用户名: 密码: 验证码:
SeNHX1耐盐分子机制与耐盐洋桔梗培育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐碱胁迫是造成世界农作物减产的主要原因。通过种植耐盐碱植物既能改良土壤,又有一定的效益,是一种相对耗资少,见效快的盐碱地农业发展方式。随着植物耐盐分子生物学的发展,植物耐盐基因工程在培育耐盐新品种中成为研究热点。本文在研究SeNHX1于酵母中的功能、定位和SeNHX1转基因烟草的耐盐性及耐盐机制的基础上,将SeNHX1转化洋桔梗,以期培育耐盐洋桔梗新品种。
     SeNHX1基因是从盐角草克隆得到。在研究中,构建了pYES2-SeNHX1,pYES2-GFP和pYES2-SeNHX1-GFP三种酵母表达载体和pBin438-SeNHX1植物表达载体。带有SeNHX1目的基因的酵母表达载体转化酵母nhx1缺陷型菌株296H,可部分恢复Na~+的解毒功能,并提高野生型菌株W303的耐盐性;荧光观察表明,SeNHX1定位于酵母液泡膜。
     植物表达载体pBin438-SeNHX1转化烟草,过量表达SeNHX1的转基因烟草在离体和盆栽盐胁迫下,均可提高其耐盐性。盆栽盐胁迫下,经过相同盐量的处理,盆栽土Na~+含量大于9.7mg/g时,SeNHX1转基因烟草下部老叶Na~+含量比野生型相应部位的Na~+含量高2.3mg/g FW,嫩叶中的脯氨酸含量比野生型高0.36mg/g FW,两者均达到显著水平;而丙二醛(MDA)含量显著更低。这些结果可以初步推断SeNHX1转基因烟草提高其耐盐性的机制:首先,转基因烟草可吸收盐土中更多的Na~+,促进水份的吸收与利用。其次启动离子分配机制,将吸收的Na~+更多地积累于老叶,防止幼嫩组织受到Na~+的毒害;在细胞水平上,SeNHX1转基因烟草将更多Na~+的区隔化于液泡,防止膜脂和酶活性受到伤害。
     植物表达载体pBin438-SeNHX1转化洋桔梗,通过检测表明SeNHX1基因已经整合到洋桔梗基因组中,并实现转录。过量表达SeNHX1的转基因洋桔梗组培苗可在含有150mmol/L NaCl培养基中正常生长,叶片中脯氨酸含量比野生型高0.5mg/g FW,两者间达到显著差异,表现了更强的耐盐性。通过移栽管理,获得10株苗龄2个月的转基因洋桔梗。
Salinity stress is one of the most serious factors limiting the growth of plants.Many research topics focus on breeding salt-resistant varieties by geneticengineering. In this study, In order to breed salt-resistant variety of EustomaGradiflorum, we firstly analyzed the function, localization and salt–tolerancemechanism of SeNHX1in yeast and tobacco, and then transformed it into targetplants.
     Yeast expression vector pYES2-SeNHX1,pYES2-GFP, pYES2-SeNHX1-GFP,and binary plant expression vector PBin438-SeNHX1were constructed, and then wasintroduced into S. cerevisiae and plants respectively. SeNHX1was localized on thevacuolar membrane of yeast by fluorescence assay. The function of Na~+-detoxicationin the nhx1mutant strain296H and higher salt tolerance in the strain W303, whichall contained the vectors of pYES2-SeNHX1or pYES2-SeNHX1-GFP, were gained.
     Overexpression of SeNHX1in tobacco increased salt tolerance in both “in vitro”and pot culture. when the Na~+content in pot soil was more than9.7mg/g, comparedto wild-type, transgenic plants accumulated2.3mg/g FW greater amount of Na~+inold leaves and0.36mg/g FW higher proline in young leaves, but themalondialdehyde (MDA) content was significantly lower, The research findingsdisplay a strategy to improve tolerance to salt in SeNHX1-transgenic tobacco by (1)absorbing more Na~+for growth in saline soil,(2) accumulating Na~+in old leaves toprevent young tissue from Na~+-toxicity,(3) then, pumping Na~+into vacuole bySeNHX1for detoxification.
     In addition, Eustoma Gradiflorum was transformed by C58withpBin438-SeNHX1, and salt tolerance transgenic plants of Eustoma Gradiflorum havegrown normally for two months in greenhouse.
引文
[1]李银心,抗盐、耐海水蔬菜的生物技术培育与海水无土栽培应用,[博士论文],北京;中国科学院植物研究所,2001
    [2]Zhu JK, Salt and drought stress signal transduction in plants. Ann Rev Plant Biol,2002,53:247~273.
    [3]Zaccai M, Lewinsohn E, Pichersky E, Modifying lisianthus traits by genetic engineering,ActaHorticulturae,2001,552:137~142
    [4]陈景明,植物耐盐逆性的研究概况,安徽农业科学,2006,34(14):3277~3278
    [5]Greenway H, Munns R, Mechanisms of salt tolerance in nonhalophytes,Annual Review ofPlant Physiology,1980,31:149~190
    [6]Haro R, Banuelos M, Quintero FJ, et a1, Genetic basis of sodium exclution and sodiumtolerance in yeast, Plant Physiol,1993,89:868~874
    [7] SANTA-CRUZ A, ACOSTA M, RUS A, et a1, Short-term Salt Tolerance Mechanisms inDifferentially Salt Tolerant Tomar to Species, Plant Physiol Biochem,1999,37(1):65~71
    [8]Xiang Dian-jun, Hu Xiang-yang, Zhang Yu, Over-Expression of ICE1Gene in TransgenicRice Improves Cold Tolerance Rice Science,2008,15(3):173~178
    [9] Ashraf M, Foolad, MR, Roles of glycine betaine and proline in improving plant abiotic stressresistance, Environmental and Experimental Botany,2007,59(2):206~216
    [10]郭北海,甜菜碱醛脱氢酶基因转化小麦及其表达,植物学报,2000,42(3):279~283
    [11]宁顺斌,宋运淳,王玲,等,盐胁迫诱导的植物细胞凋亡—植物抗盐的可能生理机制,实验生物学报,2000,33(3):245~253
    [12]Rubio F, Gassmann W, Schroeder JI, Sodium driven potassium uptake by the plant potassiumtransporter HKT1and mutations conferring salt tolerance, Science,1995,270:1660~1663
    [13]Flowers TJ, Troke PF, Yeo AR, The mechanism of salt tolerance in halophytes, Ann RevPlant Physiol,1977,28:89~121
    [14]Mansour MF, NaC1alteration of plasma membrane of A lliumcepa epidermal cells,alleviation by calcium, Plant Physiol,1994,145:726~730
    [15]Tester M, Davenport R, Na tolerance and Na transport in higher plants, Ann, Bot,2003,91:1~25
    [16]Maser P, Eckelman B, Vaidyanathan R, et a1, Altered shoot/root Na distribution andbifurcating salt sensitivity in A rabidopsis by genetic disruption of the Nat transporterAtHKT1. FEBS Letts,2002,531:157~161
    [17]张淑红,张恩平,庞金安,植物耐盐性研究进展,北方园艺,2000,3:19~20
    [18]Michelet, Boutry M,The plasma membrane H+-ATPase, A highly regulated enzyme withmultiple physiological functions, Plant Physiol,1995,108:1~6
    [19]王宝山,赵可夫,邹琦,作物耐盐机理研究进展及提高作物抗盐的对策,植物学通报,1997,14(增刊):25~30
    [20]余叔文,汤章城,植物生理与分子生物学,北京:科学出版社,1998,752~769
    [21]许祥明,叶和春,李国凤,植物抗盐机理的研究进展,应用与环境生物学报,2000,6(4):379~387
    [22]康绍忠,新的农业科技革命与21世纪我国节水农业的发展,干旱地区农业研究,l998,l6(1):ll~l7
    [23] Carios GB, Facundo G, Dana EM, et a1, Mitochondrisa are the main target for oxidativedamage in leaves0f wheat (Triticum aestivum L.), pesticide of Experimental Botany,2004,55:403~407
    [24] Wu YX, Andreas VT, Physiological Effects0f Azoxystrobin and Epoxiconazole onsenescence and the oxidative Status of Wheat, Pesticide Biochemistry and Physiology,200l,71:l~l0
    [25]Salin ML, Toxic oxygen species and protective systems of the ch1oroplast, Physio1.plant,l987,72:681~689
    [26]Asada K, Ascorbate peroxidase-a hydrogen pero xide scavenging enzyme in plants, Physio1,Plant,1992,85:235~241
    [27]Frid chI, Superoxide dismute, Ann Rev. Biochem, l975,44:l47~l59
    [27]陈洁,林栖风,植物耐盐生理及耐盐机研究进展,海南大学学报自然科学版,2003,21(2):177~182
    [28]杨素欣,王振镒,盐胁迫下小麦愈伤组织生理生化特性的变化,西北农业大学学报,1999,27(2):48~51
    [29]Ramiro HL, Mariana NM, Celina ML, et a1, Effect of photooxidative stress induced byparaquat in two wheat cultivars with differential tolerance to water, Plant Science,2003, l64:84l~848
    [30]蒋明义,荆家海,王韶唐,渗透胁迫对水稻幼苗膜脂过氧化及体内保护酶系统的影响,植物生理学报,l99l,l7(1):80~84
    [31]毛桂莲,许兴,徐兆桢,对盐生理生化研究进展,中国生态农业学报,2004,12(1):43~46。
    [32]李辉,李德芳,陈安国等,植物耐盐研究概况,中国麻业科学,2007,29(4):227~232
    [33]GomezCadenas A, Tadeo FR,PrimoMillo E, Talon M, Involvement of abscic acid andethylene in the responses of citrus seedlings to salt shock,Plant Physio1,1998,103:475~484
    [34] Gomez Cadenas A, Arbona V, Jacas J, et al, Abscisic acid reduces leaf abscission andincreases salt tolerance in citrus plants, Plant Growth Regu,2002,21:234~240
    [35] Noaman MM, Dvorak J, Dong JM, Genes inducing Salt tolerance in wheat, Lophopyrumelongatum and amphiploid and their responses to ABA under salt stress, Prospects for SalineAgriculture (Series:Tasks for Vegetation Science),2002,37:139~144
    [36]Kuiper D, Schuit PJC, Auctal cytokinln concentration in plant tissue as an indicator for saltresistance in cerea1, Plant and Soil,1990:243~250
    [37]翟凤林,曹鸣庆,植物耐盐性及其改良,北京:农业出版社,1989:5~7
    [38]牛庆杰,李伟,李慧英,等,向日葵耐盐碱材料筛选的新途径,吉林农业科学,1998(3):27~28.
    [39]赵连城,刘孟雨,武田和义,等,国外大、小麦种质资源在盐碱地直接筛选可利用材料初报,作物品种资源,1994,4:19~20
    [40]翁跃进,马雅琴,耐盐春小麦新品系SW-99-10和SW-99-12,中国种业,2002,2:45
    [41]史湘华,殷鸣放,赵辉,等,盐碱地与耐盐碱树种的选育,中国林副特产,2005(2):60~62
    [42] Ashraf M. Breeding for salinity Tolerance in Plants, Plant Sci,1994,13:17~42
    [43]顾红艳,于福安,魏天权,等,耐盐碱水稻新品种津源85选育及栽培技术,农业科技通讯,2007,1:20~21
    [44]张雪艳,郜玉田,抗盐碱优质牧草新品种谷稗,农村科学实验,2008,3:34
    [45]张荃,赵彦,张慧,等,海水农业:梦想与现实,山东科学,1993,3(12):1~5
    [46]Jones RA, High salt tolerance potential in Lycopersion species during germinateon,Euphytica,1986,35:575~582
    [47]King IP,Introgression of salt-tolerance from Thinopyrum bessarabicum into wheat, Newphytol,1997,137:25~83
    [48]高玉红,李云,植物离体培养筛选耐盐突变体的研究,核农学报,2004,18(6):448~452
    [49]Wang CQ, Song H, Wang XF, et al, Selection of salt-tolerant variant from China pink,Acta-Horticulutrae-Sinica,2001,28(5):469~471
    [50]刘凤华,郭岩,陈受宜,等,转甜菜碱脱氢酶基因植物的耐盐性研究,遗传学报,1997,24(1):54~58
    [51]贾庚祥,BADH转化番茄提高耐盐性的研究,[博士学位论文],北京;中国科学院植物研究所,2002
    [52]Kishor, Overexpression of△-pyrroline-5-carboxylate synthetase increases prolineproduction and confers osmotolerance in transgenic plants, Plant Physiol1995,108:1387~1394
    [53]刘俊君,彭学贤,王慧中,等,转mtlD/gutD双价转基因水稻的耐盐性,科学通报,2000,45(7):724~729
    [54]Flowers TJ, Garcia M, Koyama M, et a1, Breeding for salt tolerance in crop plants-the roleof molecular biology, Acta Physiologiae Plantarum,1997,19:427~433
    [55]Yang SX, Zhao YX, Zhang Q, et a1, HAL1Mediate Salt Adaptation in Arabidopsis Thaliana,Cell Research,2001, ll (2):142~148
    [56]Bordas M, Montesinos C, Dabauza M, et a1, Transfer of the Yeast Salt Tolerance Gene HAL1to Cucujmis Melo L, Cultivars and in Vitro Evaluation of Salt Tolerance, TransgenicResearch,1997,6(1):41~50
    [57]张荃,王淑芳,赵彦修,等,HALl基因转化番茄及耐盐转基因番茄的鉴定,生物工程学报,2001,17(6):658~662
    [58]Gisbert C, Rus A M, Bolarin MC, et a1, The Yeast HAL1Gene Improves Salt Tolerance ofTransgenic Tomato, Plant Physiol,2000,123(1):393~402
    [59]Arrillagada I, Mascarell RG, Gisbert C, et a1, Expression of the Yeast HAL2Gene in TomatoIncreases the in Vitro Salt Tolerance of Transgenic Progenies,Plant Science,1998,136(2):219~226
    [60]Gervera M, Ortega C, Navarro A, et a1, Generation of Transgenic Citrus Plants with theTolerance to Salinity Gene HAL2from Yeast, Journal of Horticulture Science&Biotechnology,2000,75(1):26~30
    [61]黄绍兴,阎隆飞,高等植物对渗透胁迫的基因表达,农业生物技术学报,1995,3(3):l~6
    [62]刘昀,李冉辉,郑易之,等,大豆PM2蛋白及其结构可提高烟草耐盐性,深圳大学学报理工版,2007,24(1):95~101
    [63]Kazuo T, Kyoko K, A recessive Arobidopsis mutant that grows photoautotrohically undersalt stress shows enhanced active oxygen detoxification, Plant Cell,1999, ll:1195~1206
    [64]Mckersie DB, Murnaghan J, Jones SK, et al, Iron-su-peroxide dismutase expression intransgenic in afalfa increases winter survival without a detectable increase in photosyntheticoxidative stress tolerance, Plant Physiol,2000,122:1427~1437
    [65]Du J, Zhu Z, Li WC, Over-expression of exotic superoxide dismutase gene MnSOD andincrease in stress resistance in maize, Plant Physiol Mol Biol,2006,32:57~63
    [66]Perl AC, Perl-Treves R, Galili S, et a1, Enhanced oxidative stress defense in transgenicpotato expression tomato CulZn superoxide dismutase, Theor Appl Genet,1993,85:568~576
    [67]Kasuga M, Liu Q, Miura S, et a1, Improving plant drought, salt, and freezing tolerance bygene transfer of a single stress-inducible transcription factor, Nat Biotech,1999,17:287~291
    [68]Yamaguchi-Shinozaki k, Shinozaki K, A novel cis-acting element in all Arabidopsis gene isinvolved in responsiveness to drought, low-temperature or high-salt stress, Plant Cell,1994,6:251~264
    [69]Winicov I, Bastola DR, Transgenic overexpression ofthe transcription factor Alfinl enhancesexpression of the endogenous MsPRP2gene in alfalfa an d improves salinity tolerance of theplants, Plant Physiol,1999,120:473~480
    [70]Ratner A, Jacoby B, Effect of K+its coumter anion and pH on sodium efflux from barleyroots, J Exp Physiol,1976,148:425~433
    [71]Zhu JK, Genetic analysis of plant salt tolerance using arabidopsis,Plant Physiol,2000,124(3):941~948
    [72]Shi H, Ishitani M, Kim C, et a1, The Arabidopsis thaliana salt tolerance gene SOS1encodesa putative Na+/H+antiporter, Prec Natl Acad Sci USA,2000,97(12):6896~6901
    [73]Watanabe Y, Oshima N, Tamai Y, Co-expression of the Na+/H+antiporter and H-ATPasegenes of the salt tolerant yeast Zygosaccharomyces rouxii in Saccharomyces cerevisiae,FEMS Yeast Res,2005,5(4-5):411~417
    [74]Waditee R, Hibino T, Nakamura T, et a1, Overexpression of a Na+/H+antiporer confers salttolerance on a freshwater cyanobacterlum, making it capable of growth in sea water, ProcNatl Acad Sci U S A,2002,99(6):4109~4114
    [75]Shi H, Lee B H, Wu S J, et a1, Overexpression of a plasma membrane Na+/H+antiportergene improves salt tolerance in Arabidopsis thaliana, Nat Biotech,2003,21(1):81~85
    [76]Gaxiola R A, Rao R, Sherman A, et al, The Arabidopsis thaliana ptoton transporters.AtNHX1and Avpl, can founction in canon detoxify-cation in yest, Proc Natl AcadSci,1999,96:1480~1485
    [77]Fukuda A, Nakamura A, Tanska Y, Molecular cloning and expression of the Na+/H+antiporter gene in Oryza sativa.Biochem Bioph Acta,1999,1446:149~155
    [78]Hamada A, Shono M, Xia T, et al, Isolation and characterization of a Na+/H+antiporter genefrom the halophyte Atriplex gmelini, Plant Mol Bio1,2001,46:35~42
    [79]Apse MP, Aharon GS, Blumwale E, et al, Identification and characterzation of aNaCl-inducible vacuolar Na+/H+antiporterin Beta vulgaris, Physiol Plant,2002,116:206~212
    [80]Quintero FJ, Blatt MR, Pardo JM, Functional conservation between yeast and plantendosomal Na+/H+antiporter, FEBS Letter,2000,471:224~228
    [81] Barkla BJ, Apse MP, Manolson MF, et al, The plant vacuolar Na+/H+antiport, Symposiaof the Society for Experimental Biology,1994,48:141~153
    [82]Garbaino J, Dupont FM,Rapid Induction of Na+/H+Exchanger Activity In Barler RootTonoplast, Plant Physiol,1989,89:1~4
    [83]Ballesteros E, Blumwald E, et al, Na+/H+Antiport Activity in Tonoplast Vesicles IsolatedFrom Sunflower Roots Induced By NaCl Stress, Physiologia Plantrum,1997,99:328~334
    [84]Blumwald E, Poole, RJ, Na+/H+Antiport In Isolated Tonoplast Vesicles From StorageTissue of Beta Vulgarius, Plant Physiol,1985,78:163~167
    [85]Yokoi S, Quintero FJ, Cubero B, et a1, Differential expression and function of Arabidopsisthaliana NHX Na+/H+antiporters in the salt stress response, The Plant Journal,2002,30(5):529~539
    [86]Apse MP, Aharon GS, Snedden WS, et al, Salt tolerance conferred by overexpression of avacuolar Na+/H+antiporter in Arabidops, Science,1999,285:1256~1258
    [87]Zhang HX, Blumwald E, Transgenic salt-tolerant tomato plants accumulate salt in foliagebut not in fruit, Nat Biotech,2001,19:765~768
    [88]吕慧颖,盐生植物盐角草、番杏Na+>/H+>逆向转运蛋白基因克隆及特性研究,[博士学位论文],哈尔滨;东北农业大学,2003
    [89]Rufloni BC, Daminao F, Massabo, et al, Organogenesis and embryogenesis in LISIANTHUSRUSSELLIANUS HOOK, Acta Horticulture,1990,280:83~88
    [90]Massabò F, Ruffoni B, Plant production by somatic embryogenesis in cell suspensioncultures of Lisianthus russellianus Hook, Plant Tissue Culture and Biotech,1996,2(4):194~198
    [91]毛元荣,刘茜,周根余,洋桔梗叶片再生体系的建立,上海师范大学学报(自然科学版),2004,33(1):92~96
    [92]张子学,丁为群,乔华伟,等,洋桔梗的快速繁殖研究,中国林副特产,2005,4:1~3
    [93]杨燕燕,陈崇顺,等,洋桔梗高频再生体系的建立及其卡那霉素敏感性测定,江苏农业科学,2007,2:98~100
    [94]龚明霞,陈小凤,方锋学,洋桔梗组培苗玻璃化原因及恢复的研究,西南农业学报,2009,22(6):1718~1721
    [95]陈小凤,龚明霞,方锋学,等,自然光及NH4对洋桔梗的玻璃化的影响,广西农业科学,2008,39(4)519~522
    [96]Handa T, Genetic transformation of Antirrhinum majus and inheritance of altered phenotypeinduced by Ri T DNA, PIant Science,1992,81:199~206
    [97]Semeria L, Vaira AM, Accotto GP, et al, Genetic transformation of Eustoma grandiflorumGriseb by microprojectile bombardment, Euphytica,1995,85:125~130
    [98]Ledger SE, Deroles SC, Manson DG, et al, Transformation of lisianthus (Eustomagrandiflorum), Plant Cell Report,1997,16(12):853~858
    [99]Simon C, Deroles J, Marie B, et al, An antisense chalcone synthase cDNA leads to novelcolour patterns in lisianthus (Eustoma grandiflorum) flowers, Molecular Breeding,19984(1):55~66
    [100]Zaccai M, Lewinsohn E, Pichersky E, Modifying lisianthus traits by genetic engineering,ActaHorticulturae,2001,552:137~142
    [101]Mercuri A, Sacchetti A, Benedetti LD, et al, Green fluorescent flowers, Plant Science,2002,162:647~654
    [102]Fukuda A, Nakamura A, Tagiri A, et a1, Function intracellular localization and theimportance of salt tolerance of a vacuolar Na+/H+antiporter from rice, Plant and CellPhysiology,2004,45:146~159
    [103] Dheeraj V, Sneh L, Singla P, Functional validation of a novel isoform of Na+/H+antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice, Journal ofBiosciences,2007,32:621~628
    [104]Chen H, An R, ang JH,et al, Over-expression of a vacuolar Na+/H+antiporter geneimproves salt tolerance in an upland rice. Mol Breeding,2007,19:215~225
    [105]Ordogh M, Jambor-Benczur E, Tilly-Mandy A, MICROPROPAGATION OF′ECHO′CULTIVARS OF EUSTOMA GRANDIFLORUM
    [106]夏玉凤,以gfp为报告基因研究蛋白亚细胞定位,生物技术通报,2006,(2):11~13
    [107]Scott A, Wyatt S, Tsou PL, et al, Model system for plant cell biology; GFP imaging inliving onion epidermal cells, Biotechniques,1999,26:1125~1132
    [108]Stanislawska-Sachadyn A, Sachadyn P, Ihle K, et al, The construction of bifunctional fusionproteins consisting of MutS and GFP, Journal of Biotechnology,2006,121:134~143
    [109]KAY R, Chan A, DALY M, Duplication of CaMV35S Promoter Sequences Creates aStrong Enhancer for Plant Genes, Science,1987,236(4806):1299~1302
    [110]晏小兰,邱国华,李宝健,启动子对外源基因在转基因植物中表达的影响,中山大学学报,1995,34(2):60~67
    [111]吕萍萍,胡军,陈少良,等,抗盐胡杨Na+/H+逆向转运蛋白基因PeNhaD1的功能,植物生理与分子生物学报,2007,33(2):173~178
    [112]Shigaki T, Cheng NH, Pittman JK, et al, Structural determinant of Ca2+transport in theArabidopsis H+/Ca2+antiporter CAX1, BioChem,2001,276:43152~43159
    [113]Cheng NH, Jon K, Pittman, et al, Functional Association of Arabidopsis CAX1and CAX3Is Required for Normal Growth and Ion Homeostasis, Plant Physiology,2005,138:2048~2060
    [114]Yamaguchi T, Gilad S, Aharon JB, et al, Vacuolar Na+/H+antiporter cation selectivity isregulated by calmodulin from within the vacuole in a Ca2+and pH-dependent manner, PNAS,2005,102(44):16107–16112
    [115]张文会,郭磊,郭彦,植物生长激素对野生大豆耐盐性的影响,安微农业科学,2007,35(5):1296~1297
    [116]黄彬城,PSY基因植物表达载体的构建及对洋桔梗转化的研究,硕士学位论文,吉林;吉林大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700