用户名: 密码: 验证码:
大陆碰撞过程中地壳深熔作用:苏鲁造山带超高压变质岩研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪80年代中期和90年代初期在大陆表壳岩石中发现柯石英和金刚石以来,大陆深俯冲和超高压变质作用一直是固体地球科学研究的前沿和热点问题。中国大别-苏鲁造山带是世界上规模最大、出露最好的超高压变质带之一,是研究大陆深俯冲过程中岩石学和地球化学变化的理想天然实验室。本文对苏鲁造山带中部和西南部超高压变质岩石进行了系统的岩石学和地球化学研究,结果为大陆碰撞过程中地壳深熔作用提供了证据,对大陆俯冲带变质过程中的流体活动与元素迁移、副矿物响应和变质锆石学等提供了新的重要制约,丰富了俯冲带化学地球动力学。
     对苏鲁造山带中部和西南部的仰口、岚山和青龙山超高压变质花岗片麻岩和石英岩进行了岩石学和锆石学研究,结果表明它们在折返过程中都经历了部分熔融。这些岩石中石英颗粒边界出现拉长的、高度尖锐状的长石,三联点填充有尖锐状的长石,由钾长石和石英构成的显微脉体和钾长石的晶面发育。这些特征表明,钾长石和石英形成于深熔熔体,并继承了熔体假象。根据锆石CL图像、矿物包裹体和REE配分型式,可以区分出深熔锆石和亚固相变质生长锆石。大部分深熔锆石不含柯石英,具有高Th含量、低Th/U比值、陡峭的REE配分型式和显著负Eu异常,U-Pb年龄为217±2-224±2Ma。少数深熔锆石含柯石英,具有相对低U含量、低Th/U比值、陡峭的REE配分型式和显著负Eu异常,U-Pb年龄为221+5-226+3Ma,主要集中在224+2Ma。这表明深熔作用始于深俯冲大陆地壳的早期折返阶段,但仍处于超高压变质域,持续到高压条件下并且熔融程度变大。片麻岩中白云母残晶与尖锐状钾长石共存,指示深熔熔体可能来自白云母脱水分解诱导的部分熔融。不纯石英岩中全部为变质生长锆石,有的含有柯石英、硬玉和金红石等高压矿物包裹体,有的含有石英、白云母、斜长石和钾长石等低压矿物包裹体。锆石中少量多相矿物包裹体由石英+白云母、白云母+钾长石、石英+钾长石和石英+斜长石等组成,总体上呈花岗斑状结构,可能代表了先前的长英质熔体,因此这些锆石域可能结晶自深熔熔体,与其陡峭的REE配分型式和负的Eu异常特点一致。含不同矿物组合的锆石给出了类似的U-Pb年龄(-220Ma),指示这些超高压岩石经历了较快的折返过程。锆石δ~(18)O值多集中在-0.6-0.1‰。,少量为-5.2--4.3%o,并且它们具有类似的U-Pb年龄、微量元素和Hf同位素组成,表明深熔熔体来自O同位素不同的两个源区。一个来源可能主要为石英岩自身,另一个来源可能为围岩片麻岩。纯石英岩中含有残留岩浆锆石核和变质生长边。含榴辉岩相矿物包裹体的锆石域表现出平坦的HREE配分型式、无负Eu异常,而含低压矿物包裹体的锆石域显示出陡峭的REE配分型式和显著的负Eu异常。它们的U-Pb年龄类似,均为-220Ma,表明纯石英岩既记录了榴辉岩相条件下亚固相锆石生长,也记录了较低压力下从深熔熔体中的生长,这些岩石也经历了相对较快的折返过程。不纯石英岩中存在两类石榴石,一类富A1,具有较低的LREE和Nb-Zr含量以及陡峭的REE配分型式;另一类具有较低的A1和较高的Fe含量、显著升高的LREE和Nb-Zr含量以及变化的HREE配分型式。后者含有钾长石、斜长石、石英和榍石等矿物包裹体,有时与角闪石共生;锆石包裹体U-Pb年龄为-214Ma。因此,第一类石榴石为金红石稳定域中榴辉岩相的变质生长,而第二类石榴石可能是折返过程中深熔反应产物。榍石和绿帘石等副矿物的微量元素组成也记录了深熔熔体的影响。锆石中Ti含量测温表明,深熔反应可能始于榴辉岩相条件下多硅白云母的脱水分解,然后进一步降压折返时转变为以白云母脱水熔融为主。
     对苏北东海地区青龙山花岗片麻岩和榴辉岩进行了锆石学研究,发现锆石δ~(18)O值、U-Pb年龄、Th/U比值和REE配分模式之间存在一定的相关性。总体上残留锆石核具有新元古代U-Pb年龄、正δ~(18)O值和岩浆成因锆石REE配分型式,它们是在-770Ma时结晶于具有正δ~(18)O值的岩浆。变质新生锆石具有低Th/U和~176Lu/~177Hf比值、低稀土总量、弱或无Eu负异常、三叠纪变质年龄(2044±4-252±7Ma)和负δ~(18)O值(-10.0--2.2‰)。这些特征表明,变质生长锆石结晶于负δ~(18)O变质流体,而这种流体来自经过高温热液蚀变的新元古代负δ18O原岩在三叠纪大陆俯冲带榴辉岩相变质条件下的脱水作用。很多锆石颗粒具有残留锆石核和新生锆石边,并且它们具有显著不同的δ~(18)O值、Th/U比值和U-Pb年龄。锆石粒间和粒内具有巨大氧同位素变化,指示榴辉岩相变质条件下不同锆石域之间或岩浆锆石核与变质流体之间的氧同位素交换极为有限。对变质锆石的综合分析揭示,原岩锆石经历了固态重结晶、交代重结晶和溶解重结晶等改造过程,重结晶程度与负δ~(18)O变质流体的参与程度有关。固态重结晶仅造成了放射成因Pb丢失,使原岩锆石的U-Pb年龄年轻化,而微量元素和O-Hf同位素组成都几乎没有改变。经历交代重结晶的锆石域显示不同程度的负δ~(18)O值和部分再造的REE、U-Pb和Lu-Hf同位素体系,在颗粒边缘和裂隙部位出现溶解重结晶。溶解重结晶锆石具有类似变质生长锆石的δ~(18)O值、几乎完全再造的U-Pb定年体系和部分再造的稀土配分体系。这些结果不仅进一步揭示了青龙山超高压变质岩中负δ~(18)O锆石成因,而且为区分大陆俯冲带不同类型的锆石重结晶作用提供了新的制约。
     在青龙山含黝帘石榴辉岩石榴石和绿辉石中发现了三类多相固体包裹体,分别由斜长石+石英、斜长石+石英+钾长石和重晶石+斜长石+钾长石+黝帘石/绿帘石组成。多相固体包裹体周围的寄主矿物大多显示出放射状裂纹。它们总体上含有很低的REE和微量元素,但大离子亲石元素(LILE)如Sr、Ba和Pb的含量较高。其中前两类多相固体包裹体具有高的Si0_2和Na2_O含量,非常低的FeO+MgO+TiO2含量和变化的K_2O含量。这些包裹体的存在表明,含黝帘石榴辉岩发生了部分熔融作用,其主微量元素特征为部分熔融机制提供了制约。这三类多相固体包裹体可能具有不同成因,第一类主要由黝帘石脱水熔融产生,并且有大量绿辉石参与,形成了富Na熔体;第二类由黝帘石和多硅白云母脱水熔融形成,熔体具有变化的K含量;第三类是与熔体有关的高氧逸度富水流体与寄主矿物反应的结果。
     对青龙山附近白虎山的超高压片麻岩进行了岩石学、锆石学和地球化学研究,揭示了大陆碰撞过程中伴随温压变化和熔/流体作用副矿物的多期生长和改造行为,也为变质过程中的流体性质及其对微量元素迁移的作用提供了新的认识。通过对锆石REE分布型式、矿物包裹体种类和锆石Ti温度计的综合分析,发现大陆碰撞过程中存在三期锆石生长。第一期为进变质榴辉岩相生长,U-Pb年龄为-237Ma;第二期为退变质榴辉岩相生长,U-Pb年龄为-222Ma;第三期为退变质麻粒岩相生长,U-Pb年龄为-205Ma。这三期锆石具有显著不同的稀土配分型式和微量元素含量,指示它们生长于不同性质的变质熔/流体中。第三期锆石具有显著升高的LREE和HFSE含量,因此很可能生长于含水熔体中,与岩相学观察结果一致。三期变质锆石生长的温压条件表明,变质锆石的幕式生长取决于变质熔/流体的幕式释放行为。片麻岩中榍石的微量元素变化很大,根据榍石REE配分型式和微量元素组成,可以区分出残留岩浆榍石、变质生长榍石和变质重结晶榍石。变质生长榍石具有显著降低的LREE和Th含量以及Th/U比值。它们具有不同程度升高的Nb含量和Nb/Ta比值(可达66),表明榍石生长过程中Nb/Ta发生了显著分异。片麻岩中石榴石的多期生长表现在矿物包裹体类型和主微量元素组成上存在差异。石榴石的主量元素环带表明,它经历了从进变质角闪岩相到退变质榴辉岩相的持续生长。不同环带中石榴石的微量元素组成则指示,在不同温压条件下形成石榴石的基质矿物在相对比例和矿物组成上发生了变化。
     对东海地区超高压变质岩进行了全岩Sr-Nd同位素、矿物O同位素和锆石学研究,发现其原岩经历了强烈水岩相互作用,不同程度亏损18O,最低可达-10.8‰。。全岩O同位素显示很大的空间变化,千米尺度达13.5%o,同一露头变化达3.7‰。结合前人研究成果,可以推测这些超高压变质岩原岩在新元古代经历了不同程度高温大气降水热液蚀变,在三叠纪大陆俯冲带变质过程中O同位素均一化尺度较小(矿物颗粒尺度)以及折返过程时非常有限的流体活动。然而,高压石英脉的出现以及不同类型岩石中出现部分熔融,表明深俯冲大陆地壳折返时超高压变质岩内部局部出现显著的熔/流体活动。超高压变质岩的全岩和矿物记录了水岩相互作用过程中的地球化学迁移行为。这些岩石亏损LILE,在tl=750Ma表现出异常低的初始87Sr/86Sr比值,但是在t2=230Ma时表现出非常高的87Sr/86Sr比值,指示LILE等水溶性元素在原岩热液蚀变和变质脱水过程中都具有显著的活动性。榴辉岩中高压石英脉富含石英、绿帘石和蓝晶石等矿物,表明流体流动使Na、Al、Si和LREE等元素发生了显著溶解和运移。锆石O同位素显示巨大变化,表明变质过程中岩石O同位素受到了不同程度改造。受流体作用的影响,锆石U-Pb同位素、微量元素和Lu-Hf同位素体系受到不同程度再造,从而显示这些元素和同位素具有不同的活动性。残留锆石εHf(t)值具有双峰式特征,部分接近新元古代亏损地幔值,部分具有变化的负εHf(t)值,指示新元古代长英质岩浆形成时既有新生地壳再造,也有古老陆壳重熔。
The study of continental deep subduction and ultrahigh-pressure (UHP) metamorphism has been one of the forefronts and hotspot topics in solid Earth sciences since the groundbreaking findings of coesite and diamond in metamorphic rocks of supracrustal protolith in1980's and1990's. The Dabie-Sulu orogenic belt in east-central China is one of the largest and best exposed UHP metamorphic zones in the world, representing an excellent natural laboratory for the study of petrological and geochemical changes during continental subduction-zone metamorphism. This PhD thesis focuses on petrology and geochemistry of UHP metamorphic rocks in the middle and southwestern parts of the Sulu orogen. The results provide evidence for crustal anatexis during continental collision and new constraints on fluid action and element mobility, the behavior of accessory minerals, and metamorphic zirconology. This has great bearing on chemical geodynamics of continental subduction zones.
     A combined study of petrology and zirconology was carried out for UHP granitic gneiss and quartzite from the Yangkou, Lanshan and Qinglongshan areas. The results indicate that these rocks experienced anatexis during exhumation of deeply subducted continental crust. Petrographic observations show the occurrence of elongated, highly cuspate feldspars in grain boundaries, interstitial cuspate feldspars in triple junctions, felsic veinlets mainly consisting of K-feldspar+quartz, and feldspar crystal faces against quartz. These features indicate that some feldspar and quartz grew from anatectic melts in the granitic gneiss and quartzite, with inheritance in melt microstructure. Anatectic zircon domains grown from the melts are distinguished from metamorphic zircon domains grown at subsolidus conditions based on CL images, mineral inclusions and REE patterns. Some anatectic zircon domains contain coesite inclusions and exhibit relatively low U contents, low Th/U ratios, steep REE patterns with strong negative Eu anomalies. Their U-Pb ages are221±5to226±3Ma, mostly clustering at224±2Ma. Nevertheless, the majority of anatectic zircon domains does not contain coesite inclusion and exhibits high U contents, low Th/U ratios (<0.1), steep REE patterns with strong negative Eu anomalies, and U-Pb ages of217±2to224±2Ma. These results indicate that the UHP rocks experienced incipient melting during the early exhumation but still in the UHP regime, and then extensive anatexis at lower pressures. Muscovite relicts coexist with cuspate feldspars in the granitic gneiss, suggesting that the anatectic melts originate from dehydration melting due to phengite breakdown. Zircon grains from the impure quartzite are all metamorphic growth, and they contain not only eclogite-facies mineral inclusions of coesite, jadeite, rutile but also lower pressure mineral inclusions that include multiphase solid (MS) inclusions composed of two or more phases of muscovite, quartz, K-feldspar and plagioclase. Some MS inclusions have granitic composition and show granophyric texture, representing former hydrous melt. Thus, such zircon domains would have grown from anatectic melts, consistent with their steep REE patterns and negative Eu anomalies. The anatectic zircon domains containing different mineral inclusions exhibit similar U-Pb ages of-220Ma, suggesting that the UHP rock experienced a relatively rapid exhumation. Most zircon domains have similar δ18O values of-0.6to0.1‰, with a few in the range of-5.2to-4.3‰. The all zircon domains exhibit similar U-Pb ages, trace element and Hf isotope compositions. Thus, the anatectic melts probably have two sources with different O isotope compositions. The predominate one may derive from the quartzite itself, whereas the other from the country rocks. Zircon grains from the pure quartzite contain relict cores of magmatic origin and significant metamorphic overgrowth rims. Zircon domains that contain eclogite-facies mineral inclusions exhibit flat HREE patterns, no Eu anomalies and U-Pb ages of-220Ma. Similar U-Pb ages are obtained for domains that contain lower pressure mineral inclusions and exhibit steep REE patterns and marked negative Eu anomalies. These observations indicate that zircon records subsolidus overgrowth at eclogite-facies conditions but suprasolidus growth at lower pressures. There are two types of garnet in the impure quartzite. One has high Al contents, low LREE and Nb-Zr contents, and steep REE patterns; the other exhibits low Al but high Fe contents, significantly elevated LREE and Nb-Zr contents and variable HREE patterns. The latter garnets contain mineral inclusions of K-feldspar, plagioclase, quartz and titanite, sometimes in coexistance with amphibole. Zircon enclosed by the latter garnet gave consistent U-Pb ages of-214Ma, thus such garnet is interpreted as a peritectic product of the anatectic reaction that involves felsic minerals and possibly amphibole and titanite. The REE patterns of epidote and titanite also record their multistage growth and metasomatism by anatectic melts.
     A combined in-situ study of zircon U-Pb ages, trace elements and O-Hf isotopes was conducted for the UHP granitic gneiss and eclogite in the Qinglongshan area of northern Jiangsu province. The results exhibit correlations between zircon818O values, U-Pb ages, Th/U ratios and REE patterns for the relict cores of magmatic origin and the newly grown rims of metamorphic origin. Generally, the relict magmatic cores with U-Pb ages of769±9Ma have positive δ18O values of0.1to10.1‰, high Th/U and176Lu/177Hf ratios, high REE contents, and steep MREE-HREE patterns with negative Eu anomalies. They are interpreted as crystallizing from positive δ18O magmas during protolith emplacement in the Neoproterozoic. In contrast, the newly grown domains have concordant U-Pb ages of204±4to252±7Ma and negative δ18O values of-10.0to-2.2%o, low Th/U and176Lu/177Hf ratios, low REE contents, and flat HREE patterns with weak to no Eu anomalies. They are interpreted as growing from negative δ18O fluids that were produced by metamorphic dehydration of the Neoproterozoic high-T glacial-hydrothermally altered rocks during the Triassic continental collision. Large O isotope heterogeneities occur in both intergrain and intragrain of zircon, indicating the limited O isotope exchange between different zircon domains in a single grain or between the relict magmatic domains and metamorphic fluids. The results suggest that protolith magmatic zircon underwent three subtypes of metamorphic recrystallization, with the extent of recrystallization depending on the accessibility to negative δ18O fluids. The solid-state recrystallized zircon domains maintained positive δ18O values and the REE and Lu-Hf isotopes of protolith zircon, but their U-Pb ages are somewhat lowered. The dissolution recrystallized zircon domains exhibit negative δ18O values similar to the metamorphic growths, almost completely reset U-Pb ages, and partially reset REE systems. The replacement recrystallized zircon domains show variably negative δ18O values, and partially reset REE, and U-Pb and Lu-Hf isotopic systems, with local dissolution recrystallization along grain boundaries and fractures. Therefore, these results place robust constraints on the origin of negative δ18O zircon in the UHP rocks from the Sulu orogen and provide a methodological framework to distinguish the different types of metamorphic zircons in continental subduction zones.
     Multiphase solid inclusions in both garnet and omphacite were investigated for zoisite-bearing UHP eclogite in the Qinglongshan area. The results provide petrological evidence for local anatexis of the eclogite during the continental collision. There are three types of MS inclusions, which are composed of plagioclase+quartz, plagioclase+quartz+K-feldspar, and barite+plagioclase+K-feldspar±zoisite/epidote, respectively. They generally have low trace element contents except such large ion lithophile elements (LILE) as Sr, Ba and Pb. The first and second types of MS inclusions have high contents of SiO2(75~90wt%) and Na2O (2.9to7.3wt%), very low FeO+MgO+TiO2contents and variable K2O contents (0to2.4wt%). The host minerals mostly exhibit radial fractures surrounding the MS inclusions. These features suggest different origins for the MS inclusions. The first type of MS inclusion would be primarily derived from dehydration melting of zoisite with involvement of omphacite to form Na-rich melts, whereas the second type of MS inclusion was derived from dehydration melting of both zoisite and phengite in the eclogite to form melts with variable K contents. The third type of MS inclusion is a result of interaction between the aqueous fluid of high oxygen fugacity and the host mineral. While anatexis of the zoisite-bearing eclogite is evident from the occurrence of MS inclusions, the major and trace element compositions of such MS inclusions provide insights into the origin of partial melts in the eclogite and thus into the nature of dehydration melting in the UHP metamorphic zone.
     An integrated study of petrology, geochronology and geochemistry was performed for UHP gneisses in the Baihushan area close to the Qinglongshan in northern Jiangsu province. The results not only highlight the polyphase growth of such metamorphic minerals as zircon, titanite and garnet in response to P-T changes and fluid/melt action, but also provide insights into the property of metamorphic fluid/melt and their effects on trace element mobility during the continental collision. A combined result from REE patterns, mineral inclusions and Ti-in-zircon temperatures suggests three stages of zircon growth. Prograde growth occurred at-237Ma primarily at eclogite-facies, retrograde growth at-222Ma mostly at eclogite-facies, and the last growth at-205Ma possibly at granulite-facies. The three stages of zircon growth are deciphered by distinct REE patterns and trace element compositions, recording the differences in the property of metamorphic fluid/melt. The episodic growth of metamorphic zircon is primarily dictated by the episodic releasing and focusing of metamorphic fluid/melt. Relict domains of magmatic titanite are distinguished from metamorphosed and metamorphic domains by their distinctive REE patterns and trace element compositions. The metamorphic titanite exhibit variably elevated Nb contents and Nb/Ta ratios, suggesting significant Nb/Ta fractionation during titanite formation. Polyphase growth of garnet from prograde amphibolite-facies to retrograde eclogite-facies is suggested by an integrated analysis of mineral inclusions and major element compositions in large garnet grains. Trace element contents vary in different zones of garnet, which is ascribed to changes in the paragenesis and composition of matrix minerals involved in garnet-forming reactions at different P-T conditions.
     A comprehensive study was carried out for UHP metamorphic rocks from the Donghai area in northern Jiangsu province for their whole-rock geochemistry, mineral O isotopes and zirconology. The results confirm that protoliths of the UHP rocks experienced strong high-T glacial meltwater-rock interaction in the Neoproterozoic, leading to their variable depletion of18O, with δ18O values as low as-10.8%o. The mineral O isotope composition has a large spatial heterogeneity, with δ18O values differing up to13.5%o on the kilometer scale and3.7%o on a single outcrop. This indicates the primary O isotope heterogeneity that was established during protolith emplacement but not homogenized even at hand-specimen scale during the Triassic UHP metamorphism and very limited fluid flow during the continental subduction-zone metamorphism. However, the fluid flow is locally significant during exhumation, resulting in the formation of quartz veins, symplectites, coronas, and local anatexis in UHP rocks. Geochemical transport due to fluid action is evident in whole-rock geochemistry and mineralogical composition. The UHP rocks exhibit unreasonably low87Sr/86Sr ratios at t1=750Ma but much radiogenic Sr isotopes at t2=230Ma, suggesting the mobility of water-soluble LILE due to both the hydrothermal alteration during protolith emplacement and the metamorphic dehydration during continental collision. Fluid-rock interaction during the continental collision mobilized Na, Al, Si, Ca, LREE and LILE, resulting in the formation of high-pressure veins in the UHP eclogites. The protolith zircon of magmatic origin underwent different types of metamorphic recrystallization in response to fluid-mineral interaction, leading to different extents of mobility in trace elements and O-Hf isotopes. Both positive εHf(t) values close to the depleted mantle of Neoproterozoic age and highly variable negative εHf(t) values occur in the relict magmatic zircon domains, indicating that the protoliths of UHP rocks were formed by reworking of both juvenile and ancient crustal rocks in the middle Neoproterozoic.
引文
陈道公,E. Deloule,程昊,夏群科,吴元保,2003.大别-苏鲁变质岩锆石微区氧同位素特征初探:离子探针原位分析.科学通报48,1732-1739.
    龚冰,郑永飞,2003.硅酸盐矿物氧同位素组成的激光分析.地学前缘,10,286-295.
    李龙,2001.大别-苏鲁造山带高压-超高压变质岩氧碳同位素区域分布及其对水-岩作用的影响。中国科学技术大学硕士毕业论文,pp146.
    梁金龙,孙晓明,徐莉,翟伟,汤倩,梁业恒,2006.CCSD及青龙山HP-UHP变质岩中绿帘石地球化学及其对板块折返过程的示踪.岩石学报22:1845-1854.
    刘福来,薛怀民,2007.苏鲁-大别超高压岩石中锆石SHRIMP U-Pb定年研究-综述和最新进展.岩石学报23,2737-2756.
    刘福来,王舫,刘平华,2009a.北苏鲁威海地区伟晶岩的形成过程及其与超高压岩石深熔作用的成因关系.地质学报83,1687-1702.
    刘福来,薛怀民,刘平华,2009b.苏鲁超高压岩石部分熔融时间的准确限定:来自黑云母花岗岩中锆石U-Pb定年、REE和Lu-Hf同位素的证据.岩石学报25,1039-1055.
    刘强,金振民,章军锋,2009.1.5-3.0 GPa压力条件下多硅白云母榴辉岩的脱水熔融实验研究.科学通报54,1455-1464.
    刘贻灿,李曙光,2008.俯冲陆壳内部的拆离和超高压岩石的多板片差异折返:以大别-苏鲁造山带为例.科学通报53,2153-2165.
    吴元保,郑永飞,2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报49,1589-1604.
    徐树桐,刘贻灿,陈冠宝,Compagnoni, R., Rolfo, F.,何谋春,刘惠芳,2003.大别山、苏鲁地区榴辉岩中新发现的微粒金刚石.科学通报48,1069-1075.
    杨红,张立飞,刘福来,2006.中国大陆科学钻探主孔榴辉岩中重晶石的发现及其意义.地质学报80,1892-1897.
    杨红,张立飞,刘福来,2010.中国大陆科学钻探(CCSD)主孔岩芯榴辉岩中的重晶石副矿物研究.岩石学报26,2073-2082.
    曾令森,刘福来,梁凤华,陈方远,2007.苏鲁榴辉岩钾长石+石英聚合体中重晶石矿物及其意义.科学通报54,1826-1840.
    曾令森,梁凤华,Paul Asimow,陈方远,陈晶,2009.深俯冲陆壳岩石部分熔融与苏鲁超高压岩石中长英质多晶包裹体的形成.科学通报54,1826-1840.
    曾令森,高丽娥,于俊杰,胡古月,2011.苏鲁仰口超高压岩石SHRIMP锆石U/Pb定年与部分熔融时限.岩石学报27,1085-1094.
    曾令森,陈振宇,陈晶,2012.苏鲁超高压榴辉岩长英质多晶包裹体中盐类固体包裹体.科学通报57,2972-2979.
    宗克清,刘勇胜,柳小明,张斌辉,2006CCSD榴辉岩折返过程中短时增温作用的微量元素记录.科学通报51,2673-2684.
    郑永飞,2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例.科学通报53,2129-2152.
    郑永飞,叶凯,张立飞,2009.发展板块构造:从洋壳俯冲到大陆碰撞.科学通报54,1799-1804.
    郑永飞,张立飞,刘良,陈伊翔,2013.大陆深俯冲与超高压变质研究进展.矿物岩石地球化学通报32,135-158.
    Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D., Morgan, G.B., VI,2010. Mechanisms of crustal Anatexis:a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. J. Petrol.51,785-821.
    Aleinikoff, J.N., Creaser, R.A., Lowers, H.A., Magee, J.C.W., Grauch, R.I.,2012. Multiple age components in individual molybdenite grains. Chem. Geol.300-301,55-60.
    Ames, L., Zhou, G., Xiong, B.,1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15,472-489.
    Anderson, D.L.,2007. New Theory of the Earth, Cambridge University Press, pp1-384.
    Andersen, T.,2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol.192, 59-79.
    Austrheim, H., Griffin, W.L.,1985. Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen Arcs, western Norway. Chem. Geol.50,267-281.
    Austrheim, H.,1987. Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet. Sci. Lett.81,221-232.
    Auzanneau, E., Vielzeuf, D., Schmidt, M.,2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib. Mineral. Petrol.152,125-148.
    Ayers, J.C., Dunkle, S., Gao, S., Miller, C.F.,2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chem. Geol.186,315-331.
    Barker, F.,1979. Trondhjemite:definition, environment and hypotheses of origin. In F. Barker (Ed.), Trondhjemites, Dacites and Related Rocks, Elsevier, Amsterdam, pp.1-12.
    Baker, J., Matthews, A., Mattey, D., Rowley, D., Xue, F.,1997. Fluid-rock interactions during ultra-high pressure metamorphism, Dabie Shan, China. Geochim. Cosmochim. Acta 61,1685-1696.
    Banno, M., Enami, M., Hirajima, T., Ishiwatari, A., Wang, Q.C.,2000. Decompression P-T path of coesite eclogite to granulite from Weihai, eastern China. Lithos 52,97-108.
    Bartoli, O., Cesare, B., Poli, S., Bodnar, R.J., Acosta-Vigil, A., Frezzotti, M.L., Meli, S.,2013. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology 41,115-118.
    Bea, F.,1996. Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. J. Petrol.37,521-552.
    Beard, J., Abitz, R., Lofgren, G.,1993. Experimental melting of crustal xenoliths from Kilbourne Hole, New Mexico and implications for the contamination and genesis of magmas. Contrib. Mineral. Petrol. 115,88-102.
    Bindeman, I.,2008. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineral. Geochem.69,445-478.
    Bindeman, I.N., Davis, A.M.,2000. Trace element partitioning between plagioclase and melt:investigation of dopant influence on partition behavior. Geochim. Cosmochim. Acta 64,2863-2878.
    Bindeman, I.N., Schmitt, A.K., Evans, D.A.D.,2010. Limits of hydrosphere-lithosphere interaction:Origin of the lowest-known δ18O silicate rock on Earth in the Paleoproterozoic Karelian rift. Geology 38, 631-634.
    Bindeman, I.N., Serebryakov, N.S.,2011. Geology, petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga. Earth Planet. Sci. Lett.306,163-174.
    Bindeman, I.N., Lundstrom, C.C., Bopp, C., Huang, F.,2013. Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks. Earth Planet. Sci. Lett.365,51-62.
    Bingen, B., Austrheim, H., Whitehouse, M.,2001. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronology. J. Petrol.42,355-375.
    Bjornerud, M.G., Austrheim, H.,2004. Inhibited eclogite formation:The key to the rapid growth of strong and buoyant Archean continental crust. Geology 32,765-768.
    Blichert-Toft, J., Albarede, F.,1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett.148,243-258.
    Booth, A.L., Kolodny, Y., Chamberlain, C.P., McWilliams, M., Schmitt, A.K., Wooden, J.,2005. Oxygen isotopic composition and U-Pb discordance in zircon. Geochim. Cosmochim. Acta 69,4895-4905.
    Buick, I.S., Hermann, J., Maas, R., Gibson, R.L.,2007. The timing of sub-solidus hydrothermal alteration in the Central Zone, Limpopo Belt (South Africa):Constraints from titanite U-Pb geochronology and REE partitioning. Lithos 98,97-117.
    Carswell, D.A. and Compagnoni, R. (Eds.),2003. Ultrahigh Pressure Metamorphism. EMU Notes in Mineralogy, vol.5,508 pp.
    Carswell, D.A., Wilson, R.N., Zhai, M.,2000. Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China. Lithos 52,121-155.
    Castelli, D., Rolfo, F., Compagnoni, R., Xu, S.,1998. Metamorphic veins with kyanite, zoisite and quartz in the Zhu-Jia-Chong eclogite, Dabie Shan, China. Isl. Arc 7,159-173.
    Cavosie, A.J., Valley, J.W., Wilde, S.A.,2006. Correlated microanalysis of zircon:Trace element,δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex>3900 Ma detrital grains. Geochim. Cosmochim. Acta 70,5601-5616.
    Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., Cavallo, A.,2009. "Nanogranite" and glassy inclusions:The anatectic melt in migmatites and granulites. Geology 37,627-630.
    Chacko, T., Cole, D.R., Horita, J.,2001. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev. Mineral. Geochem.43,1-81.
    Chavagnac, V., Jahn, B.-m.,1996. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China:Sm-Nd ages, geochemical characteristics and tectonic implications. Chem. Geol.133,29-51.
    Chen, F., Hegner, E., Todt, W.,2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany-evidence for a Cambrian magmatic arc. Int. J. Earth Sci.88,791-802.
    Chen, J., Xie, Z., Li, H.M., Zhang, X.D., Zhou, T.X., Park, Y.S., Ahn, K.S., Chen, D.G., Zhang, X.,2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem. J.37,35-46.
    Chen, R.-X., Zheng, Y.-F., Gong, B., Zhao, Z.-F., Gao, T.-S., Chen, B., Wu, Y.-B.,2007a. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks:Constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogen. Geochim. Cosmochim. Acta 71,2299-2325.
    Chen, R.-X., Zheng, Y.-F., Gong, B., Zhao, Z.-F., Gao, T.-S., Chen, B., Wu, Y.-B.,2007b. Oxygen isotope geochemistry of ultrahigh-pressure metamorphic rocks from 200-4000 m core samples of the Chinese Continental Scientific Drilling. Chem. Geol.242,51-75.
    Chen, R.-X., Zheng, Y.-F., Zhao, Z.-F., Tang, J., Wu, F.-Y., Liu, X.M.,2007c. Zircon U-Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. J. Metamorph. Geol.25,873-894.
    Chen, R.X., Zheng, Y.F., Xie, L.W.,2010. Metamorphic growth and recrystallization of zircon:Distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos 114,132-154.
    Chen, R.-X., Zheng, Y.-F., Gong, B.,2011a. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite:Constraints on fluid flow during continental subduction-zone metamorphism. Chem. Geol.281,103-124.
    Chen, R.-X., Zheng, Y.-F., Hu, Z.,2012. Episodic fluid action during exhumation of deeply subducted continental crust:Geochemical constraints from zoisite-quartz vein and host metabasite in the Dabie orogen. Lithos 155,146-166.
    Chen, Y.-X., Zheng, Y.-F., Chen, R.-X., Zhang, S.-B., Li, Q., Dai, M., Chen, L.,2011b. Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism:Evidence from U-Pb ages, trace elements, and O-Hf isotopes. Geochim. Cosmochim. Acta 75,4877-4898.
    Chen, Y.-X., Zheng, Y.-F., Hu, Z.,2013a. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks:Petrological evidence from granitic gneiss in the Sulu orogen. Lithos 156-159,69-96.
    Chen, Y.-X., Zheng, Y.-F., Hu, Z.,2013b. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. J. Metamorph. Geol.31,389-413.
    Cherniak, D.J., Watson, E.B.,2003. Diffusion in zircon. Rev. Mineral. Geochem.53,113-143.
    Cherniak, D.J.,2010. Diffusion in accessory minerals:Zircon, titanite, apatite, monazite and xenotime. Rev. Mineral. Geochem.72,827-869.
    Chopin, C.,2003. Ultrahigh-pressure metamorphism:tracing continental crust into the mantle. Earth Planet. Sci. Lett.212,1-14.
    Clemens, J.D.,2006. Melting of the continental crust:fluid regimes, melting reactions, and source-rock fertility. In:Brown, M., Rushmer, T. (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge University Press, pp.296-327.
    Cong, B.-L.,1996. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Science Press, Beijing, p.224.
    Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F., Li, Q., Yang, Y., Dai, M.,2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet. Sci. Lett.308,229-244.
    Dai, L.-Q., Zhao, Z.-F., Zheng, Y.-F., Zhang, J.,2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem. Geol. 334,99-121.
    Degeling, H., Eggins, S., Ellis, D.J.,2001. Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral. Mag.65,749-758.
    Depaolo, D.J.,1988. Neodymium Isotope Geochemistry:An Introduction. Springer-Verlag, New York, 188pp.
    Dobretsov, N.L., Shatsky, V.S.,2004. Exhumation of high-pressure rocks of the Kokchetav massif:facts and models. Lithos 78,307-318.
    Dobrzhinetskaya, L.F., Wirth, R., Green II, H.W.,2006. Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan:A new constraint for the depth of metamorphic diamond crystallization. Earth Planet. Sci. Lett.243,85-93.
    Du Bray, E.A.,1988. Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis-southeastern Arabian Shield. Contrib. Mineral. Petrol.100,205-212.
    Enami, M., Zang, Q.,1990. Quartz pseudomorphs after coesite in eclogites from Shandong Province, East China. Am. Mineral.75,381-386.
    Enami, M., Zang, Q., Yin, Y.,1993. High-pressure eclogites in northern Jiangsu-southern Shandong province, eastern China. J. Metamorph. Geol.11,589-603.
    Erambert, M., Austrheim, H.,1993. The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contrib. Mineral. Petrol.115,204-214.
    Ernst, W.G., Tsujimori, T., Zhang, R., Liou, J.G.,2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian Continental Margin. Annu. Rev. Earth Planet. Sci.35,73-110.
    Ernst, W.G., Liou, J.G.,2008. High-and ultrahigh-pressure metamorphism:Past results and future prospects. Am. Mineral.93,1771-1786.
    Essex, R.M., Gromet, L.P.,2000. U-Pb dating of prograde and retrograde titanite growth during the Scandian orogeny. Geology 28,419-422.
    Ferrando, S., Frezzotti, M.L., Dallai, L., Compagnoni, R.,2005. Multiphase solid inclusions in UHP rocks (Su-Lu, China):Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem. Geol.223,68-81.
    Ferrero, S., Bartoli, O., Cesare, B., Salvioli-Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo, C, Battiston, S.,2012. Microstructures of melt inclusions in anatectic metasedimentary rocks. J. Metamorph. Geol.30,303-322.
    Ferriss, E.D.A., Essene, E.J., Becker, U.,2008. Computational study of the effect of pressure on the Ti-in-zircon geothermometer. Eur. J. Mineral.20,745-755.
    Ferry, J., Watson, E.,2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol.154,429-437.
    Franz, G., Smelik, E.A.,1995. Zoisite-clinozoisite bearing pegmatites and their importance for decompressional melting in eclogites. Eur. J. Mineral.7,1421-1436.
    Franz, L., Romer, R.L., Klemd, R., Schmid, R., Oberhansli, R., Wagner, T., Shuwen, D.,2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib. Mineral. Petrol.141,322-346.
    Fraser, G., Ellis, D., Eggins, S.,1997. Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25,607-610.
    Frei, D., Liebscher, A., Franz, G., Dulski, P.,2004. Trace element geochemistry of epidote Minerals. Rev. Mineral. Geochem.56,553-605.
    Frezzotti, M.L., Ferrando, S., Dallai, L., Compagnoni, R.,2007. Intermediate alkali-alumino-silicate aqueous solutions released by deeply subducted continental crust:Fluid evolution in UHP OH-rich topaz-kyanite quartzites from Donghai (Sulu, China). J. Petrol.48,1219-1241.
    Frost, B.R., Chamberlain, K.R., Schumacher, J.C.,2000. Sphene (titanite):phase relations and role as a geochronometer. Chem. Geol.172,131-148.
    Fu, B., Zheng, Y.-F., Wang, Z.-R., Xiao, Y.-L., Gong, B. and Li, S.-G.,1999. Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contrib. Mineral. Petrol.134,52-66.
    Fu, B., Touret, J.L.R. and Zheng, Y.-F.,2001. Fluid inclusions in coesite-bearing eclogites and jadeite quartzites at Schuanghe, Dabie Shan, China. J. Metamorph. Geol.19,529-545.
    Fu, B., Zheng, Y.-F., Touret, J.L.R.,2002. Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem. Geol.187,107-128.
    Fu, B., Touret, J.L.R., Zheng, Y.-F., Jahn, B.-m.,2003. Fluid inclusions in granulites, granulitized eclogites and garnet clinopyroxenites from the Dabie-Sulu terranes, eastern China. Lithos 70,293-319.
    Ganguly, J.,2010. Cation diffusion kinetics in aluminosilicate garnets and geological applications. Rev. Mineral. Geochem.72,559-601.
    Gao, S., Rudnick, R.L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., Ling, W.-L., Ayers, J., Wang, X.-C., Wang, Q.-H.,2004. Recycling lower continental crust in the North China craton. Nature 432, 892-897.
    Gao, X.Y., Zheng, Y.F., Chen, Y.X.,2011. U-Pb ages and trace elements in metamorphic zircon and titanite from UHP eclogite in the Dabie orogen:constraints on P-T-t path. J. Metamorph. Geol.29, 721-740.
    Gao, X.Y., Zheng, Y.F., Chen, Y.X.,2012a. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen:evidence from multiphase solid inclusions in garnet. J. Metamorph. Geol.30,193-212.
    Gao, X.-Y., Zheng, Y.-F., Chen, Y.-X., Guo, J.,2012b. Geochemical and U-Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen. Lithos 136-139,93-108.
    Gao, X.Y., Zheng, Y.F., Chen, Y.X., Hu, Z.,2013. Trace element composition of continentally subducted slab-derived melt:insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J. Metamorph. Geol.31,453-468.
    Garcia-Arias, M., Corretge, L.G., Castro, A.,2012. Trace element behavior during partial melting of Iberian orthogneisses:An experimental study. Chem. Geol.292-293,1-17.
    Geisler, T., Schaltegger, U., Tomaschek, F.,2007. Re-equilibration of zircon in aqueous fluids and melts. Elements 3,43-50.
    Giorgis, D., Cosca, M., Li, S.,2000. Distribution and significance of extraneous argon in UHP eclogite (Sulu terrain, China):insight from in situ 40Ar/39Ar UV-laser ablation analysis. Earth Planet. Sci. Lett. 181,605-615.
    Gong, B., Zheng, Y.-F., Chen, R.-X.,2007. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys. Chem. Minerals.,34,687-698.
    Gordon, S.M., Little, T.A., Hacker, B.R., Bowring, S.A., Korchinski, M., Baldwin, S.L., Kylander-Clark, A.R.C.,2012. Multi-stage exhumation of young UHP-HP rocks:Timescales of melt crystallization in the D'Entrecasteaux Islands, southeastern Papua New Guinea. Earth Planet. Sci. Lett.351-352, 237-246.
    Gordon, S.M., Whitney, D.L., Teyssier, C., Fossen, H.,2013. U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway:Significance for history of partial melting in continental subduction. Lithos 170-171,35-53.
    Green, T.H., Adam, J.,2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa,650-700℃. Eur. J. Mineral.15,815-830.
    Gregory, C.J., Buick, I.S., Hermann, J., Rubatto, D.,2009. Mineral-scale trace element and U-Th-Pb age constraints on metamorphism and melting during the Petermann Orogeny (Central Australia). J. Petrol. 50,251-287.
    Gregory, C.J., Rubatto, D., Hermann, J., Berger, A., Engi, M.,2012. Allanite behaviour during incipient melting in the southern Central Alps. Geochim. Cosmochim. Acta 84,433-458.
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64,133-147.
    Guo, S., Ye, K., Chen, Y., Liu, J., Mao, Q., Ma, Y.,2012. Fluid-rock interaction and element mobilization in UHP metabasalt:Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos 136-139,145-167.
    Hacker, B.R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D., Shuwen, D.,1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet. Sci. Lett. 161.215-230.
    Hacker, B.R., Wallis, S.R., McWilliams, M.O., Gans, P.B.,2009.40Ar/39Ar Constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu orogen. J. Metamorph. Geol.27,827-844.
    Halter, W.E., Pettke, T., Heinrich, C.A., Rothen-Rutishauser, B.,2002. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS:methods of quantification. Chem. Geol.183,63-86.
    Hanchar, J.M., Watson, E.B.,2003. Zircon saturation thermometry. Rev. Mineral. Geochem.53,89-112.
    Habler, G., Thoni, M., Miller, C.,2007. Major and trace element chemistry and Sm-Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism. Chem. Geol.241,4-22.
    Harley, S.L., Kelly, N.M., Moller, A.,2007. Zircon behaviour and the thermal histories of mountain chains. Elements 3,25-30.
    Harris, N.,2007. Channel flow and the Himalayan-Tibetan orogen:a critical review. J. Geol. Soc.164, 511-523.
    Hattori, K., Muehlenbachs, K.,1982. Oxygen Isotope Ratios of the Icelandic Crust. J. Geophys. Res.87, 6559-6565.
    Hayden, L., Watson, E., Wark, D.,2008. A thermobarometer for sphene (titanite). Contrib. Mineral. Petrol. 155,529-540.
    Hermann, J.,2002a. Allanite:thorium and light rare earth element carrier in subducted crust. Chem. Geol. 192,289-306.
    Hermann, J.,2002b. Experimental constraints on phase relations in subducted continental crust. Contrib. Mineral. Petrol.143,219-235.
    Hermann, J., Green, D.H.,2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett.188,149-168.
    Hermann, J., Rubatto, D.,2003. Relating zircon and monazite domains to garnet growth zones:age and duration of granulite facies metamorphism in the Val Malenco lower crust. J. Metamorph. Geol.21, 833-852.
    Hermann, J., Rubatto, D.,2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem. Geol.265,512-526.
    Hermann, J., Spandler, C.J.,2008. Sediment melts at sub-arc depths:an experimental study. J. Petrol.49, 717-740.
    Hermann, J., Rubatto, D., Korsakov, A., Shatsky, V.,2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib. Mineral. Petrol.141,66-82.
    Hermann, J., Spandler, C., Hack, A., Korsakov, A.V.,2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:Implications for element transfer in subduction zones. Lithos 92,399-417.
    Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M.,1986. Nb and Pb in oceanic basalts:new constraints on mantle evolution. Earth Planet. Sci. Lett.79,33-45.
    Hollister, L.S.,1966. Garnet Zoning:An Interpretation Based on the Rayleigh Fractionation Model. Science 154,1647-1651.
    Hollister, L.S.,1993. The role of melt in the uplift and exhumation of orogenic belts. Chem. Geol.108, 31-48.
    Holness, M.B., Clemens, J.D.,1999. Partial melting of the Appin Quartzite driven by fracture-controlled H2O infiltration in the aureole of the Ballachulish Igneous Complex, Scottish Highlands. Contrib. Mineral. Petrol.136,154-168.
    Holness, M.B., Sawyer, E.W.,2008. On the pseudomorphing of melt-filled pores during the crystallization of migmatites. J. Petrol.49,1343-1363.
    Holness, M.B., Cesare, B., Sawyer, E.W.,2011. Melted rocks under the microscope:Microstructures and their interpretation. Elements 7,247-252.
    Hoskin, P.W.O., Black, L.P.,2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol.18,423-439.
    Hu, Z. C., Gao, S., Liu, Y. S., Hu, S. H., Chen, H. H., Yuan, H. L.,2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. Atom. Spectrom.23, 1093-1101.
    Huang, J., Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhou, J.-B., Liu, X.,2006. Melting of subducted continent: Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chem. Geol.229,227-256.
    Huang, W.L., Wyllie, P.J.,1981. Phase relationships of S-Type granite with H2O to 35 kbar:Muscovite granite from Harney Peak, South Dakota. J. Geophys. Res.86,10515-10529.
    Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F.,2000. Nanometer-Size-PbO2-Type TiO2 in Garnet:A Thermobarometer for Ultrahigh-Pressure Metamorphism. Science 288,321-324.
    Irvine, T.N. and Baragar, W.R.A.,1971. A guide to the chemical classification of the common volcanic rocks:Can. J. Earth Sci.8,523-548.
    Jackson, J.A., Austrheim, H., McKenzie, D., Priestley, K.,2004. Metastability, mechanical strength, and the support of mountain belts. Geology 32,625-628.
    Jahn, B.-m., Condie, K.C.,1995. Evolution of the Kaapvaal-Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochim. Cosmochim. Acta 59,2239-2258.
    Jahn, B.-m.,1998. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen:implications for continental subduction and collisional tectonics. In:B.R. Hacker and J.G Liou (Editors), When Continents Collide:Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishers, Dordrecht, pp.203-239.
    Jamtveit, B., Austrheim, H.,2010. Metamorphism:The role of fluids. Elements 6,153-158.
    Jamtveit, B., Bucher-Nurminen, K., Austrheim, H.,1990. Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, Western Norway. Contrib. Mineral. Petrol.104,184-193.
    Jamieson, R.A., Unsworth, M.J., Harris, N.B.W., Rosenberg, C.L., Schulmann, K.,2011. Crustal melting and the flow of mountains. Elements 7,253-260.
    Katayama, I., Parkinson, C.D., Okamoto, K., Nakajima, Y., Maruyama, S.,2000. Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav massif, Kazakhstan. Am. Mineral.85,1368-1374.
    Katayama, I., Nakashima, S.,2003. Hydroxyl in clinopyroxene from the deep subducted crust:Evidence for H2O transport into the mantle. Am. Mineral.88,229-234.
    Katayama, I., Nakashima, S., Yurimoto, H.,2006. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86,245-259.
    Kawamoto, T., Kanzaki, M., Mibe, K., Matsukage, K.N., Ono, S.,2012. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. Proc. Nat. Acad. Sci. USA 109,18695-18700.
    Kent, A.J.R.,2008. Melt inclusions in basaltic and related volcanic rocks. Rev. Mineral. Geochem.69, 273-331.
    Kessel, R., Schmidt, M.W., Ulmer, P., Pettke, T.,2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature 437,724-727.
    Kita, N.T., Ushikubo, T., Fu, B., Valley, J.W.,2009. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem. Geol.264,43-57.
    Klemme, S., Blundy, J.D., Wood, B.J.,2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Cosmochim. Acta 66,3109-3123.
    Klemme, S., Prowatke, S., Hametner, K., Gunther, D.,2005. Partitioning of trace elements between rutile and silicate melts:Implications for subduction zones. Geochim. Cosmochim. Acta 69,2361-2371.
    Klimm, K., Blundy, J.D., Green, T.H.,2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J. Petrol. 49,523-553.
    Kogiso, T., Tatsumi, Y., Nakano, S.,1997. Trace element transport during dehydration processes in the subducted oceanic crust:1. Experiments and implications for the origin of ocean island basalts. Earth Planet. Sci. Lett.148,193-205.
    Kogiso, T., Hirschmann, M.M.,2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet. Sci. Lett.249, 188-199.
    Kohn, M.J.,2003. Geochemical zoning in metamorphic minerals. Treatise on Geochemistry vol.3, 229-261.
    Konrad-Schmolke, M., Zack, T., O'Brien, P.J., Jacob, D.E.,2008. Combined thermodynamic and rare earth element modelling of garnet growth during subduction:Examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth Planet. Sci. Lett.272,488-498.
    Krystopowicz, N.J., Currie, C.A.,2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet. Sci. Lett.361,195-207.
    Kylander-Clark, A.R.C., Hacker, B.R., Mattinson, C.G.,2012. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet. Sci. Lett.321-322,115-120.
    Labrousse, L., Jolivet, L., Andersen, T.B., Agard, P., Hebert, R., Maluski, H., Scharer, U.,2004. Pressure-temperature-time deformation history of the exhumation of ultra-high pressure rocks in the Western Gneiss Region, Norway. Geol. Soc. America Spec. Papers 380,155-183.
    Labrousse, L., Prouteau, G., Ganzhorn, A.-C.,2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology 39,1171-1174.
    Lackey, J.S., Romero, G.A., Bouvier, A.-S., Valley, J.W.,2012. Dynamic growth of garnet in granitic magmas. Geology 40,171-174.
    Lancaster, P.J., Fu, B., Page, F.Z., Kita, N.T., Bickford, M.E., Hill, B.M., McLelland, J.M., Valley, J.W., 2009. Genesis of metapelitic migmatites in the Adirondack Mountains, New York. J. Metamorph. Geol. 27,41-54.
    Lang, H.M., Gilotti, J.A.,2007. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. J. Metamorph. Geol.25,129-147.
    Laurie, A., Stevens, G.,2012. Water-present eclogite melting to produce Earth's early felsic crust. Chem. Geol.314-317,83-95.
    Li, Q., Li, S., Zheng, Y.-F., Li, H., Massonne, H.J., Wang, Q.,2003. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China:a new constraint on the cooling history. Chem. Geol.200,255-265.
    Li, S., Xiao, Y., Liou, D., Chen, Y., Ge, N., Zhang, Z., Sun, S.-s., Cong, B., Zhang, R., Hart, S.R., Wang, S.,1993. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chem. Geol.109,89-111.
    Li, S., Wang, S., Chen, Y., Liu, D., Qiu, J., Zhou, H., Zhang, Z.,1994. Excess argon in phengite from eclogite:Evidence from dating of eclogite minerals by Sm-Nd, Rb-Sr and 40Ar/39Ar methods. Chem. Geol.112,343-350.
    Li, S., Jagoutz, E., Lo, C.-H., Chen, Y., Li, Q., Xiao, Y.,1999. Sm/Nd, Rb/Sr, and 40Ar-39Ar isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie-Sulu Belt, Central China:A retrospective view. Int. Geol. Rev.41,1114-1124.
    Li, S., Jagoutz, E., Chen, Y., Li, Q.,2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochim. Cosmochim. Acta 64,1077-1093.
    Li, S., Wang, C., Dong, F., Hou, Z., Li, Q., Liu, Y., Huang, F., Chen, F.,2009. Common Pb of UHP metamorphic rocks from the CCSD project (100-5000 m) suggesting decoupling between the slices within subducting continental crust and multiple thin slab exhumation. Tectonophysics 475,308-317.
    Li, X.-H., Li, W.-X., Li, Q.-L., Wang, X.-C., Liu, Y., Yang, Y.-H.,2010a. Petrogenesis and tectonic significance of the~850Ma Gangbian alkaline complex in South China:Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry. Lithos 114,1-15.
    Li, X.H., Long, W.G., Li, Q.L., Liu, Y., Zheng, Y.F., Yang, Y.H., Chamberlain, K.R., Wan, D.F., Guo, C.H., Wang, X.C., Tao, H.,2010b. Penglai zircon megacrysts:A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostand. Geoanal. Res.34,117-134.
    Li, X.-P., Zheng, Y.-F., Wu, Y.-B., Chen, F., Gong, B., Li, Y.-L.,2004. Low-T eclogite in the Dabie terrane of China:petrological and isotopic constraints on fluid activity and radiometric dating. Contrib. Mineral. Petrol.148,443-470.
    Liati, A., Gebauer, D.,1999. Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating of different zircon domains:inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contrib. Mineral. Petrol.135,340-354.
    Liebscher, A., Franz, G., Frei, D., Dulski, P.,2007. High-pressure melting of eclogite and the P-T-X history of tonalitic to trondhjemitic zoisite-pegmatites, Mlinchberg Massif, Germany. J. Petrol.48, 1001-1019.
    Liew, T.C., Hofmann, A.W.,1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe:Indications from a Nd and Sr isotopic study. Contrib. Mineral. Petrol.98,129-138.
    Liou, J.G., Zhang, R.Y.,1996. Occurrences of intergranular coesite in ultrahigh-P rocks from the Sulu region, eastern China; implications for lack of fluid during exhumation. Am. Mineral.81,1217-1221.
    Liou, J.G., Zhang, R.Y., Ernst, W.G., Rumble, D., Maruyama, S.,1998. High-pressure minerals from deeply subducted metamorphic rocks. Rev. Mineral.37,33-96.
    Liou, J.G., Zhang, R.Y., Ernst, W.G.,2007. Very high-pressure orogenic garnet peridotites. Proc. Nat. Acad. Sci.USA 104,9116-9121.
    Liou, J.G., Ernst, W.G., Zhang, R.Y., Tsujimori, T., Jahn, B.M.,2009. Ultrahigh-pressure minerals and metamorphic terranes-The view from China. J. Asian Earth Sci.35,199-231.
    Liu, D., Jian, P., Kroner, A., Xu, S.,2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth Planet. Sci. Lett.250, 650-666.
    Liu, F.L., Xu, Z.Q., Xue, H.M.,2004. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China):SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos 78,411-429.
    Liu, F., Gerdes, A., Zeng, L., Xue, H.,2008a. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochim. Cosmochim. Acta 72,2973-3000.
    Liu, F.L., Gerdes, A., Liou, J., Liu, P.,2009. Unique coesite-bearing zircon from allanite-bearing gneisses: U-Pb, REE and Lu-Hf properties and implications for the evolution of the Sulu UHP terrane, China. Eur. J. Mineral.21,1225-1250.
    Liu, F.L., Robinson, P.T., Gerdes, A., Xue, H., Liu, P., Liou, J.G.,2010a. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China:Constraints on the timing and nature of partial melting. Lithos 117,247-268.
    Liu, F.L., Liou, J.G.,2011. Zircon as the best mineral for P-T-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J. Asian Earth Sci.40,1-39.
    Liu, F.L., Robinson, P.T., Liu, P.H.,2012. Multiple partial melting events in the Sulu UHP terrane:zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J. Metamorph. Geol.30,887-906.
    Liu, J., Ye, K., Maruyama, S., Cong, B., Fan, H.,2001. Mineral inclusions in zircon from gneisses in the ultrahigh-pressure zone of the Dabie Mountains, China. J. Geol.109,523-535.
    Liu, L., Zhang, J., Green Ii, H.W., Jin, Z., Bozhilov, K.N.,2007b. Evidence of former stishovite in metamorphosed sediments, implying subduction to>350 km. Earth Planet. Sci. Lett.263,180-191.
    Liu, X.-W., Jin, Z.-M., Green, H.W., Ⅱ,2007a. Clinoenstatite exsolution in diopsidic augite of Dabieshan: Garnet peridotite from depth of 300 km. Am. Mineral.92,546-552.
    Liu, Y.-C., Li, S.-G., Xu, S.-T.,2007c. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China:Implications for decoupling within subducted continental crust. Lithos 96,170-185.
    Liu, Y. S., Hu, Z. C., Gao, S., Gunther, D., Xu, J., Gao, C. G., Chen, H. H.,2008b. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol.257,34-43.
    Liu, Y.S, Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D.,2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol.51,537-571.
    Ludwig K.R.,2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley.
    Luo, Y., Ayers, J.C.,2009. Experimental measurements of zircon/melt trace-element partition coefficients. Geochim. Cosmochim. Acta 73,3656-3679.
    Malaspina, N., Hermann, J., Scambelluri, M., Compagnoni, R.,2006. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet. Sci. Lett.249,173-187.
    Malaspina, N., Hermann, J., Scambelluri, M.,2009. Fluid/mineral interaction in UHP garnet peridotite. Lithos 107,38-52.
    Manning, C.E.,2004. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett.223,1-16.
    Martin, L.A.J., Duchene, S., Deloule, E., Vanderhaeghe, O.,2008. Mobility of trace elements and oxygen in zircon during metamorphism:Consequences for geochemical tracing. Earth Planet. Sci. Lett.267, 161-174.
    Massonne, H.-J.,2001. First find of coesite in the ultrahigh-pressure metamorphic area of the central Erzgebirge, Germany. Eur. J. Mineral.13,565-570.
    Mattinson, C.G., Zhang, R.Y., Tsujimori, T., Liou, J.G.,2004. Epidote-rich talc-kyanite-phengite eclogites, Sulu terrane, eastern China:P-T-fO2 estimates and the significance of the epidote-talc assemblage in eclogite. Am. Mineral.89,1772-1783.
    McDonough, W.F., Sun, S.s.,1995. The composition of the Earth. Chem. Geol.120,223-253.
    McLeod, C.L., Davidson, J.P., Nowell, G.M., de Silva, S.L.,2012. Disequilibrium melting during crustal anatexis and implications for modeling open magmatic systems. Geology 40,435-438.
    Mibe, K., Kawamoto, T., Matsukage, K.N., Fei, Y., Ono, S.,2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc. Nat. Acad. Sci. USA 108,8177-8182.
    Middlemost, E.A.K.,1994. Naming materials in the magma/igneous rock system. Earth-Sci. Rev.37, 215-224.
    Miller, C.F., Stoddard, E.F.,1981. The role of manganese in the petrogenesis of magmatic garnet:an example from the Old-Woman-Piute Range, California. J. Geol.89,233-246.
    Mints, M.V., Belousova, E.A., Konilov, A.N., Natapov, L.M., Shchipansky, A.A., Griffin, W.L., O'Reilly, S.Y., Dokukina, K.A., Kaulina, T.V.,2010. Mesoarchean subduction processes:2.87 Ga eclogites from the Kola Peninsula, Russia. Geology 38,739-742.
    Mints, M.V., Dokukina, K.A., Konilov, A.N.,2013. The Meso-Neoarchaean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Research, doi:10.1016/j.gr.2012.11.010.
    Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z.,2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol.255,231-235.
    Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K., Gottardi, G,1988. Nomenclature of pyroxenes. Am. Mineral.73,1123-1133.
    Mosenfelder, J.L., Schertl, H.-P., Smyth, J.R., Liou, J.G,2005. Factors in the preservation of coesite:The importance of fluid infiltration. Am. Mineral.90,779-789.
    Nakamura, D., Hirajima, T.,2000. Granulite-facies overprinting of ultrahigh-pressure metamorphic rocks, northeastern Su-Lu region, eastern China. J. Petrol.41,563-582.
    Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G, Saunders, A.D., Mahoney, J.J., Taylor, R.N.,1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chem. Geol.149,211-233.
    Ogasawara, Y., Fukasawa, K., Maruyama, S.,2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. Am. Mineral.87,454-461.
    Okay, A.I., Xu, S.T., Sengor, A.M.C.,1989. Coesite from the Dabie Shan eclogites, central China. Eur. J. Mineral.1,595-598.
    Okay, A.I.,1993. Petrology of a diamond and coesite-bearing metamorphic terrain; Dabie Shan, China. Eur. J. Mineral.5,659-675.
    Olin, P.H., Wolff, J.A.,2012. Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos 128-131,46-54.
    Otamendi, J.E., de la Rosa, J.D., Douce, A.E.P., Castro, A.,2002. Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30,159-162.
    Pettke, T., Halter, W.E., Webster, J.D., Aigner-Torres, M., Heinrich, C.A.,2004. Accurate quantification of melt inclusion chemistry by LA-ICPMS:a comparison with EMP and SIMS and advantages and possible limitations of these methods. Lithos 78,333-361.
    Philippot, P., Selverstone, J.,1991. Trace-element-rich brines in eclogitic veins:implications for fluid composition and transport during subduction. Contrib. Mineral. Petrol.106,417-430.
    Prowatke, S., Klemme, S.,2005. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim. Cosmochim. Acta 69,695-709.
    Proyer, A.,2003. The preservation of high-pressure rocks during exhumation:metagranites and metapelites. Lithos 70,183-194.
    Putnis, A.,2009. Mineral replacement reactions. Rev. Mineral. Geochem.70,87-124.
    Ragozin, A.L., Liou, J.G., Shatsky, V.S., Sobolev, N.V.,2009. The timing of the retrograde partial melting in the Kumdy-Kol region (Kokchetav Massif, Northern Kazakhstan). Lithos 109,274-284.
    Ringwood, A.E.,1990. Slab-mantle interactions:3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem. Geol.82,187-207.
    Roberts, M.P., Finger, F.,1997. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25,319-322.
    Rosenberg, C.L., Riller, U.,2000. Partial-melt topology in statically and dynamically recrystallized granite. Geology 28,7-10.
    Rubatto, D.,2002. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol.184,123-138.
    Rubatto, D., Hermann, J.,2001. Exhumation as fast as subduction? Geology 29,3-6.
    Rubatto, D., Hermann, J.,2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps):implications for Zr and Hf budget in subduction zones. Geochim. Cosmochim. Acta 67, 2173-2187.
    Rubatto, D., Hermann, J.,2007a. Zircon behaviour in deeply subducted rocks. Elements 3,31-35.
    Rubatto, D., Hermann, J.,2007b. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem. Geol.241,38-61.
    Rubatto, D., Muntener, O., Barnhoorn, A., Gregory, C.,2008. Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). Am. Mineral.93,1519-1529.
    Rubatto, D., Hermann, J., Berger, A., Engi, M.,2009. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contrib. Mineral. Petrol.158,703-722.
    Rudnick, R.L., Gao, S.,2003. Composition of the Continental Crust, in:Heinrich, D.H., Karl, K.T. (Eds.), Treatise on Geochemistry. Pergamon, Oxford, pp.1-64.
    Rumble, D., Yui, T.F.,1998. The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim. Cosmochim. Acta 62,3307-3321.
    Rumble, D., Wang, Q., Zhang, R.,2000. Stable isotope geochemistry of marbles from the coesite UHP terrains of Dabieshan and Sulu, China. Lithos 52,79-95.
    Rumble, D., Giorgis, D., Ireland, T., Zhang, Z., Xu, H., Yui, T.F., Yang, J., Xu, Z., Liou, J.G.,2002. Low δ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim. Cosmochim. Acta 66,2299-2306.
    Rumble, D., Liou, J.G., Jahn, B.M.,2003. Continental crust subduction and ultrahigh pressure metamorphism. Treatise on Geochemistry 3,293-319.
    Rapp, R.P., Shimizu, N., Norman, M.D.,2003. Growth of early continental crust by partial melting of eclogite. Nature 425,605-609.
    Sawyer, E.W.,1999. Criteria for the recognition of partial melting. Phys. Chem. Earth:Solid Earth and Geodesy 24,269-279.
    Sawyer, E.W.,2008. Atlas of Migmatites. The Canadian Mineralogist Special Publication 9, NRC Research Press, Ottawa, Ontario, Canada, pp1-371.
    Sawyer, E.W.,2010. Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: Microstructures in the residual rocks and source of the fluid. Lithos 116,273-286.
    Sawyer, E.W., Cesare, B., Brown, M.,2011. When the continental crust melts. Elements 7,229-234.
    Scherer, E., Munker, C., Mezger, K.,2001. Calibration of the Lutetium-Hafnium Clock. Science 293, 683-687.
    Schmidt, A., Weyer, S., Mezger, K., Scherer, E.E., Xiao, Y., Hoefs, J., Brey, G.P.,2008. Rapid eclogitisation of the Dabie-Sulu UHP terrane:Constraints from Lu-Hf garnet geochronology. Earth Planet. Sci. Lett.273,203-213.
    Schmidt, A., Mezger, K., O'Brien, P.J.,2011. The time of eclogite formation in the ultrahigh pressure rocks of the Sulu terrane:Constraints from Lu-Hf garnet geochronology. Lithos 125,743-756.
    Schmidt, M.W., Poli, S.,1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett.163,361-379.
    Schmidt, M.W., Poli, S.,2003. Generation of mobile components during subduction of oceanic crust, in: Heinrich, D.H., Karl, K.T. (Eds.), Treatise on Geochemistry. Pergamon, Oxford, pp.567-591.
    Schmidt, M.W., Vielzeuf, D., Auzanneau, E.,2004. Melting and dissolution of subducting crust at high pressures:the key role of white mica. Earth Planet. Sci, Lett.228,65-84.
    Sheng, Y.-M., Xia, Q.-K.., Dallai, L., Yang, X.-Z., Hao, Y.-T.,2007. H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim. Cosmochim. Acta 71,2079-2103.
    Sheng, Y.-M., Zheng, Y.-F., Chen, R.-X., Li, Q., Dai, M.,2012. Fluid action on zircon growth and recrystallization during quartz veining within UHP eclogite:Insights from U-Pb ages, O-Hf isotopes and trace elements. Lithos 136-139,126-144.
    Sheng, Y.M., Zheng, Y.F., Li, S.N., Hu, Z.,2013. Element mobility during continental collision:insights from polymineralic metamorphic vein within UHP eclogite in the Dabie orogen. J. Metamorph. Geol. 31,221-241.
    Skjerlie, K.P., Patino Douce, A.E.,2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa; Implications for melting in thickened continental crust and for subduction-zone processes. J. Petrol.43,291-314.
    Skublov, S.G., Berezin, A.V. and Mel'nik, A.E.,2011. Paleoproterozoic eclogites in the Salma area, northwestern Belomorian mobile belt:Composition and isotopic geochronologic characteristics of minerals and metamorphic age. Petrology,19,470-495.
    Smith, D.C.,1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310,641-644.
    Sobolev, N.V., Shatsky, V.S.,1990. Diamond inclusions in garnets from metamorphic rocks:a new environment for diamond formation. Nature 343,742-746.
    Song, S.G., Yang, J.S., Xu, Z.Q., Liou, J.G., Shi, R.D.,2003. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. J. Metamorph. Geol.21, 631-644.
    Song, S., zhang, L., Niu, Y.,2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am. Mineral.89,1330-1336.
    Song, S., Zhang, L., Niu, Y., Su, L., Jian, P., Liu, D.,2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau:A record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet. Sci. Lett.234, 99-118.
    Spandler, C., Hermann, J.,2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos 89,135-153.
    Spandler, C., Yaxley, G., Green, D.H., Rosenthal, A.,2008. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600℃ and 3 to 5 GPa. J. Petrol.49,771-795.
    Stacey, J.S., Kramers, J.D.,1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett.26,207-221.
    Stockhert, B., Duyster, J., Trepmann, C., Massonne, H.-J.,2001. Microdiamond daughter crystals precipitated from supercritical COH+ silicate fluids included in garnet, Erzgebirge, Germany. Geology 29,391-394.
    Storey, C.D., Smith, M.P., Jeffries, T.E.,2007. In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden:Records of extended geological histories in complex titanite grains. Chem. Geol. 240,163-181.
    Sun, S.-s., McDonough, W.F.,1989. Chemical and isotope systematics of oceanic basalts:implications for mantle composition and processes. In:A.D. Saunders and M.J. Norry, Editors, Magmatism in the Ocean Basins, Geological Society Special Publication, No.42, pp.313-345.
    Tailby, N.D., Walker, A.M., Berry, A.J., Hermann, J., Evans, K.A., Mavrogenes, J.A., O'Neill, H.S.C., Rodina, I.S., Soldatov, A.V., Rubatto, D., Sutton, S.R.,2011. Ti site occupancy in zircon. Geochim. Cosmochim. Acta 75,905-921.
    Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B.,2006. Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles in the Jiaobei terrane of the Sulu orogen:implication for its tectonic affinity. Precambr. Res.144,1-18.
    Tang, J., Zheng, Y.-F., Gong, B., Wu, Y.-B., Gao, T.-S., Yuan, H., Wu, F.-Y.,2008. Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen, China: Implications for Neoproterozoic rift magmatism. Geochim. Cosmochim. Acta 72,3139-3169.
    Taylor, H.P., Jr.,1977. Water/rock interactions and the origin of H2O in granitic batholiths:Thirtieth William Smith lecture. J. Geol. Soc. London 133,509-558.
    Taylor, H.P.,1986. Igneous rocks; Ⅱ, Isotopic case studies of Circumpacific magmatism. Rev. Mineral. Geochem.16,273-317.
    Thoni, M., Miller, C.,2004. Ordovician meta-pegmatite garnet (N-W Otztal basement, Tyrol, Eastern Alps): preservation of magmatic garnet chemistry and Sm-Nd age during mylonitization. Chem. Geol.209, 1-26.
    Tiepolo, M., Oberti, R., Vannucci, R.,2002. Trace-element incorporation in titanite:constraints from experimentally determined solid/liquid partition coefficients. Chem. Geol.191,105-119.
    Tsai, C.H., Liou, J.G.,2000. Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China. Am. Mineral.85,1-8.
    Tsujimori, T., Sisson, V.B., Liou, J.G., Harlow, G.E., Sorensen, S.S.,2006. Very-low-temperature record of the subduction process:A review of worldwide lawsonite eclogites. Lithos 92,609-624.
    Valley, J.W., Chiarenzelli, J.R., McLelland, J.M.,1994. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett.126,187-206.
    Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R., Spicuzza, M.J.,1995. UWG-2, a garnet standard for oxygen isotope ratios:Strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 59,5223-5231.
    Valley, J.W.,2003. Oxygen isotopes in zircon. Rev. Mineral. Geochem.53,343-385.
    van Roermund, H.L.M., Drury, M.R.,1998. Ultra-high pressure (P> 6 GPa) garnet peridotites in Western Norway:exhumation of mantle rocks from> 185 km depth. Terra Nova 10,295-301.
    van Roermund, H.L.M., Drury, M.R., Barnhoorn, A., De Ronde, A.,2001. Relict majoritic garnet microstructures from ultra-deep orogenic peridotites in Western Norway. J. Petrol.42,117-130.
    Vavra, G., Gebauer, D., Schmid, R., Compston, W.,1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):an ion microprobe (SHRIMP) study. Contrib. Mineral. Petrol.122,337-358.
    Vernon, R.H.,2011. Microstructures of melt-bearing regional metamorphic rocks. Geol. Soc. Am. Mem. 207,1-11.
    Vernon, R.H., Collins, W.J.,1988. Igneous microstructures in migmatites. Geology 16,1126-1129.
    Vielzeuf, D., Holloway, J.R.,1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol.98,257-276.
    Vielzeuf, D., Schmidt, M.W.,2001. Melting relations in hydrous systems revisited:application to metapelites, metagreywackes and metabasalts. Contrib. Mineral. Petrol.141,251-267.
    Wallis, S., Tsuboi, M., Suzuki, K., Fanning, M., Jiang, L., Tanaka, T.,2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology 33,129-132.
    Wan, Y., Li, R., Wilde, S.A., Liu, D., Chen, Z., Yan, L., Song, T., Yin, X.,2005. UHP metamorphism and exhumation of the Dabie Orogen, China:Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin. Geochim. Cosmochim. Acta 69,4333-4348.
    Wang, Q., Ishiwatari, A., Zhao, Z., Hirajima, T., Hiramatsu, N., Enami, M., Zhai, M., Li, J., Cong, B.,1993. Coesite-bearing granulite retrograded from eclogite in Weihai, eastern China. Eur. J. Mineral.5, 141-152.
    Wang, W., Zhang, Z.M., Yu, F., Liu, F., Dong, X., Liou, J.G.,2011. Petrological and geochronological constraints on the origin of HP and UHP kyanite-quartzites from the Sulu orogen, Eastern China. J. Asian Earth Sci.42,618-632.
    Wang, X., Liou, J.G., Mao, H.K.,1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology 17,1085-1088.
    Wang, X.M., Liou, J.G.,1991. Regional ultra-pressure coesite-bearing eclogite terrane in central China: Evidence from country rocks, gneiss, marble, and metapelite. Geology 19,933-936.
    Wang, X.M., Liou, J.G., Maruyama, S.,1992. Coesite-bearing eclogites from the Dabie Mountains, central China:petrogenesis, P-T paths, and implications for regional tectonics. J. Geol.100,231-250.
    Watson, E.B., Cherniak, D.J.,1997. Oxygen diffusion in zircon. Earth Planet. Sci. Lett.148,527-544.
    Wei, C., Wang, W., Clarke, G.L., Zhang, L., Song, S.,2009. Metamorphism of high/ultrahigh-pressure pelitic-felsic schist in the south Tianshan Orogen, NW China:Phase equilibria and P-T Path. J. Petrol. 50,1973-1991.
    Wei, C.J., Clarke, G.L.,2011. Calculated phase equilibria for MORB compositions:a reappraisal of the metamorphic evolution of lawsonite eclogite. J. Metamorph. Geol.29,939-952.
    Whitney, D.L., Teyssier, C., Fayon, A.K.,2004. Isothermal decompression, partial melting and exhumation of deep continental crust. Geol. Soc. London Spec. Publ.227,313-326.
    Whitney, D.L., Evans, B.W.,2010. Abbreviations for names of rock-forming minerals. Am. Mineral,95, 185-187.
    Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. C., Spiegel, W.,1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Geoanal. Res.19,1-23.
    Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skar, O., Spicuzza, M., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.-F.,2004. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res.28,9-39.
    Williams, I.S.,1998. U-Th-Pb geochronology by ion microprobe. In:McKibben M.A., Shanks Ⅲ W.C. and R. W.I. (Editors), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Rev. Econ. Geol. pp.1-35.
    Wohlers, A., Manning, C.E., Thompson, A.B.,2011. Experimental investigation of the solubility of albite and jadeite in H2O, with paragonite+quartz at 500 and 600℃, and 1-2.25 GPa. Geochim. Cosmochim. Acta 75,2924-2939.
    Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R.,2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol.209,121-135.
    Woodhead, J.D., Hergt, J.M.,2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand. Geoanal. Res.29,183-195.
    Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H., Xu, P.,2006b. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol.234,105-126.
    Wu, Y.-B., Zheng, Y.-F., Zhao, Z.-F., Gong, B., Liu, X., Wu, F.-Y.,2006a. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim. Cosmochim. Acta 70,3743-3761.
    Wu, Y.-B., Zheng, Y.-F., Tang, J., Gong, B., Zhao, Z.-F., Liu, X.,2007. Zircon U-Pb dating of water-rock interaction during Neoproterozoic rift magmatism in South China. Chem. Geol.246,65-86.
    Wu, Y.-B., Gao, S., Zhang, H.-F., Yang, S.-H., Jiao, W.-F., Liu, Y.-S., Yuan, H.-L.,2008. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China:evidence from zircon U-Pb age, trace element and Hf isotope composition. Contrib. Mineral. Petrol.155,123-133.
    Wu, Y.-B., Gao, S., Zhang, H.-F., Yang, S.-H., Liu, X.-C., Jiao, W.-F., Liu, Y.-S., Yuan, H.-L., Gong, H.-J., He, M.-C.,2009. U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains:Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks. Am. Mineral.94,303-312.
    Xia, Q.-X., Zheng, Y.-F., Zhou, L.-G.,2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem. Geol.247,36-65.
    Xia, Q.-X., Zheng, Y.-F., Yuan, H., Wu, F.-Y.,2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos 112,477-496.
    Xia, Q.-X., Zheng, Y.-F., Hu, Z.,2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen:Implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos 114,385-412.
    Xia, Q.X., Zheng, Y.F., Lu, X.N., Hu, Z.C., Xu, H.J.,2012. Formation of metamorphic and metamorphosed garnets in the low-T/UHP metagranite during continental collision in the Dabie orogen. Lithos 136,73-92.
    Xia, Q.-X., Zheng, Y.-F., Chen, Y.-X.,2013. Protolith control on fluid availability for zircon growth during continental subduction-zone metamorphism in the Dabie orogen. J. Asian Earth Sci.67-68,93-113.
    Xiao, Y., Hoefs, J., van den Kerkhof, A.M., Fiebig, J., Zheng, Y.,2000. Fluid history of UHP metamorphism in Dabie Shan, China:a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib. Mineral. Petrol.139,1-16.
    Xiao, Y.-L., Hoefs, J., van den Kerkhof A.M., Simon, K., Fiebig, J., Zheng, Y.-F.,2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China:Constraints from mineral chemistry, fluid inclusions and stable isotopes. J. Petrol.43,1505-1527.
    Xiao, Y., Sun, W., Hoefs, J., Simon, K., Zhang, Z., Li, S., Hofmann, A.W.,2006a. Making continental crust through slab melting:Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochim. Cosmochim. Acta 70,4770-4782.
    Xiao, Y., Zhang, Z., Hoefs, J., van den Kerkhof, A.,2006b. Ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project:Ⅱ Oxygen isotope and fluid inclusion distributions through vertical sections. Contrib. Mineral. Petrol.152,443-458.
    Xu, H., Ye, K., Song, Y., Chen, Y., Zhang, J., Liu, Q., Guo, S.,2013. Prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane, eastern China. Chem. Geol.341,16-37.
    Xu, S., Su, W., Liu, Y., Jiang, L., Ji, S., Okay, A.I., Sengor, A.M.C.,1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science 256,80-82.
    Xu, S.-T., Liu, Y.-C, Chen, G.-B., Ji, S.-Y., Ni, P., Xiao, W.-S.,2005. Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China. Mineral. Mag.69,509-520.
    Xu, Z.Q., Zeng, L.S., Liu, F.L., Yang, J.S., Zhang, Z.M., McWilliams, M., Liou, J.G.,2006. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. Geol. Soc. Am. Spec. Papers 403,93-113.
    Xu, Z., Yang, W., Ji, S., Zhang, Z., Yang, J., Wang, Q., Tang, Z.,2009. Deep root of a continent-continent collision belt:Evidence from the Chinese Continental Scientific Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure (HP-UHP) metamorphic terrane, China. Tectonophysics 475,204-219.
    Yang, J.-H., Chung, S.-L., Wilde, S.A., Wu, F.-Y., Chu, M.-F., Lo, C.-H., Fan, H.-R.,2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China:geochronological, geochemical and Nd-Sr isotopic evidence. Chem. Geol.214,99-125.
    Yang, J.J, Godard, G., Smith, D.C.,1998. K-feldspar-bearing coesite pseudomorphs in an eclogite from Lanshantou (Eastern China). Eur. J. Mineral.10,969-985.
    Yang, J.S, Li, T., Chen, S., Wu, C, Robinson, P.T., Liu, D., Wooden, J.L.,2009. Genesis of garnet peridotites in the Sulu UHP belt:Examples from the Chinese continental scientific drilling project-main hole, PP1 and PP3 drillholes. Tectonophysics 475,359-382.
    Yao, Y., Ye, K., Liu, J., Cong, B., Wang, Q.,2000. A transitional eclogite-to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, Eastern China. Lithos 52,109-120.
    Ye, K., Cong, B., Ye, D.,2000a. The possible subduction of continental material to depths greater than 200 km. Nature 407,734-736.
    Ye, K., Yao, Y., Katayama, I., Cong, B., Wang, Q., Maruyama, S.,2000b. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China:new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos 52,157-164.
    Yuan, H., Gao, S., Liu, X., Li, H., Gunther, D., Wu, F.,2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res.28,353-370.
    Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L., Gunther, D., Fontaine, G.H., Liu, X.-M., Diwu, C.,2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol.247,100-118.
    Yui, T.-F., Rumble, D., Lo, C.-H.,1995. Unusually low δ18O ultra-high-pressure metamorphic rocks from the Sulu Terrain, eastern China. Geochim. Cosmochim. Acta 59,2859-2864.
    Yui, T.-F., Rumble, D., Chen, C.-H., Lo, C.-H.,1997. Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, east-central China. Chem. Geol.137,135-147.
    Zeh, A., Gerdes, A., Will, T.M., Frimmel, H.E.,2010. Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks:Examples from the Shackleton Range (Antarctica). Geochim. Cosmochim. Acta 74,4740-4758.
    Zeng, L., Saleeby, J.B., Asimow, P.,2005. Nd isotope disequilibrium during crustal anatexis:A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology 33, 53-56.
    Zeng, L., Liang, F., Chen, Z., Liu, F., Xu, Z.,2009. Metamorphic garnet pyroxenite from the 540-600m main borehole of the Chinese Continental Scientific Drilling (CCSD) project. Tectonophysics 475, 396-412.
    Zeng, L., Gao, L.-E., Xie, K., Jing, L.-Z.,2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust. Earth Planet. Sci. Lett.303,251-266.
    Zhang, R.-Y., Hirajima, T., Banno, S., Cong, B., Liou, J.G.,1995a. Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. J. Metamorph. Geol.13,659-675.
    Zhang, R.Y., Liou, J.G., Ernst, W.G.,1995b. Ultrahigh-pressure metamorphism and decompressional P-T paths of eclogites and country rocks from Weihai, eastern China. Isl. Arc 4,293-309.
    Zhang, R.Y., Liou, J.G.,1996. Coesite inclusions in dolomite from eclogite in the southern Dabie Mountains, China; the significance of carbonate minerals in UHPM rocks. Am. Mineral.81,181-186.
    Zhang, R.Y., Liou, J.G.,1997. Partial transformation of gabbro to coesite-bearing eclogite from Yangkou, the Sulu terrane, eastern China. J. Metamorph. Geol.15,183-202.
    Zhang, R.Y., Liou, J.G., Yang, J.S., Yui, T.F.,2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J. Metamorph. Geol.18,149-166.
    Zhang, R.Y., Shau, Y.H., Liou, J.G., Lo, C.H.,2002. Discovery of clinoenstatite in garnet pyroxenites from the Dabie-Sulu ultrahigh-pressure terrane, east-central China. Am. Mineral.87,867-874.
    Zhang, R.Y., Iizuka, Y., Ernst, W.G., Liou, J.G., Xu, Z.-Q., Tsujimori, T., Lo, C.-H., Jahn, B.-M.,2009a. Metamorphic P-T conditions and thermal structure of Chinese Continental Scientific Drilling main hole eclogites:Fe-Mg partitioning thermometer vs. Zr-in-rutile thermometer. J. Metamorph. Geol.27, 757-772.
    Zhang, R.Y., Liou, J.G., Iizuka, Y., Yang, J.S.,2009b. First record of K-cymrite in North Qaidam UHP eclogite, Western China. Am. Mineral.94,222-228.
    Zhang, Y., Ni, H.,2010. Diffusion of H, C, and O components in silicate melts. Rev. Mineral. Geochem.72, 171-225.
    Zhang, Y., Ni, H., Chen, Y.,2010. Diffusion data in silicate melts. Rev. Mineral. Geochem.72,311-408.
    Zhang, Z., Xiao, Y., Liu, F., Liou, J.G., Hoefs, J.,2005. Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos 81,189-207.
    Zhang, Z., Shen, K., Xiao, Y., Hoefs, J., Liou, J.G.,2006. Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-main drill hole:A record of metamorphism and fluid activity. Lithos 92,378-398.
    Zhang, Z., Shen, K., Liou, J., Zhao, X.,2007. Fluid inclusions associated with exsolved quartz needles in omphacite of UHP eclogites, Chinese Continental Scientific Drilling Main Drill Hole. Int. Geol. Rev. 49,479-486.
    Zhang, Z.-M., Shen, K., Sun, W.-D., Liu, Y.-S., Liou, J.G., Shi, C., Wang, J.-L.,2008. Fluids in deeply subducted continental crust:Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim. Cosmochim. Acta 72,3200-3228.
    Zhao, Z.-F., Zheng, Y.-F.,2003. Calculation of oxygen isotope fractionation in magmatic rocks. Chem. Geol.193,59-80.
    Zhao, Z.-F., Zheng, Y.-F., Gao, T.-S., Wu, Y.-B., Chen, B., Chen, F.-K., Wu, F.-Y.,2006. Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. J. Metamorph. Geol.24,687-702.
    Zhao, Z.-F., Chen, B., Zheng, Y.-F., Chen, R.-X., Wu, Y.-B.,2007a. Mineral oxygen isotope and hydroxyl content changes in ultrahigh-pressure eclogite-gneiss contacts from Chinese Continental Scientific Drilling Project cores. J. Metamorph. Geol.25,165-186.
    Zhao, Z.-F., Zheng, Y.-F., Chen, R.-X., Xia, Q.-X., Wu, Y.-B.,2007b. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochim. Cosmochim. Acta 71, 5244-5266.
    Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Chen, F.-K., Liu, X., Wu, F.-Y.,2008. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chem. Geol. 253,222-242.
    Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Wu, F.-Y.,2011. Origin of postcollisional magmatic rocks in the Dabie orogen:Implications for crust-mantle interaction and crustal architecture. Lithos 126,99-114.
    Zhao, Z.-F., Zheng, Y.-F., Zhang, J., Dai, L.-Q., Li, Q., Liu, X.,2012. Syn-exhumation magmatism during continental collision:Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem. Geol. 328,70-88.
    Zhao, Z.Y., Wei, C.J., Fang, A.M.,2005. Plastic flow of coesite eclogite in a deep continent subduction regime:Microstructures, deformation mechanisms and rheologic implications. Earth Planet. Sci. Lett. 237,209-222.
    Zheng, Y.-F.,1991. Calculation of oxygen isotope fractionation in metal oxides. Geochim. Cosmochim. Acta 55,2299-2307.
    Zheng, Y.-F.,1993a. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57,1079-1091.
    Zheng, Y.-F.,1993b. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett.120,247-263.
    Zheng, Y.-F.,2009. Fluid regime in continental subduction zones:petrological insights from ultrahigh-pressure metamorphic rocks. J. Geol. Soc.166,763-782.
    Zheng, Y.-F.,2012. Metamorphic chemical geodynamics in continental subduction zones. Chem. Geol.328, 5-48.
    Zheng, Y.-F., Fu, B.,1998. Estimation of oxygen diffusivity from anion porosity in minerals. Geochem. J. 32,71-89.
    Zheng, Y.-F., Fu, B., Gong, B., Li, S.,1996. Extreme 18O depletion in eclogite from the Su-Lu terrane in East China. Eur. J. Mineral.8,317-323.
    Zheng, Y.-F., Fu, B., Li, Y., Xiao, Y., Li, S.,1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth Planet. Sci. Lett.155, 113-129.
    Zheng, Y.-F., Fu, B., Xiao, Y.-L, Li, Y.-L., Gong, B.,1999. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains. Lithos 46,677-693.
    Zheng, Y.-F., Wang, Z.-R., Li, S.-G., Zhao, Z.-F.,2002. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer. Geochim. Cosmochim. Acta 66,625-634.
    Zheng, Y.-F., Fu, B., Gong, B., Li, L.,2003a. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime. Earth-Sci. Rev.62,105-161.
    Zheng, Y.-F., Zhao, Z.-F., Li, S.-G., Gong, B.,2003b. Oxygen isotope equilibrium between ultrahigh-pressure metamorphic minerals and its constraints on Sm-Nd and Rb-Sr chronometers. Geol. Soc. London Spec. Publ.220,93-117.
    Zheng, Y.-F., Wu, Y.-B., Chen, F.-K., Gong, B., Li, L., Zhao, Z.-F.,2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Acta 68,4145-4165.
    Zheng, Y.-F., Wu, Y.-B., Zhao, Z.-F., Zhang, S.-B., Xu, P., Wu, F.-Y.,2005a. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth Planet. Sci. Lett.240,378-400.
    Zheng, Y.-F., Zhou, J.-B., Wu, Y.-B., Xie, Z.,2005b. Low-grade metamorphic rocks in the Dabie-Sulu Orogenic Belt:A passive-margin accretionary wedge deformed during continent subduction. Int. Geol. Rev.47,851-871.
    Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhang, S.-B., Liu, X., Wu, F.-Y.,2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem. Geol.231,135-158.
    Zheng, Y.-F., Gao, T.-S., Wu, Y.-B., Gong, B., Liu, X.M.,2007a. Fluid flow during exhumation of deeply subducted continental crust:zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. J. Metamorph. Geol.25,267-283.
    Zheng, Y.-F., Wu, Y.-B., Gong, B., Chen, R.-X., Tang, J., Zhao, Z.-F.,2007b. Tectonic driving of Neoproterozoic glaciations:Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet. Sci. Lett.256,196-210.
    Zheng, Y.F., Gong, B., Zhao, Z.F., Wu, Y.B., Chen, F.K.,2008. Zircon U-Pb age and O isotope evidence for neoproterozoic low-18O magmatism during supercontinental rifting in South China:Implications for the snowball earth event. Am. J. Sci.308,484-516.
    Zheng, Y.-F., Chen, R.-X., Zhao, Z.-F.,2009. Chemical geodynamics of continental subduction-zone metamorphism:Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics 475,327-358.
    Zheng, Y.-F., Xia, Q.-X., Chen, R.-X., Gao, X.-Y.,2011a. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci. Rev. 107,342-374.
    Zheng, Y.-F., Gao, X.-Y., Chen, R.-X., Gao, T.,2011b. Zr-in-rutile thermometry of eclogite in the Dabie orogen:Constraints on rutile growth during continental subduction-zone metamorphism. J. Asian Earth Sci.40,427-451.
    Zhou, J.B., Wilde, S.A., Zhao, G.C., Zheng, C.Q., Jin, W., Zhang, X.Z., Cheng, H.,2008. Detrital zircon U-Pb dating of low-grade metamorphic rocks in the Sulu UHP belt:evidence for overthrusting of the North China block above the South China block during continental subduction. J. Geol. Soc. London 165,423-433.
    Zhou, L.-G, Xia, Q.-X., Zheng, Y.-F., Chen, R.-X.,2011. Multistage growth of garnet in ultrahigh-pressure eclogite during continental collision in the Dabie orogen:Constrained by trace elements and U-Pb ages. Lithos 127,101-127.
    Zong, K., Liu, Y., Hu, Z., Kusky, T., Wang, D., Gao, C., Gao, S., Wang, J.,2010. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos 120,490-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700