河岸缓冲带对农业非点源污染的阻控作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国农业非点源污染所造成的水环境污染问题日益突出。作为水生生态系统和陆生生态系统过渡带的河岸缓冲带,可以有效地截留阻控农业非点源污染物向水体的迁移,降低农业非点源污染水体的风险。地处我国北方的辽河流域水环境质量受农业非点源污染较大。由于人们不合理的活动,局部地区河岸带植被遭受破坏,这使得这些地区河岸缓冲带对农业非点源污染阻控的功能下降。恢复和构建河岸缓冲带是阻控农业非点源污染较为有效的手段,但首先要选择较为适宜的河岸带植被,了解河岸缓冲带对非点源污染物的截留转化机理。本文在实验室植物筛选的基础上,构建草木犀带、草木犀与枫杨混合带(林草带)和杂草带(对照)三种类型人工河岸缓冲带,用野外小区试验的方法连续两年进行实地监测,从植被类型及其缓冲带宽度、植被季节变化、土壤酶活性以及微生物群落变化等方面,对河岸缓冲带阻控农业非点源污染的能力及其截留转化氮磷污染物的机制进行了系统的研究。所得主要结果如下:
     河岸缓冲带阻控农业非点源污染物的机制主要包括拦截地表径流、增加土壤渗透作用、植物和土壤吸收和吸附、土壤微生物的降解作用等。
     (1)总体上三种类型河岸缓冲带对农业非点源污染物阻控能力以林草带最强、草木犀带次之,杂草带最弱。草木犀草本植被适于构建研究区域河岸缓冲带。三种类型河岸缓冲带对阻控地表径流、降低径流中悬浮颗粒物浓度、质量和氮磷质量均有很好的效果;但降低径流氮磷浓度的效果不明显,降低土壤溶液中氮磷浓度的效果也因缓冲带类型及被阻控氮磷形态不同而表现出明显差异。
     (2)河岸缓冲带宽度是影响该缓冲带阻控能力的重要因子。河岸缓冲带越宽,其对农业非点源污染的阻控效果越明显:带宽5m以上,三种类型河岸缓冲带均可显著减少入河降雨径流流量、径流中氮素及悬浮颗粒物数量,林草带阻控能力最强,其截留效率达42%-99%之间,而除杂草带对氨态氮的截留效率最差;带宽9m以上,三种类型河岸缓冲带均可显著减少降雨径流中磷素数量。枫杨与草木犀的混合种植构建的缓冲带其阻控地表径流量、降雨径流中悬浮颗粒物和磷素数量的能力显著高于其它类型缓冲带,可能是由于该类型缓冲带生物量大、吸收氮磷数量多且土壤渗透能力强所致。
     (3)河岸缓冲带对污染物的阻控能力随季节而改变。三种类型河岸缓冲带阻控降雨径流的能力均显著大于阻控融雪径流能力。且河岸缓冲带宽度超过某一数值时阻控融雪径流中污染物的作用才明显,而融雪径流中污染物含量越高、其阻控效果则越不明显。冻融作用使缓冲带体系可溶性磷的含量增加,因此,该区域融雪径流可增大水体磷素污染的风险。
     (4)河岸缓冲带配置的植物对阻控农业非点源污染具有积极贡献。草木犀和枫杨对氮磷有较强的吸收与累积能力;七月份一次收割草木犀,其地上部分移除氮素数量达15.21-23.66g m-2,磷素0.72-1.02g m-2。
     (5)土壤微生物群落分布可作为河岸缓冲带阻控非点源污染氮磷能力的评价指标使用。土壤脲酶活性与河岸缓冲带体系对氮素的阻控作用之间并未表现出明显的相关性,而土壤磷酸酶活性与土壤阻控径流中磷素效果之间具有较好相关性。
Water pollution has become a major problem for both developed and developing in recent decades. The contribution from agricultural non-point source pollution(ANSP) has become a major cause of water quality degradation in China. Riparian vegetated filter strips (RVFS), a zone of transition between aquatic ecosystems and terrestrial, can be effectively intercept ANSP into water bodies, and reduce the risk of pollution of water bodies. Liaohe River Basin located in northern China, the water quality is polluted by ANSP. Riparian vegetation has been damaged due to irrational activity by local people, RVFS'performance are deteriorating. It is an effective approach that recovering and building RVFS to reduce ANPS pollution load. But first it is important to choose more suitable riparian vegetation, and to understand the mechanism of conversion about ANPS. Three types of artificial RVFS demonstration area was built in the wild through screening plants in the laboratory, namely with sweet clover, sweet clover mixed with sweet clover/Chinese Wingnut and weeds (control), two consecutive years of field monitoring experiment was carried out by field plot test methods to examine the effects of RVFS in reducing ANSP and mechanisms and characteristics of RVFS in retaining ANSP in term of vegetation types, width, seasonal changes, soil enzyme activities and microbial community. The resulting conclusions are as follows:
     The mechanisms of RVFS in retaining ANSP include:intercepting surface runoff, vegetation, increased soil penetration, absorption and adsorption pollutants, microbial degradation and so on.
     (1) Overall, the capability of RVFS in retaining ANSP are followed by sweet clover/Chinese Wingnut> sweet clover> weeds. Sweet clover is appropriate to RVFS as herbaceous vegetation. Various types of RVFS can reduce effectively surface runoff, suspended particulate matter concentration and quality, nitrogen and phosphorus, but they have no significant effect on the concentration of nitrogen and phosphorus runoff of nitrogen and phosphorus concentration in the soil solution resistance control effect are different according to the type of RVFS and different forms of nitrogen and phosphorus.
     (2) The width of RVFS is an important factor to affect the ability to reduce ANSP. The wider of RVFS, the more obvious these effect on ANSP,5m wide RVFS can significantly reduce rainfall runoff, quality, and quality of suspended particulate matter in rainfall runoff of nitrogen, the ability of tree/grass filter is strongest, and retention efficiency is the range of42%-99%. The retention efficiency of sweet clover for ammonia nitrogen is low.9m wide RVFS can significantly reduce the quality of rainfall runoff phosphorus. The effect of tree/grass filter is better than the other filter in reducting ANPS. It is may be due to the larger band grass biomass, phosphorus accumulation ability of the reasons, and infiltration may be another major contaminant removal mechanism.
     (3) Seasonal changes significantly affect the effect of RVFS in reducting ANPS. The effect of RVFS on resistance of rainfall runoff is significantly greater than that of snowmelt runoff. Only the width of the riparian buffer exceeds a certain value, the resistance of snowmelt runoff pollutants was obvious, and snowmelt runoff pollutants content is higher, its resistance control effect is less obvious. Freeze-thaw effect can increase the content of soluble phosphate of buffer system, therefore, snowmelt runoff of this area can increase the risk of snowmelt runoff water soluble phosphorus pollution.
     (4) The plants in the riparian buffer zone can contribute to the resistance control agricultural non-point source pollution. Melilotus and Pterocarya have a strong ability of adsorption and accumulation for nitrogen and phosphorus. Taking a harvest for melilotus in July, the mount of nitrogen removed by the above-ground part can be in the range of15.2123.66g m-2, and the phosphorus in the range of0.72-1.02g m-2.
     (5) The distributions of soil microbial community of Melilotus and Pterocarya riparian buffers tend to be diverse, belonging to the type of bacteria. The characteristics of distributions can be regarded as one indicator for evaluating the riparian buffer resistance control non-point source pollution of nitrogen and phosphorus ability. The relationship between Soil urease activity and riparian buffer system and nitrogen resistance control has shown obvious correlation, and the tie between soil phosphatase activity and soil resistance control for phosphorus removal effect has a good correlation.
引文
1. Abu-Zreig M, Rudra R. P., Lalonde M. N,,Whiteley H. R., Kaushik N. K.2004. Experimental investigation of runoff reduction and sediment removal by vegetated filter strips. Hydrological Processes,18:2029-2203.
    2. Addy K.L., Gold AJ, Groffman P.M., et al.1999. Groundwater nitrate removal in subsoil of forested and mowed riparian buffer zones. Journal of Environmental Quality,28(3):962-970.
    3. Al-wadaey, A., Wortmann, C. S., Franti, T. G, Shapiro, C. A., Eisenhauer, D. E.2012. Effectiveness of grass filters in reducing phosphorus and sediment runoff. Water Air Soil Pollut.223:5865-5875.
    4. Baker W L.1989. Macro-and micro-scale influences on riparian vegetation in western Colorado. Annals of the Association American Geographers,79:65-78.
    5. Barfield B. J., Tollner E. W., Hayes J. C.1979. Filtration of sediment by simulated vegetation I. Steady-state flow with homogeneous sedi-ment. Transactions of ASAE,22(5):540-545.
    6. Barfield, B.J., Tollner, E.W., Hayes, J.C.,1979. Filtration of sediment by simulated vegetation. Part I: steady-state flow with homoge-neous sediment. Trans. Am. Soc. Agric. Eng.22 (3),540-545.
    7. Bernhardt E. S., Palmer M. A., Allan J. D., et al.2005. Ecology-Synthesizing US river restoration efforts. Science,308(5722):636-637.
    8. Bechmann M E, Kleinman P J A, Sharpley AN, et al.2005. Freeze-thaw effects on phosphorus loss in runoff froin manured and catch-cropped soils. Journal of Environmental Quality,34(6):2301-2309.
    9. Boers P. C. M.1996. Nutrient emissions from agriculture in the nether-lands, causes and remedies. Water Science and Technology,33 (4/5):183-189.
    10. Borga P, Nilsson M., Tunlid A.,1994. Bacterial communities in peat in relation to botanical composition as revealed by phospholipids fatty acid analysis. Soil Biology and Bioehemistry 17: 841-848.
    11. Borin, M., Vianello, M., Morari, F., Zanin, G 2005. Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North-East Italy. Agric.Ecosyst. Environ.105:101-114.
    12. Boyd C E.1978. Chemical composition of wetland plants, in Freshwater Wetlands:Ecological Processes and Management Potential. New York:Academic Press.
    13. Boyd C. E.2000. Water quality. An introduction. Kluwer Academics Publishers, Norwell, Massachusetts.
    14. Benoit, P., Barriuso, et al.2001. Isoproturon movement and dissipation in undisturbed soil cores from a grassed buffer strip. Agronomic.20:297-307.
    15. Bharati L, Lee K H, Isenhart T M, et al.2002. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agroforestry Systems,56(3):249-257.
    16. Carling, P.A., Irvine, B.J., Hill, A., Wood, M.2001. Reducing sediment inputs to Scottish streams:a
    17. review of the efficacy of soil conservation practices in upland forestry. Sci. Total Environ.265:209-227.
    18. Carpenter, S., Caraco, N. F., Correll, D. L., et al.1998. Non Point Pollution of surface waters with Phosphorus and nitrogen.Washington D C:Ecological Soeiety of Ameriea,2-12.
    19. Clausen, J.C., Guillard, K., Sigmund, C. M., Dors, K. M.2000. Water quality changes from riparian buffer restoration in Connecticut. J. Environ. Qual.29:1751-1761.
    20. Cooper A. B.1990. Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia,202:13-26.
    21. Correll D L.1997. Buffer zones and water quality protection:General principles. In Haycock N E, Burk T P, Goulding K W T, et al. (Eds), Buffer Zones:Their Processes and Potential in Water Protection. Hertfordshire, United Kingdom:Quest Environmnental.7-20.
    22. Castelle, A. J., Johnson, A. W., Conolly, C.1994. Wetland and stream buffer size requirements-a review. Journal of Environmental Quality,23:878-882.
    23. Chen, J. L., Fu, L. L., Zhang, A. G.2002. Controlling effects of forest belts on non-point source pollution of agricultural lands in Taihu Lake area, China. Journal of Forestry Research,13(3): 213-216.
    24. Culley J. L. and Bolton E. F.1983. Suspended solids and phosphorus loads from a clay soil:Ⅱ. Watershed study. J. Environ. Qual.12:498-503.
    25. Coleman J, Hench K, Garbutt K et al.2001. Treatment of domestic wastewater by three plant species in constructed wetlands. Water Air and Soil Pollution,128:283-295.
    26. Fennessy, M. S., Cronk,J. K..1997. The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrates. Critical Reviews in Environmental Science and Technology,27:285-317.
    27. Dabney L D.1995. Depositional patterns of sediment trapped by grass filter strips during simulated. Transactions of the American Society of Agricultural Engineers,38(6):1719-1729.
    28. Daniel T. C.,Sharpley A. N., Lemunyon J. L.1998. Agricultural phosphorus and eutrophication:A symposium overview. Journal of Environment Quality,27(1):251-257.
    29. Daniels R B, Gilliam J W.1996. Sediment and chemical load reduction by grass and riparian filters. Soil Science Society of America Journal,60(1):246-251.
    30. Delgado A N, Periago E L.1995. Vegetated filter strips for wastewater purification:a review. Bioresource Technology,5:113-122.
    31. Dillaha T. A., Reneau R. B., Mostaghimi S., Lee D.1989. Vegetative filter strips for agricultural nonpoint source pollution control. Transactions of the ASAE,32(2):513-519.
    32. Dosskey M G, Hoagland K D, Brandle J R.2007. Change in filter strip performance over ten years. Journal of Soil and Water Conservation,62(1):21-32.
    33. Douglas, A., Burns, L. N.2002. Nitrate movement and removal along a shallow groundwater flow path in a riparian wetland within a sheep-grazed pastoral catchment:results of a tracer study. New Zealand Journal of Marin eand Fresh wate rResearch,36(2):371-385.
    34. Duchemin, M. and Hogue, R.2009. Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec (Canada). Agr. Ecosyst. Environ.131:85-97.
    35. Eewards, L. M., Burney, J R, Frame P A.1995. Rill Sediment Transport on a Prince-Edward-Island (Canada) Fine Sandy Loam. Soil Technology,8(2):127-138.
    36. Eghball B.2000. Narrow grass hedge effects on phosphorus and nitrogen in run off following manure and fertilizer application. Journal of soil and water conservation,55(2):172-176.
    37. Ferrick, M G, Gatto, L W.2005. Quantifying the effect of a freeze-thaw cycle on soil erosion: laboratory experiments. Earth Surface Processes and Landforms,30(10):1305-1326.
    38. Fitzhugh, R. D., Driscoll, C. T., Groffman, P. M., Tierney, G. L., Fahey, T. J., Hardy, J. P.2001. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry.56:215-238.
    39. Frostegard A., Tunlid A., Baath E.1993. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied Environment Microbiology,59:3605-3617.
    40. Grofrman P.M., Gold A.J., Simmons R.C.1992. Nitrate dynamics in riparian forests:Microbial studies. Journal of Environmental Quality,21:666-671.
    41. Han X. M., Wang R. Q., Liu J., et al.2007. Effects of vegetation types on soil microbial community composition and catabolic diversity assessed by polyphasic methods in North China. Journal of Environmental Sciences,19(10):1228-1234.
    42. Haycock N E, Pinay G.1993. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. Journal of Environmental Quality,22:273-278.
    43. Hayes, J.C., Barfield, B.J., Barnhisel, R.I.,1979. Filtration of sed-iments by simulated vegetation. Part II:unsteady flow with non-homogeneous sediment. Trans. Am. Soc. Agric. Eng.22,1063-1067.
    44. Heathwaite A L, Griffiths P, Parkinson R J.1998. Nitrogen and phosphorus in runoff from grassland with buffer strips following application of fertilizers and manures. Soil Use and Management,14: 142-148.
    45. Hill R R, Jung G A.1975. Genetic variability for chemical composition of alfalfa. I. Mineral elements. Crop Science,15:652-657.
    46. Hill A.R.,1996. Nitrate removal in stream riparian zones. Journal of Environmental Quality, 25:743-755.
    47. Huxman T E, Wilcox B P, Breshears D D, et al.2005. Ecohydrological implications of woody plant encroachment. Ecology,86(2):308-319.
    48. Hickey M.B.C., Doran B.,2004. A review of the efficiency of buffer strips for the maintenance and enhancement of riparian ecosystems. Water Quality Research Journal of Canada,39(3):311-317.
    49. Hefting M M, Clement J C, Bienkowski P, et al.2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecological Engineering,24(5):465-482.
    50. Jasen, T., Kevin, T., Esther, S., Andrea, K., Don, N.2011. Spring snowmelt impact on phosphorus addition to surface runoff in the Northern Great Plains. Better Crops,95 (1):28-31.
    51. Johansson R. C., Randall J. R.2003. Incorporating economics into the phosphorus index:An application to U. S. watersheds. J Soil and Water Cons.,58 (5):224-231.
    52. Johnson D, Vandenkoornhuyse PJ, Leake J R, Gilbert L, Booth R E, Grime J P, Young J P.2004. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New phytologist,161:503-515.
    53. Jamieson, A., Madramootoo, C. A., Engright, P.2003. Phosphorus losses in surface and subsurface runoff from a snowmelt event on an agricultural field in Quebec. Canadian Biosystems Engineering. 45:1.1-1.7.
    54. Kronvang B., Grsboll P., Larsen S. E., et al.1996. Diffuse nutrient lossesin denmark.Water Science and Technology,33 (4/5):81-88.
    55. Kim, I. J., Stacy L. Hutchinson, J.M.2007. Shawn Hutchinson, and C. Bryan Young, Riparian Ecosystem Management Model:Sensitivity to Soil, Vegetation, and Weather Input Parameters. Journal of the American Water Resources Association,43(5):1171-1182.
    56. Kiss, S., Dragan-Bularda, M., Raduleseu, D.1975. Biological significance of enzymes accumulated in soil. Advan. Agron.27:25-87.
    57. Kelly J M, Kovar J L, Sokolowsky R, et al.2007. Phosphorus uptake during four years by different vegetative cover types in a riparian buffer. Nutrient Cycling in Agroecosystems,78(3):239-251.
    58. Kellogg D Q, Gold A J, Groffinan P M, et al.2008. Riparian ground-water flow patterns using flownet analysis:Evapotranspiration-induced upwelling and implications for N removal. Journal of the American Water Resources Association,44(4):1024-1034.
    59. Kong L., Wang Y. B., Zhang L. N., et al.2009. Enzy meand root activities in surface-flow construted wetlands. Chemosphere,76:601-608.
    60. Kourtev P. S., Ehrenfeld J. G,Haggelom M.,2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology,83(11):3152-3166.
    61. Lee, D.,T. A. Dillaha, et al.,1989. Modeling phosphorus transport in grass buffer strips. J. Environ. Eng.115:409-427.
    62. Lee, K. H., Isenhart, T. M., Schultz, R. C.2003. Sediment and nutrient removal in an established multi-species riparian buffer. J. Soil Water Conserv.58:1-7.
    63. Lee, K. H., Isenhart, T. M., Schultz, R. C., Mickelson, S. K. 1999. Nutrient and sediment removal by switch grass and cool-season grass filter strips in Central Iowa, USA. Agroforestry Syst.44:121-132.
    64. Lee, K. H., Isenhart, T. M., Schultz, R. C, Mickelson, S. K.2000. Multi-species riparian buffers trap sediment and nutrients during rainfall simulations. J. Environ. Qual.29(4):1200-1205.
    65. Lewis, W. M. and Grant M. C.1980. Relationships between snow cover and winter losses of dissolved substances from a mountain watershed. Arctic and Alpine Res.12:11-17.
    66. Liu, X., Zhang, X., Zhang, M.,2008. Major factors influencing the effiencacy of vegetated buffers on sediment particles trapping:a review and analysis. Journal of Environmental Quality 37,1667-1674.
    67. Lowrance R R.1992. Ground water nitrate and denitrification in a Coastal Plain riparian forest. Journal of Environmental Quality,21(2):401-405.
    68. Lowrance R. R., Todd R. L., Fail J., et al.1984. Riparian forests as nutrient filters in agricultural watersheds. Bioscience,34(8):374-377.
    69. Lowrence R. et al.1985. Managing riparian ecosystems to control nonpoint pollution. Journal of soil and water conservation,40:87-89.
    70. Lowrance R., Altier L.S., Willianms RG, et al.2000. REMM:The riparian ecosystem management model. Journal of Soil and Water Conservation,55(1):27-34.
    71. Lena B., Gilles P., Ann F., et al.1995. Structure and function of buffer strips from a water quality perspective in agriculture landscapes. Landscape and Urban Planning.31:323-331.
    72. Mander U, Kuusemets V, Krista L.1997. Efficiency and dimensioning of riparian buffer zones in agricultural catchments.. Ecological Engineering,8(1):299-324.
    73. Mankin, K. R., Ngandu, D. M., et al.,2007. Grass-shrub Riparian Buffer Removal of Sediment, Phosphorus, and Nitrogen from Simulated Runoff. Journal of the American Water Resources Association,43(5):1108-1116
    74. Maitre V, Cosandey A C, Desagher E, et al.2003. Effectiveness of groundwater nitrate removal in a river riparian area:the importance of hydrogeological conditions. Journal of Hydrology,278(1-4): 76-93.
    75. Maurizio B, Michela S.2012. Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecological Engineering,46:34-42.
    76. Mariet M.2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecological Engineering,24:465-482.
    77. Moustafa M Z.1999. Analysis of phosphorus retention in free-water surface treatment wetlands. Hydrobiology.392:41-53.
    78. Muscutts, A D, Harris, G L, Bailey, S W, et al.1993. Buffer zones to improve water quality:a review of their potential use in UK agriculture. Agriculture, Ecosystems, and Environment.,45:59-77.
    79. Mulholland P J.2004. The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed:evidence from long-term chemistry records for Walker Branch Watershed. Biogeochemistry,70(3):403-426.
    80. Novotny V. and Olem N.1993.Water quality:prevention, identification and management of diffusepollution. New York:Van Nostrand Reihold Company,2.
    81. Naiman R J,1997. Decamps H. The ecology of interfaces:Riparian zones. Annual Review of Ecology and Systematics,28:621-658.
    82. Osborne L L, Kovacic D A.1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology,29(2),243-258.
    83. Owens, P. N., Duzant, J. H., Deeks, L. K., Wood, G A., Morgan, R. P. C., Collins, A. J.2007. Evaluation of contrasting buffer features within an agricultural landscape for reducing sediment and sediment associated phosphorus delivery to surface waters. Soil Use Manage.23:165-175.
    84. Pan, C.Z., Shangguan, Z.P.,2006. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology 331,178-185.
    85. Patty L., Real B., Grill J. J.1997. The use of grassed buffer strips to remove pesticides, nitrate and soluble phosphorus compounds from runoff water. Pesticide Science.49:243-251.
    86. Peterjohn, W. T. and Correl, D. L.1984. Nutrient dynamics in an agricultural watershed:Observations of the role of a riparian forest. Ecology.65(5):1466-1475.
    87. Roberson T, Bundy L G, Andraski T W.2007. Freezing and drying effects on potential plant contributions to phosphorus in runoff. Journal of Environmental Quality,36(2):532-539.
    88. Roberson, T., Bundy, L.G, Andraski, T. W.2007. Freezing and drying effects on potential plant contributions to phosphorus in runoff. J. Environ. Qual.36:532-539.
    89. Roberts, W. M., Stutter, M. I., Haygarth, P. M.2012. Phosphorus retention and remobilization in vegetated buffer strips:a review. J. Environ. Qual.41:389-399.
    90. Robinson C. A., Ghaffarzadeh M., Cruse R. M.1996. Vegetative filter strip effects on sediment conservation in cropland runoff. Journal of Soil and Water Conservation,51(3):227-230.
    91. Ronvaz M D, Eewards A C, Shand C A, et al.1994. Changes in the chemistry of soil solution and acetic-acid extractable P following different types of freeze/thaw episodes. European journal of soil science,45(3):353-359.
    92. Rood S B, Mahoney J M.1995. River damming and riparian cottonwoods along the Marias River, Montana. Rivers,5(3):195-207.
    93. Rogers K H, Breen A J, Chick A J.1991. Nitrogen removal in experimental wetland treatment systems: evidence for the role of aquatic plants. Research Journal of the Water Pollution Control Federation,63 (7):934-941.
    94. Reddy K. R., Dangelo E. M..1997. Biogeochemical indicators to evaluate pollutant removal efficiency in Constructed wetlands. Watt Sic Tech,35(5):1-10.
    95. Schmitt T. J., Dosskey M. G, Hoagland K. D.1999. Filter strip performance and processes for different vegetation, widths, and contaminants. Journal of Environmental Quality,28(5):1479-1489.
    96. Schoonover, J. E., Williard, K. W. J., Zaczek, J. J., Mangun, J. C., Carver, A. D.2005. Nutrient attenuation in agricultural surface runoff by riparian buffer zones in Southern Dlinois, USA. Agroforestry Syst.64:169-180.
    97. Schoonover, J. E., Williard, K. W. J., Zaczek, J. J., Mangun, J. C, Carver, A. D.2006. agricultural sediment reduction by giant cane and forest riparian buffers. Water, Air, and Soil Pollution.169: 303-315
    98. Schoonover, J. E., Williard, K. W. J., Zaczek, J. J., Mangun, J. C., Carver, A. D.2005. Nutrient attenuation in agricultural surface runoff by riparian buffer zones in Southern Illinois, USA. Agroforestry Syst.64:169-180.
    99. Sheppard, S. C., Sheppard, M. I., Long, J., Sanipelli, B., Tait, J.2006. Runoff phosphorus retention in vegetated field mar-gins on flat landscapes. Can. J. Soil Sci.86:871-884.
    100. Simon A, Collison A J C.2002. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surface Processes and Landforms,27(5):527-546.
    101. Syversen N.2002. Effect of a cold-climate buffer zone on minimising diffuse pollution from agriculture. Water Science and Technology,45(9):69-76.
    102. Syversen N.2005. Effect and design of buffer zones in the Nordic climate:The influence of width, amount of surface runoff, seasonal variation and vegetation type on retention efficiency for nutrient and particle runoff. Ecological Engineering,24(5):483-490.
    103. Syversen, N. and Borch, H.2005. Retention of soil particle fractions and phosphorus in cold-climate buffer zones. Ecol. Eng.25:382-394.
    104. Sarah J.2004:Effects of water level and phosphorus enrichment on seedling emergence from marsh seed banks collected from northern belize. Aquatic Botany,9(4):311-323.
    105. Smith.1989. Riparian Pasture retirement effects on sediment, phosphorus and nitrogen in channelized surface run-off from pastures. New Zealand Journal of Marine and Freshwater Research,23:139-146.
    106. Tabacchi E, Lambs L, Guilloy H, et al.2000. Impacts of riparian vegetation on hydrological processes. Hydrological Processes,14(16-17):2959-2976.
    107. Tollner, E.W., Barfleld, B.J., Hayes, J.C.,1982. Sedimentology of erect vegetal filters. Proc. Hydraul. Div. Am. Soc. Civil Eng.108,1518-1531.
    108.Tolson, B. A., Shoemaker, C. A.2007. Cannonsville Reservoir Watershed SWAT2000 model development, calibration and validation. Journal of Hydrology,337(1-2):68-86.
    109. USDA-NRCS.1999a. Grass Filter. Conservation practice standard, Code 393. Iowa NRCS, Des Moines, Iowa.
    110. USDA-NRCS.1999b. Riparian forest buffer. Conservation practice standard, Code 391. Iowa NRCS, Des Moines, Iowa.
    111. USEPA.1996. Environmental indicators of water quality in the United States. EPA 841-R-96-002. Washington D.C.; Office of Water (4503F), U.S. Goverment Printing Office.
    112. USEPA. National Water Quality Inventory. EPA 841-R-02-001. Washington D. C.; U.S. Environmental Protection Agency.2002.
    113. Uusi-Kamppa, J.2005. Phosphorus purification in buffer zones in cold climates. Ecol. Eng.24: 491-502.
    114. Uusi-Kamppa J, Jauhiainen L.2010. Long-term monitoring of buffer zone efficiency under different cultivation techniques in boreal conditions. Agriculture Ecosystems & Environment,137(1-2):75-85.
    115.Ulen B.,1997. Nutrient losses by surface run-off from soils with winter cover crops and spring-ploughed soils in the south of Sweden. Soil & Tillage Research,44(3-4):165-177.
    116. Vought L B M, Dahl J, Pedersen C L, et al.1994. Nutrient retention in riparian ecotones. Ambio,23(6): 342-348.
    117. Vought L B, Pinay G, Fuglsang A, et al.1995. Structure and function of buffer strips from a water quality perspective in agricultural landscapes. Landscape and Urban Planning,31:323-331.
    118. Vitousek P M, Reiners W A.1975. Ecosystem succession and nutrient retention-Hypothesis. Bioscience,25(6):376-381.
    119. Wenger S.1999. A review of the scientific literature on riparian buffer width, extent and vegetation. Athens, Georgia:Institute of Ecology, University of Georgia.
    120. Wenger S J, Fowler L.2000. Protecting stream and river corridors:creating effective local riparian buffer ordinances. Athens; Carl Vinson Institute of Government, University of Georgia,5-10.
    121. Wu, K. S., Johnston, C. A.2007. Hydrologic response to climatic variability in a Great Lakes Watershed:A case study with the SWAT model. Journal of Hydrology,337(1-2):187-199.
    122. Zhao, T. Q., Xu, H. S., He, Y. X., Tai, C., Meng, H., Zeng, F. F., Xing, M. L.2009. Agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetlands:A case study in the Yellow River wetland in China. J Environ Sci-China.,21:933-939.
    123. Frostegard A, Tunlid A, Baath E.1993. Phospholipid fatty acid composition, biomass, and activity of
    124. microbial communities from two soil types experimentally exposed to diferent heavy metals. Appl Environ Microbiol,59:3605-3617.
    125. O'Leary W M, Wilkinson S G. Gram-positive bacteria.1988:In Microbial Lipids. Vol 1. Academic Press, London,117-202.
    126. Zogg G P, Zak D R, Ringleberg D B, et al.,1997. Compositional and functional shifts in microbial communites due to soil warming. Soil Sci. Soc.61:475-481.
    127. Steinberger Y, Zelles L, Bai Q Y, et al.1999. Phospholipid fatty acid profiles as indicators for community structure in soil along a climatic transect in the Judean Desert. Biology and Fertility of Soil,28:292-300.
    128. White D C, Stair J O, Ringelberg D B.1996. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. Journal of Industry Microbiology,17:185-196.
    129. Zelles L.1999. Identification of single cultured micro-organisms based on their whole community fatty acid profiles using extraction procedure. Chemosphere,39:665-682.
    130.白明英.2010.农业非点源污染及控制对策研究.安徽农业科学,38(8):4228-4230.
    131.曾梦兆.2008.人工湿地基质酶及其活性与净化养殖废水效果相关性研究.[硕士学位论文].武 汉:华中农业大学.
    132.陈恩凤.1979.土壤酶与土壤肥力研究.北京,科学出版社.p.54-61.
    133.陈汉春.2004.水库水体富营养化及其控制对策.发展研究,25(1):9-12.
    134.陈吉泉.1996.河岸植被特征及其在生态系统和景观中的作用.应用生态学报,7(4):439-448.
    135.陈金林,潘根兴,张爱国等.2002.林带对太湖地区农业非点源污染物的控制.南京林业大学学报(自然科学版),26(06):17-20.
    136.陈勇.2010.陕西省农业非点源污染评价与控制研究.[博士学位论文].杨凌:西北农林科技大学.
    137.崔波.2012.不同植被河岸带对农业面源污染的净化效果及机理研究.[硕士学位论文].江苏大学.
    138.邓焕广,王东启,陈振楼,等.2013.改造滤岸对城市降雨径流中氮磷去除的中试研究.环境科学学报,33(2):494-502.
    139.关松荫.1986.土壤酶及其研究方法.北京:农业出版社,303-312.
    140.郭二辉,孙然好,陈利顶.2011.河岸植被缓冲带主要生态服务功能研究的现状与展望.生态学杂志,30(8):1830-1837.
    141.韩壮行.不同宽度森林河岸带对土壤氮素截留转化效率影响.[硕十学位论文].哈尔滨:东北林业大学,2007:8-10.
    142.贺缠生,傅伯杰,陈利顶.1998.非点源污染的管理及控制.环境科学,19(5),87-91,96.
    143.黄凯,郭怀成,刘永,等.2007.河岸带生态系统退化机制及其恢复研究进展.应用生态学报,18(6):1373-1382.
    144.黄玲玲.2009.竹林河岸带对氮磷截留转化作用的研究.[博士学位论文].北京:中国林业科学研究院.
    145.黄维南.1995.豆科树木共生固氮的生态生理及资源开发利用研究.中国科学基金,9(3):48-50.
    146.霍伟洁.2013.草地过滤带对农业非点源污染物的截留效应研究.[博士学位论文].北京:中国水利水电研究院.
    147.姜翠玲,范晓秋,章亦兵.2005.非点源污染物在沟渠湿地中的累积和植物吸收净化.应用生态学报,16(7):1351-1354.
    148.金相灿,刘鸿亮.1992.中国湖泊富营养化.北京:中国环境科学出版社.
    149.鞠瑾,张志扬,唐运平等.2006.不同植物湿地系统对高盐再生水的除氮能力比较.中国给水排水,22(19):56-58.
    150.巨晓棠,张福锁.2003.中国北方土壤硝态氮的累积及其对环境的影响,生态环境,12(1):24-8.
    151.李海鹏.2007.中国农业面源污染的经济分析与政策研究.[博士学位论文].武汉:华中农业大学.
    152.李怀恩.1987.水文模型在非点源污染研究中的应用.陕西水利,3:18-23.
    153.李会娜.2009.三种入侵菊科植物(紫茎泽兰、豚草、黄顶菊)与土壤微生物的互作关系.[博士学位论文].沈阳:沈阳农业大学.
    154.李家科.2009.流域非点源污染负荷定量化研究-以渭河流域为例.[博士学位论文].西安:西安理工大学.
    155.李健忠,庞明,叶朝霞等.2008.我国农业非点源污染研究进展及其防治措施.广州化学,33(2),54-57.
    156.李强坤,李怀恩,孙娟,等.2008.基于有限资料的水土流失区非点源污染负荷估算.水土保持学报,22(5):181-185.
    157.李睿华,管运涛,何苗,等.2006.河岸混合植物带处理受污染河水中试研究.环境科学,4(27):651-654.
    158.李世锋.2003.关于河岸缓冲带拦截泥沙和养分效果的研究.水土保持科技情报,6,41-43.
    159.梁威,吴振斌,周巧红等.2002.复合垂直流构建湿地基质微生物类群及酶活性的空间分布.云南环境科学,21(1):5-8.
    160.廖红,严小龙.2003.高级植物营养学.北京:科学出版社,115.
    161.林昭达,林承汉,周文杰.2005.七家湾溪滨水区植生缓冲带配置宽度之研究.水土保持学报,37(3):209-220.
    162.马永生,张淑英,邓兰萍.2005.氮、磷在农田沟渠湿地系统中的迁移转化机理及其模型研究进展.甘肃科技,21(2):106-107.
    163.潘瑞炽,董愚得.1995.植物生理学.北京:高等教育出版社.
    164.曲环.2007.农业面源污染控制的补偿理论与途径研究.[博士学位论文].北京:中国农业科学研究院.
    165.全为民,严力蛟.2002.农业面源污染对水体富营养化的影响及其防治措施.生态学报,22(3):291-299.
    166.邵波,方文,王海洋.2007.国内外河岸带研究现状与城市河岸林带生态重建.西南农业大学学报:社会科学版,6(5):43-46.
    167.邵亮.2011.农业非点源污染研究进展.辽宁农业科学,(6):47-52.
    168.司友斌等.2000.氮磷淋溶和水体富营养化.土壤,32(4):188-193.
    169.孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.2008.长期定位施肥田土壤酶活性的动态变化特征.生态环境.17(5):2059-2063.
    170.唐浩,黄沈发,王敏,等.2009.不同草皮缓冲带对径流污染物的去除效果试验研究.环境科学与技术,2(32):109-112.
    171.田琦,王沛芳,欧阳萍,王超,张文明.2009.5种沉水植物对富营养化水体的净化能力研究.水资源保护,25(1):14-17.
    172.王磊,章光新.2006.湿地缓冲带对氮磷营养元素的去除研究.农业环境科学学报,25(增刊):649-652.
    173.王利佳,凤颀,白艳丽.2001.大伙房水库水质污染和富营养化问题.辽宁城乡环境科技,21(6):45-47.
    174.王刘杰.2010.高寒草甸豆科植物固氮作用及其对群落的影响.[硕士学位论文].兰州大学.
    175.王敏,吴建强,黄沈发,等.2008.不同坡度缓冲带径流污染净化效果及其最佳宽度.生态学报,10(28):4952-4956.
    176.王庆成,于红丽,姚琴,等.2007.河岸带对陆地水体氮素输入的截留转化作用.应用生态学报,18(11):2611-2617.
    177.吴振斌,梁威,成水平等.2001.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析.环境科学学报,21(5):622-624.
    178.吴振斌,梁威,成水平等.2002.复合垂直流构建湿地净化污水基质研究.长江流域资源与环境,11(2):179-183.
    179.夏继红,严忠民.2004.生态河岸带研究进展与发展趋势,河海大学学报:自然科学版,5(3)252-254.
    180.夏立忠,杨林章.2003.太湖流域非点源污染研究与控制.长江流域资源与环境.12(1):45-49.
    181.肖洋.2008.北京山区森林植被对非点源污染的生态调控机理研究.[博士学位论文].北京:北京林业大学,6-10.
    182.徐化成.1996.景观生态学.北京:中国林业出版社,96-98.
    183.薛峰,颜廷梅,乔俊,等.2009.太湖地区稻田减量施肥的环境效益和经济效益分析.生态与农村环境学报.25(4):26-31,51.
    184.杨帆,高大文,高辉.高效吸收氮、磷的滨岸缓冲带植物筛选.东北林业大学学报,38(9):62-64.
    185.叶文芳.2006.农用化学品引起的农业面源污染及其综合防治.环境,2:46-49.
    186.余红兵.2012.生态沟渠水生植物对农区氮磷面源污染的拦截效应研究.[博士学位论文].长沙:湖南农业大学.
    187.岳春雷,常杰,葛滢,等.2004.人工湿地基质中土壤酶空间分布及其与水质净化效果之间的相关性.科技通报,20(2):112-116.
    188.郑雪芳,刘波,孙大光,等.2012.柑橘黄龙病植株内生菌PLFAs多态性研究.中国生态农业学报,20(7):932-944.
    189.张建春,彭补拙.2003.河岸带研究及其退化生态系统的恢复与重建.生态学报,23(1):56-63.
    190.张维理,武淑霞,冀宏杰,等.2004.中国农业面源污染形势估计及控制对策1:21世纪初期中国农业面源污染的形势估计[J].中国农业科学,37(7):1008-1017.
    191.张鑫,史奕,赵天宏,等.2006.我国农业非点源污染研究现状及控制措施.安徽农业科学.34(20):5303-5305.
    192.张燕.2013.农田排水沟渠对氮磷的去除效应及管理措施.[博士学位论文].长春:中国科学院东北地理与农业生态研究所.
    193.章力建,朱立志,蔡典雄,等.2005.农业立体污染防治中循环经济的运作机制及模式.农业技术经济,(3):2-5.
    194.赵警卫,胡彬.2012.河岸带植被对非点源氮磷以及悬浮颗粒物的截留效应.水土保持通报,32(4):51-55.
    195.赵其国,骆永明,滕应等.2009.当前国内外环境保护形势及其研究进展.土壤学报,46(6):1146-1154.
    196.赵其国,王浩清,顾国安.1993.中国的冻土.土壤学报,30(4):341-354.
    197.中国农业年鉴编辑部.2001.中国农业年鉴,北京:中国农业山版社.
    198.周守标,王春景,杨海军等.2007.菰和菖蒲在污水中的生长特性及其净化效果比较.应用与环境生物学报,13(4):454457.
    199.朱铁群.2000.我国水环境农业非点源污染防治研究简述.农村生态环境,16(3):55-57.
    200.朱维斌,王万杰,朱淮宁.1997.江苏省水污染的危害及其原因分析.农业生态环境,13(1):50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700