.
    [81]Domonville de la Cour C,Lindstrom E,Norlen P,Hakanson R:Ghrelin stimulates gastric emptying but is without effect on acid secretion and gastric endocrine cells.Regul Pept 2004,120:23-32.
    [82]Masuda Y,Tanaka T,Inomata N,Ohnuma N,Tanaka S,Itoh Z,Hosoda H,Kojima M,Kangawa K:Ghrelin stimulates gastric acid secretion and motility in rots.Biochem Biophys Res Commun 2000,276:905-908.
    [83]Date Y,Nakazato M,Murakami N,Kojima M,Kangawa K,Matsukura S:Ghrelin acts in the central nervous system to stimulate gastric acid secretion.Biochem Biophys Res Commun 2001,280:904-907.
    [84]Adeghate E,Ponery AS:Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats.J Neuroendocrinol 2002,14:555-560.
    [85]Broglio F,Arvat E,Benso A,Gottero C,Muccioli G,Papotti M,van der Lely AJ,Deghenghi R,Ghigo E:Ghrelin,a natural GH secretagogue produced by the stomach,induces hyperglycemia and reduces insulin secretion in humans.J Clin Endocrinol Metab 2001,86:5083-5086.
    [86]Reimer MK,Pacini G,Ahren B:Dose-dependent inhibition by ghrelin of insulin secretion in the mouse.Endocrinology 2003,144:916-921.
    [87]Nagaya N,Miyatake K,Uematsu M,Oya H,Shimizu W,Hosoda H,Kojima M,Nakanishi N,Mori H,Kangawa K:Hemodynamic,renal,and hormonal effects of ghrelin infusion in patients with chronic heart failure.J Clin Endocrinol Metab 2001,86:5854-5859.
    [88]Nagaya N,Kojima M,Uematsu M,Yamagishi M,Hosoda H,Oya H,Hayashi Y,Kangawa K:Hemodynamic and hormonal effects of human ghrelin in healthy volunteers.Am J Physiol Regul Integr Comp Physiol 2001,280:R1483-1487.
    [89]Alemzadeh R,Fledelius C,Bodvarsdottir T,Sturis J:Attenuation of hyperinsulinemia by NN414,a SUR1/Kir6.2 selective K-adenosine triphosphate channel opener,improves glucose tolerance and lipid profile in obese Zucker rats.Metabolism 2004,53:441-447.
    [90]Matsumura K,Tsuchihashi T,Fujii K,Abe I,Iida M:Central ghrelin modulates sympathetic activity in conscious rabbits.Hypertension 2002,40:694-699.
    [91]Nagaya N,Kangawa K:Ghrelin improves left ventricular dysfunction and cardiac cachexia in heart failure.Curr Opin Pharmacol 2003,3:146-151.
    [92]Baldanzi G,Filigheddu N,Cutrupi S,Catapano F,Bonissoni S,Fubini A,Malan D,Baj G,Granata R,Broglio F,et al:Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT.J Cell Biol 2002,159:1029-1037.
    [93]Pettersson I,Muccioli G,Granata R,Deghenghi R,Ghigo E,Ohlsson C,Isgaard J:Natural(ghrelin) and synthetic(hexarelin) GH secretagogues stimulate H9c2 cardiomyocyte cell proliferation.J Endocrinol 2002,175:201-209.
    [94]Bhatti SF,Duchateau L,Van Ham LM,De Vliegher SP,Mol JA,Rijnberk A,Kooistra HS:Effects of growth hormone secretagogues on the release of adenohypophyseal hormones in young and old healthy dogs.Vet J 2006,172:515-525.
    [95]Knutson KL,Van Cauter E:Associations between sleep loss and increased risk of obesity and diabetes.Ann N Y Acad Sci 2008,1129:287-304.
    [96]Park YJ,Lee YJ,Kim SH,Joung DS,Kim BJ,So I,Park do J,Cho BY:Ghrelin enhances the proliferating effect of thyroid stimulating hormone in FRTL-5 thyroid cells.Mol Cell Endocrino12008,285:19-25.
    [97]Pazos Y,Alvarez CJ,Camina JP,Casanueva FF:Stimulation of extracellular signal-regulated kinases and proliferation in the human gastric cancer cells KATO-Ⅲ by obestatin.Growth Factors 2007,25:373-381.
    [98]Kojima M:The discovery of ghrelin-a personal memory.Regul Pept 2008,145:2-6.
    [99]Martin B,Pearson M,Kebejian L,Golden E,Keselman A,Bender M,Carlson O,Egan J,Ladenheim B,Cadet JL,et al:Sex-dependent metabolic,neuroendocrine,and cognitive responses to dietary energy restriction and excess.Endocrinology 2007,148:4318-4333.
    [100]Howard AD,Feighner SD,Cully DF,Arena JP,Liberator PA,Rosenblum CI,Hamelin M,Hreniuk DL,Palyha OC,Anderson J,et al:A receptor in pituitary and hypothalamus that functions in growth hormone release.Science 1996,273:974-977.
    [101]McKee KK,Palyha OC,Feighner SD,Hreniuk DL,Tan CP,Phillips MS,Smith RG,Van der Ploeg LH,Howard AD:Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors.Mol Endocrinol 1997,11:415-423.
    [102]Smith RG,Feighner S,Prendergast K,Guan X,Howard A:A New Orphan Receptor Involved in Pulsatile Growth Hormone Release.Trends Endocrinol Metab 1999,10:128-135.
    [103]Palyha OC,Feighner SD,Tan CP,McKee KK,Hreniuk DL,Gao YD,Schleim KD,Yang L,Morriello GJ,Nargund R,et al:Ligand activation domain of human orphan growth hormone(GH) secretagogue receptor(GHS-R)conserved from Pufferfish to humans.Mol Endocrinol 2000,14:160-169.
    [104]Smith RG;Leonard R,Bailey AR,Palyha O,Feighner S,Tan C,MeKee KK,Pong SS,Griffin P,Howard A:Growth hormone secretagogue receptor family members and ligands.Endocrine 2001,14:9-14.
    [105]Hattori N,Saito T,Yagyu T,Jiang BH,Kitagawa K,Inagaki C:GH,GH receptor,GH secretagogue receptor,and ghrelin expression in human T cells,B cells,and neutrophils.J Clin Endocrinol Metab 2001,86:4284-4291.
    [106]Dun SL,Brailoiu GC,Brailoiu E,Yang J,Chang JK,Dun NJ:Distribution and biological activity of obestatin in the rat.J Endocrinol 2006,191:481-489.
    [107]Chanoine JP,Wong AC,Barrios V:Obestatin,acylated and total ghrelin coneentrations in the perinatal rat pancreas.Horm Res 2006,66:81-88.
    [108]Zhao CM,Fumes MW,Stenstrom B,Kulseng B,Chen D:Characterization of obestatin- and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats:an immunohistochemical and electron-microscopic study.Cell Tissue Res 2008,331:575-587.
    [109]Moechars D,Depoortere I,Moreaux B,de Smet B,Gods I,Hoskens L,Daneels G,Kass S,Ver Donck L,Peeters T,Coulie B:Altered gastrointestinal and metabolic function in the GPR39-obestatin receptor-knockout mouse.Gastroenterology 2006,131:1131-1141.
    [110]Chartrel N,Alvear-Perez R,Leprince J,Iturrioz X,Reaux-Le Goazigo A,Audinot V,Chomarat P,Coge F,Nosjean O,Rodriguez M,et al:Comment on "Obestatin,a peptide encoded by the ghrelin gene,opposes ghrelin's effects on food intake".Science 2007,315:766;author reply 766.
    [111]Lauwers E,Landuyt B,Arckens L,Schoofs L,Luyten W:Obestatin does not activate orphan G protein-coupled receptor GPR39.Biochem Biophys Res Commun 2006,351:21-25.
    [112]Tremblay F,Perreault M,Klaman LD,Tobin JF,Smith E,Gimeno RE:Normal food intake and body weight in mice lacking the G protein-coupled receptor GPR39.Endocrinology 2007,148:501-506.
    [113]Carlini VP,Schioth HB,Debarioglio SR:Obestatin improves memory performance and causes anxiolytic effects in rats.Biochem Biophys Res Commun 2007,352:907-912.
    [114]Sibilia V,Bresciani E,Lattuada N,Rapetti D,Locatelli V,De Luca V,Dona F,Netti C,Torsello A,Guidobono F:Intracerebroventricular acute and chronic administration of obestatin minimally affect food intake but not weight gain in the rat.J Endocrinol Invest 2006,29:RC31-34.
    [115]Gourcerol G,Coskun T,Craft LS,Mayer JP,Heiman ML,Wang L,Million M,St-Pierre DH,Tache Y:Preproghrelin-derived peptide,obestatin,falls to influence food intake in lean or obese rodents.Obesity(Silver Spring) 2007,15:2643-2652.
    [116]Holst B,Egerod KL,Schild E,Vickers SP,Cheetham S,Gerlach LO,Storjohann L,Stidsen CE,Jones R,Beck-Sickinger AG,Schwartz TW:GPR39signaling is stimulated by zinc ions but not by obestatin.Endocrinology 2007,148:13-20.
    [117]Nogueiras R,Pfluger P,Tovar S,Arnold M,Mitchell S,Morris A,Perez-Tilve D,Vazquez MJ,Wiedmer P,Castaneda TR,et al:Effects of obestatin on energy balance and growth hormone secretion in rodents.Endocrinology 2007,148:21-26.
    [118]Samson WK,White MM,Price C,Ferguson AV:Obestatin acts in brain to inhibit thirst.Am J Physiol Regul Integr Comp Physiol 2007,292:R637-643.
    [119]Yamamoto D,Ikeshita N,Daito R,Herningtyas EH,Toda K,Takahashi K,Iida K,Takahashi Y,Kaji H,Chihara K,Okimura Y:Neither intravenous nor intracerebroventricular administration of obestatin affects the secretion of GH,PRL,TSH and ACTH in rats.Regul Pept 2007,138:141-144.
    [120]Zizzari P,Longchamps R,Epelbaum J,Bluet-Pajot MT:Obestatin partially affects ghrelin stimulation of food intake and growth hormone secretion in rodents.Endocrinology 2007,148:1648-1653.
    [121]Fujimiya M,Kojima H,Ichinose M,Arai R,Kimura H,Kashiwagi A,Chan L:Fusion of proinsulin-producing bone marrow-derived cells with hepatocytes in diabetes.Proc Natl Acad Sci U S A 2007,104:4030-4035.
    [122]De Smet B,Thijs T,Peeters TL,Depoortere Ⅰ:Effect of peripheral obestatin on gastric emptying and intestinal contractility in rodents.Neurogastroenterol Motil 2007,19:211-217.
    [123]Camina JP,Campos JF,Caminos JE,Dieguez C,Casanueva FF:Obestatin-mediated proliferation of human retinal pigment epithelial cells:regulatory mechanisms.J Cell Physiol 2007,211:1-9.
    [124]Meszarosova M,Sirotkin AV,Grossmann R,Darlak K,Valenzuela F:The effect of obestatin on porcine ovarian granulosa cells.Anim Reprod Sci 2007.
    [125]Szentirmai E,Krueger JM:Obestatin alters sleep in rats.Neurosci Lett 2006,404:222-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700