猪苹果酸酶及苹果酸脱氢酶基因在肌肉和脂肪组织中的表达差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验采用荧光定量PCR技术(SYBR GreenⅠ法),以ACTB (beta actin,β-肌动蛋白),TBP (TATA box binding protein, TATA框结合蛋白)和TOP2B (topoisomeraseⅡbeta,拓扑异构酶Ⅱ-β)为内参基因,检测了猪苹果酸酶1(malie enzyme1, ME1)苹果酸脱氢酶1和2(malate dehydrogenase, MDH1和MDH2)基因mRNA丰度在7月龄荣昌猪和长白猪不同部位脂肪和肌肉组织中的表达差异,本研究的结果可为进一步探讨ME1、MDH1和MDH2基因与猪肌肉生长与脂肪沉积性状的遗传联系提供基础数据。
     结果显示:背膘厚(backfat thickness, BFT)、猪肥胖指数(porcine obesity index,POI)指数和脂肪酸组成差异与荣昌猪脂肪沉积能力较长白猪强,瘦肉率较长白猪低的品种特征相符。猪脂肪和肌肉组织中ME1、MDH1和MDH2基因的nRNA丰度存在明显的性别和品种差异:
     (1)品种内相同组织性别间的多重比较表明:雄性长白猪背部皮下脂肪内层、小网膜和肌间脂肪中ME1基因的表达量极显著高于雌性长白猪(P<0.01),雌性长白猪小网膜和肾周脂肪组织中ME1基因表达量极显著高于雄性长白猪(P<0.01);雌性荣昌猪背部皮下脂肪外层和心脏表面脂肪中ME1基因表达量显著高于雄性荣昌猪(P<0.05),雄性荣昌猪小网膜中ME1基因表达量极显著高于雌性荣昌猪(P<0.01)。雄性长白猪背部皮下脂肪外层中MDH1基因表达量显著高于雌性长白猪(P<0.05),雌性长白猪肌间脂肪中MDH1基因表达量极显著高于雄性长白猪(P<0.01);雌性荣昌猪背部皮下脂肪外层、肾周脂肪、肌间脂肪和心脏表面脂肪中MDH1基因表达量极显著高于雄性荣昌猪(P<0.01)。雄性长白猪腰大肌中MDH2基因表达量极显著高于雌性长白猪(P<0.01),而在小网膜、肾周脂肪、肌间脂肪、心脏表面脂肪和背最长肌中雌性长白猪MDH2基因的表达量极显著高于雄性长白猪(P<0.01)。其余品种内相同组织性别间ME1、MDH1和MDH2基因表达量差异均未达显著水平(P>0.05)。
     (2)相同性别同一组织品种间的多重比较表明:ME1基因在雄性长白猪的小网膜和肌间脂肪的表达量极显著高于雄性荣昌猪(P<0.01);ME1基因在雌性荣昌猪背部皮下脂肪内层和心脏表面脂肪中的表达量显著高于雌性长白猪(P<0.05),而ME1基因在雌性荣昌猪背部皮下脂肪外层组织中的表达量极显著高于雌性长白猪(P<0.01),ME1基因在雌性长白猪小网膜和肾周脂肪中表达量极显著高于雌性荣昌猪(P<0.01)。MDH1基因在雄性荣昌猪和雌性荣昌猪的肾周脂肪、腹部皮下脂肪和肌间脂肪中的表达量,分别极显著高于雄性长白猪和雌性长白猪(P<0.01);雌性荣昌猪背部皮下脂肪外层、小网膜和心脏表面脂肪中MDH1基因的表达量极显著高于雌性长白猪(P<0.01);MDH1基因在雌性荣昌猪背部皮下脂肪内层组织中的表达量显著高于在雌性长白猪(P<0.05)。MDH2基因在雄性荣昌猪背最长肌中的表达量极显著高于雄性长白猪(P<0.01);雌性荣昌猪小网膜、肾周脂肪、肌间脂肪、心脏表面脂肪和腰大肌中MDH2基因的表达量极显著高于雌性长白猪(P<0.01)。其余相同性别同一组织品种间ME1、MDH1和MDH2基因表达量差异均未达显著水平(P>0.05)。
To investigate the mRNA abundance of porcine malic enzyme 1 (ME1), malate dehydrogenasel and 2 (MDH1 and MDH2) genes across the adipose and muscle tissues at different body site of Landrace (a leaner Western breed) and Rongchang pigs (a fatty indigenous Chinese breed), The real-time fluorescence quantitative PCR was applied. In addition, the relationships betwin on adipose deposition and muscle growth traits and gene expression changes are analysed.
     Our results showed that the Rongchang pigs had higher adipocyte deposition capability than that of the Landrace pigs in backfat thickness (BFT), porcine obesity index (POI) and fatty acid composition. The expression changes of porcine ME1, MDH1 and MDH2 mRNA in the adipose and muscle tissues exhibited the specific different patterns by genderes and breeds:
     (1) The mRNA abundance of ME1 mRNA in male Landrace pigs was significantly higher than in female Landrace pigs in upper layer of back fat, lesser omentum and intermuscular fat (P<0.01), but the mRNA abundunce of ME1 mRNA in female Landrace pigs was significantly higher than in male Landrace pigs in lesser omentum and leaf fat (P<0.01). The mRNA abundunce of ME1 mRNA in female Rongchang pigs was significantly higher than in male Rongchang pigs in upper layer of back fat and pericardial fat (P<0.05), the mRNA abundunce of ME1 mRNA in male Rongchang pigs was significantly higher than in female Rongchang pigs in lesser omentum (P< 0.01).In upper layer of back fat, the mRNA abufidunce of MDH1 mRNA in male Landrace pigs was significantly higher than in female Landrace pigs (P<0.05), however the mRNA abundunce of MDHl mRNA in female Landrace pigs was significantly higher than in male Landrace pigs in intermuscular fat (P<0.01); the mRNA abundunce of MDH1 mRNA in female Rongchang pigs was significantly higher than in male Rongchang pigs in intermuscular fat, upper layer of back fat, leaf fat and pericardial fat (P< 0.01).In addition psoas major muscle, the mRNA abundunce of MDH2 mRNA in male Landrace pigs was significantly higher than in female Landrace pigs (P< 0.01), the mRNA abundunce of MDH2 mRNA in female Landrace pigs was significantly higher than in male Landrace pigs in intermuscular fat, lesser omentum, leaf fat, pericardial fat and longissimus dorsi muscle (P<0.01).
     (2) The mRNA abundunce of ME1 niRNA in male Landrace pigs was significantly higher than in male Rongchang pigs in lesser omentum and intermuscular fat (P<0.01), however, the mRNA abundunce of ME1 mRNA in female Rongchang pigs was significantly higher than in female Landrace pigs in inner layer of back fat and pericardial fat (P<0.05). The mRNA abundunce of MDH1 mRNA in female and male Rongchang pigs was respective significantly higher than in female and male Landrace pigs in abdominal fat, intermuscular fat and pericardial fat (P<0.01). The mRNA abundunce of MDH1 mRNA in female Rongchang pigs was significantly higher than in female Landrace pigs in upper layer of back fat, lesser omentum and pericardial fat (P< 0.01). The mRNA abundunce of MDH2 mRNA in male Rongchang pigs was significantly higher than in male Landrace pigs in longissimus dorsi muscle (P<0.01), the mRNA abundunce of MDH2 mRNA in female Rongchang pigs was significantly higher than in female Landrace pigs in lesser omentum, pericardial fat, intermuscular fat, leaf fat and psoas major muscle (P<0.01).
引文
[1]Rothschild MF, Plastow GS. Impact of genomics on animal agriculture and opportunities for animal health[J]. Trends Biotechnol.2008,26(1):21-25.
    [2]Davoli R, Braglia S. Molecular approaches in pig breeding to improve meat quality[J]. Brief Funct Genomic Proteomic.2007,6(4):313-321.
    [3]Suzuki K, Irie M, Kadowaki H et al. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content[J]. J Anim Sci.2005,83(9):2058-2065.
    [4]Wood J, Enser M, Fisher A et al. Fat deposition, fatty acid composition and meat quality:a review[J]. Meat Science.2008,78(4):343-358.
    [5]Laible G. Enhancing livestock through genetic engineering(?)aRecent advances and future prospects[J]. Comparative immunology, microbiology and infectious diseases.2009, 32(2):123-137.
    [6]Xi G, Hathaway M, Dayton W et al. Growth factor messenger ribonucleic acid expression during differentiation of porcine embryonic myogenic cells[J]. Journal of animal science. 2007,85(1):143.
    [7]McNally E, MacLeod H. Therapy insight:cardiovascular complications associated with muscular dystrophies[J]. Nature.2005,2(6):301.
    [8]Holt RI. Fetal programming of the growth hormone-insulin-like growth factor axis[J]. Trends Endocrinol Metab.2002,13(9):392-397.
    [9]Emilsson V, Thorleifsson G, Zhang B et al. Genetics of gene expression and its effect on disease[J]. Nature.2008,452(7186):423-428.
    [10]Choi K, Roh S, Hong Y et al. The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis[J]. Endocrinology.2003,144(3):754.
    [11]Zhou X, Li D, Yin J et al. CLA differently regulates adipogenesis in stromal vascular cells from porcine subcutaneous adipose and skeletal muscle[J]. The Journal of Lipid Research. 2007,48(8):1701.
    [12]Kiess W, Petzold S, T pfer M et al. Adipocytes and adipose tissue[J]. Best Practice & Research Clinical Endocrinology & Metabolism.2008,22(1):135-153.
    [13]Schwab C, Baas T, Stalder K et al. Deposition rates and accretion patterns of intramuscular fat, loin muscle area, and backfat of Duroc pigs sired by boars from two different time periods[J]. Journal of animal science.2007.
    [14]Hausman GJ, Kauffman RG. The histology of developing porcine adipose tissue[J]. J Anim Sci.1986,63(2):642-658.
    [15]Loeber G, Maurer-Fogy I, Schwendenwein R. Purification, cDNA cloning and heterologous expression of the human mitochondrial NADP (+)-dependent malic enzyme [J]. Biochemical Journal.1994,304(Pt 3):687.
    [16]Chang GG, Tong L. Structure and function of malic enzymes, a new class of oxidative decarboxylases[J]. Biochemistry.2003,42(44):12721-12733.
    [17]Hibberd J, Quick W. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants[J]. Nature.2002,415(6870):451-454.
    [18]Mersmann H, Pond W, Yen J. Use of carbohydrate and fat as energy source by obese and lean swine[J]. Journal of animal science.1984,58(4):894.
    [19]Lee Y, Kauffman R. Cellularity and lipogenic enzyme activities of porcine intramuscular adipose tissue[J]. Journal of animal science.1974,38(3):538.
    [20]Gonzalez-Manchon C, Ferrer M, Ayuso MS et al. Cloning, sequencing and functional expression of a cDNA encoding a NADP-dependent malic enzyme from human liver[J]. Gene.1995,159(2):255-260.
    [21]Hodnett DW, Fantozzi DA, Thurmond DC et al. The chicken malic enzyme gene:structural organization and identification of triiodothyronine response elements in the 5'-flanking DNA[J]. Arch Biochem Biophys.1996,334(2):309-324.
    [22]Morioka H, Magnuson MA, Mitsuhashi T et al. Structural characterization of the rat malic enzyme gene[J]. Proc Natl Acad Sci U S A.1989,86(13):4912-4916.
    [23]Rosebrough RW, Russell BA, Poch SM et al. Expression of lipogenic enzymes in chickens[J]. Comp Biochem Physiol A Mol Integr Physiol.2007,147(1):215-222.
    [24]Rosebrough R, Russell B, Richards M. Short term changes in the expression of lipogenic genes in broilers (Gallus gallus)[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology.2008,149(4):389-395.
    [25]Huang Q, Xu Z, Han X et al. Effect of dietary betaine supplementation on lipogenic enzyme activities and fatty acid synthase mRNA expression in finishing pigs[J]. Animal Feed Science and Technology.2008,140(3-4):365-375.
    [26]Pongratz RL, Kibbey RG, Shulman GI et al. Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion[J]. J Biol Chem.2007,282(1):200-207.
    [27]Gonzalez M, Ayuso M, Parrilla R. AP-1 and T3RE cis elements operate as a functional unit in the transcriptional control of the human malic enzyme gene[J]. Gene.1999,226(1).
    [28]张跃,曹红鹤,王毓英,张代坚,赵含章,郑友民.猪背膘中苹果酸脱氢酶活性与背膘厚及瘦肉率关系的初探[J].辽宁畜牧兽医,1992,(006):4-5.
    [29]Steinbuchel A, Muller M. Glycerol, a metabolic end product of Trichomonas vaginalis and Tritrichomonas foetus[J]. Mol Biochem Parasitol.1986,20(1):45-55.
    [30]蒋思文,熊远著,王辉.猪背膘中NADPH生成酶的活性与瘦肉率关系的初步研究[J].畜牧兽医学报,1993,24(004):307-311.
    [31]Mourot J, Kouba M. Development of intra-and intermuscular adipose tissue in growing large white and Meishan pigs[J]. Reprod Nutr Dev.1999,39(1):125-132.
    [32]Morales J, Perez J, Martin-Orue S et al. Large bowel fermentation of maize or sorghum Cacorn diets fed as a different source of carbohydrates to Landrace and Iberian pigs[J]. British Journal of Nutrition.2007,88(05):489-497.
    [33]高勤学等.二花脸猪与大约克猪生长期肌内脂肪合成与水解基因表达特征的比较研究[J].遗传学报.2004,31(011):1218-1225.
    [34]杨海玲等..莱芜猪脂肪代谢酶活性的发育性变化及其对肌内脂肪沉积的影响[J].畜牧兽医学报.2005,36(11):1150-1154.
    [35]Vidal O, Varona L, Oliver M et al. Malic enzyme 1 genotype is associated with backfat thickness and meat quality traits in pigs[J]. Animal Genetics.2006,37(1):28-32.
    [36]Raml rez M, Morcuende D, Cava R. Fatty acid composition and adipogenic enzyme activity of muscle and adipose tissue, as affected by Iberian Duroc pig genotype[J]. Food Chemistry.2007,104(2):500-509.
    [37]王坤.实用诊断学.上海:上海医科大学出版社;1989.
    [38]Goward C, Nicholls D. Malate dehydrogenase:a model for structure, evolution, and catalysis[J]. Protein Science:A Publication of the Protein Society.1994,3(10):1883.
    [39]杜锦珠等译.酶的结构和作用机制[J].1991:423-425.
    [40]Laidler K, Bunting P. The chemical kinetics of enzyme action:Clarendon Press; 1973.
    [41]张树政.酶制剂工业(第二版).北京:科学出版社;1984.
    [42]Ding Y, Ma Q. Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat[J]. Biochimie.2004,86(8):509-518.
    [43]Tomita T, Fushinobu S, Kuzuyama T et al. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant[J]. Biochemical and Biophysical Research Communications.2006,347(2):502-508.
    [44]Mignouna H, Virmani S, Briquet M. Mitochondrial DNA modifications associated with cytoplasmic male sterility in rice[J]. TAG Theoretical and Applied Genetics.1987,74(5): 666-669.
    [45]Hanss B, Leal-Pinto E, Teixeira A et al. Cytosolic malate dehydrogenase confers selectivity of the nucleic acid-conducting channel[J]. Proc Natl Acad Sci U S A.2002,99(3): 1707-1712.
    [46]张曼夫,刘芃芃.注射生长激素对猪脂肪组织中脂肪合成酶的影响[J].中国畜牧杂志.1990,26(003):6-9.
    [47]黄其春.甜菜碱对肥育猪脂肪代谢及其关键酶基因表达的影响与机理研究[D]:浙江大学;2006.
    [48]Lee YC, Block G, Chen H et al. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A[J]. Protein Expr Purif.2008,62(2): 223-229.
    [49]Scott R, Cornelius S, Mersmann H. Effects of age on lipogenesis and lipolysis in lean and obese swine[J]. Journal of animal science.1981,52(3):505.
    [50]Darnton SM, Campion DR, Hausman GJ et al. Effect of selection for backfat thickness in swine on fetal skeletal muscle metabolism[J]. J Anim Sci.1983,56(4):838-845.
    [51]兰干球,夏祖灼.猪体脂合成代谢的研究[J].南京农业大学学报.1990,13(001):92-97.
    [52]张跃,张代坚.猪背膘中苹果酸脱氢酶活性与背膘厚及瘦肉率关系的初探[J].辽宁畜牧兽医.1992,(006):4-5.
    [53]Muller E, Wittkowski G. Visualization of male and female characteristics of bovine fetuses by real-time ultrasonics[J]. Theriogenology.1986,25(4):571-574.
    [54]季海峰.中国科学技术协会首届青年学术年会论文集.[M]:农科分册;1992.
    [55]李秉鸿.实时荧光定量检测技术及应用[J].动物医学进展.2003,24(5):4-6.
    [56]Higuchi R, Fockler C, Dollinger G et al. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions[J]. Biotechnology (NY).1993,11(9):1026-1030.
    [57]于国龙.实时荧光定量PCR在医学遗传学方面的应用[J].国外医学:遗传学分册.2003,26(003):125-129.
    [58]丁晓东,马国文.实时荧光定量PCR技术研究进展及其应用[J].内蒙古民族大学学报:自然科学版.2006,21(006):665-668.
    [59]Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification[J]. Biotechniques.1998,24(6):954-958, 960,962.
    [60]SYBR RPrimeScript TMRT-PCR KitⅡ. http://www.takara.com.cn.
    [61]赵焕英,包金风.实时荧光定量PCR技术的原理及其应用研究进展[J].中国组织化学与细胞化学杂志.2007,16(004):492-497.
    [62]Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies[J]. Lancet.2004,363(9403):157-163.
    [63]Erkens T, Van Poucke M, Vandesompele J et al. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A[J]. BMC Biotechnol.2006,6:41.
    [64]Clemmons D. Insulin-like growth factor binding proteins and their role in controlling IGF actions[J]. Cytokine & growth factor reviews.1997,8(1):45-62.
    [65]过玮.用基因芯片研究CLB处理的猪脂肪组织基因的差异表达[D].北京:中国农业大学,2004,6.
    [66]阳成波,印遇龙,龚建华et al.实时定量PCR研究进展及其应用[J].中国预防兽医学报,2003,25(005):395-399.
    [67]颜新春,汪以真,许梓荣et al.日粮中多不饱和脂肪酸(PUFA)对动物基因表达和脂肪细胞分化的调节[J].饲料研究.2001,5(2).
    [68]陈强,赖桦,李长强et al.猪脂肪组织代谢及其调控[J].云南农业大学学报.2006,21(005):635-640.
    [69]刘艳荷,陈盛禄,张传溪.西方蜜蜂苹果酸脱氢酶Ⅱ等位基因频率与经济性状的相关性[J].上海交通大学学报:农业科学版.2006,24(001):79-83.
    [70]Gibala M, Young M, Taegtmeyer H. Anaplerosis of the citric acid cycle:role in energy metabolism of heart and skeletal muscle[J]. Acta Physiologica Scandinavica.2002, 168(4):657-665.
    [71]Stelmanska E, Korczynska J, Swierczynski J. Tissue-specific effect of refeeding after short-and long-term caloric restriction on malic enzyme gene expression in rat tissues [J]. ACTA BIOCHIMICA POLONICA-ENGLISH EDITION-.2004:805-814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700