用户名: 密码: 验证码:
用硅酸铝质耐火材料废料制备氧化铝基陶瓷的技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态环境材料是指同时具有满意的使用性能和优良的环境协调性或者能够改善环境的材料。耐火材料废料低的回收利用率给环境保护带来了极大的压力;我国对Al_2O_3瓷球的需求量巨大,但Al_2O_3原料涨价使高铝瓷球的生产利润很低,很多厂家被迫停产或倒闭,急需实现高铝瓷球低成本高档化,以满足市场需求。
     本论文主旨是探索研究用硅酸铝质耐火材料废料制备性能优良的工业陶瓷的可行性。以瓷球作为研究的切入点,以耐火材料废料为主要原料,天然矿物为助熔剂,通过合理设计晶界相的组成,成功地制备了一系列性能优异的、Al_2O_3含量从45%至85%的氧化铝基瓷球,并详细研究了各工序的物化过程及规律及其与制成产品的性能、结构及特征的关系。
     对制备工艺及助熔剂对陶瓷的烧成及性能影响的研究结果表明,在瓷球组分构成的CaO-MgO-Al_2O_3-SiO_2、MgO-Al_2O_3-SiO_2和CaO-Al_2O_3-SiO_2三个体系中,CaO-MgO-Al_2O_3-SiO_2系瓷球的烧成温度最低,烧成温度范围最宽;CaO-Al_2O_3-SiO_2系瓷球的耐磨性最好,CaO-MgO-Al_2O_3-SiO_2系陶瓷的耐磨性次之,而MgO-Al_2O_3-SiO_2系瓷球的耐磨性最差;在CaO-MgO-Al_2O_3-SiO_2和CaO-BaO-Al_2O_3-SiO_2两个体系制备瓷球的主晶相均为莫来石,次为刚玉和钙长石,但CaO-BaO-Al_2O_3-SiO_2系瓷球的烧成温度低、玻璃相的含量和密度高、结构较致密、耐磨性好;延长废料的球磨时间,废料的粒度减小,所制备瓷球的烧成温度降低、密度和耐磨性提高、晶粒尺寸和气孔率降低,瓷球在磨损过程中穿晶断裂的比例增加;延长干坯料的存放时间,坯料的性质趋于均匀化,所制备瓷球的耐磨性提高;增加坯体的成型压力可降低瓷球的烧成温度、拓宽烧成温度范围并提高耐磨性;
     研究了陶瓷的组成、结构与其性能的关系,首次发现Al_2O_3含量低于60%的陶瓷具有高的耐磨性且其耐磨性随着Al_2O_3含量的降低、堇青石含量的增加而增加的规律;陶瓷的主晶相与所用耐火材料废料的主晶相相同,且主晶相的含量随着Al_2O_3含量的增加而增加;获得用耐火材料废料制备陶瓷的烧结反应机理:大颗粒起到骨架作用,小颗粒在烧结过程中的熔解、结晶完成烧结;发现粗晶粒陶瓷可具有高的耐磨性;提出在瓷球磨损表面形成晶体破坏层,并从证实了瓷球的穿晶断裂磨损机理;当氧化铝含量大于60%时,陶瓷的密度和耐磨性均随着氧化铝含量的增加而提高;陶瓷的抗弯强度、断裂韧性和耐磨性随着晶粒粒径、气孔率和气孔直径的减小而增加;Fe_2O_3含量增加,陶瓷的烧成温度降低,密度和耐磨性提高,但陶瓷的颜色也随着Fe_2O_3含量的增加而加深;TiO_2、CaO、K_2O和Na_2O的含量增加也使陶瓷的颜色加深。
     揭示了瓷球的磨损率既正比于瓷球的作用压力又正比于瓷球间的接触点数的规律;通过理论推导和试验验证,建立了瓷球磨损率与其大小之间的关系模型:w=ar~(-1/3)/t+b,该模型较现有模型简明、合理,而且瓷球的性能越高,模型的预测结果越准确,证实了陶瓷的性能越高,其优异性能的重现性越好、可靠性越高。
     利用创新的自分散技术,探索了用半湿化学法制备陶瓷的可行性,并获得若干有价值的结果。采用半湿化学法制备,可降低瓷球的烧成温度,提高其耐磨性;随着纳米AlOOH粉加入量的增加(当加入量低于3.5%时),瓷球的烧成温度降低,密度和耐磨性提高;次晶相在晶界的均匀分布使晶界结合牢固,有利瓷球实现穿晶断裂。
     在相同条件下测试时,制备的含75%Al_2O_3瓷球的磨损率为0.0188%,含85%Al_2O_3瓷球的磨损率为0.0124%,而建材行业用国际最高水平95瓷球的磨损率为0.0523%/h。不仅如此,本研究获得的瓷球还有极优的性价比和原料的优势和广泛性。
Ecological Environmental Materials is the materials with excellent performance and enviromental compatibility or improvment. The low recycle ratio of refractory waste leads to the increase of enviroment protection difficulty. China is the largest ceramic production country and large quantity of alumina ceramic balls are used to mill ceramic raw materials annually. The high alumina ceramic ball extremely low profit because of the continuous increasing of alumina raw materials made many factories to stopping produce or bankruptcy. At present, it become urgent to produce high perforamance high alumina ceramic balls in low cost to meet the factory demand.
     In this paper, aluminosilicate refractory waste with 60%~90% Al_2O_3 was first recycled to prepare high performance industrial ceramic. Ceramic ball was prepared first as an example. The physical and chemical reaction during preparing and the relation between the preparation processes and the products performance, structure and character were studied. High performance alumia ceramic balls with 45%~85% Al_2O_3 were prepared in CaO-MgO-Al_2O_3-SiO_2 quaternary system by using aluminosilicate refractory waste as raw materials and natural mineral as fluent agents, designing the crystal boundary phase and sintering by low temperature and fast sintering technology in air. The relation between ceramic performance, structure and characteristics and process conditions were studied in detail.
     The ceramic were prepared in the three systems of CaO-MgO-Al_2O_3-SiO_2 (ceramic was name as CMAS), MgO-Al_2O_3-SiO_2(ceramic was name as MAS), CaO-Al_2O_3-SiO_2(ceramic was name as CAS).
     The sintered temperature of CMAS was the lowest and the sintered temperature range was the widest. The wear resistance of CAS was the highest and MAS was the lowest. The crystal phase of CMAS and CBAS (the ceramic prepared in CaO-BaO-Al_2O_3-SiO_2 system)were the same as mullite, corundum and anorthite. Compared with CMAS, CBAS sintered temperature was lower, glass content was higher resulting in higher density, denser structure and higher wear resistance.
     Refractory waste particle size decreased with the increase of milling time, leading to lower sintered temperature, particle size and porosity and higher density and wear resistance and the ratio of transcrystal fracture of the as-prepared ceramic ball. The ceramic wear resistance increased with the storage time of the used ceramic blank increasing because of the uniform of the blank property. With the increase of ceramic body forming pressure, the prepared ceramic ball sintered temperature decreased, sinter temperature range and wear resistance increase.
     In the present dissertation, the high wear resistance of the ceramic with Al_2O_3 lower than 60% and the wear resistance increased with the increase of Al_2O_3 and cordierite were explored. Ceramic crystal phase were the same as the used refractory waste and increased with ceramic Al_2O_3 increasing. The sintered mechanism of the ceramic prepared by the refractory waste was that large particle acted as frame and small particle melt into melt then crystalized from the melt during sintering. The ceramic with corse crystal may have high wear resistance as prepared in suitable conditions. It was found on the ceramic ball milled surface a layer formed by the ceramic crystal with partial broken away indicating that high ratio of transcrystal fracture wear mechanism was occur during milling. The ceramic density and wear resistance increased with the increase of ceramic Al_2O_3 as Al_2O_3 higher than 60%. Ceramic fracture strength, fracture toughness and wear resistance increased with the decrease of crystal size, porosity and pore size. Ceramic sintered temperature decreased, density and wear resistance increased with the increase of the ceramic Fe_2O_3 content, however the ceramic color darkened with the increase of Fe_2O_3 too. The ceramic color also darkened with the increase of ceramic TiO_2, CaO, K_2O, Na_2O.
     The relations that ceramic wear rate directs proportion to the pressure acted on ceramic ball and the contact points between ceramic balls were explored. A concept simple model of ceramic wear rate and size: w=ar~(-1/3)/t+b was developed. Compared with the existed models, the developing model is simpler and more rational. The higher the ceramic performance, the accurater results the model report, proving that the higher the ceramic performance, the higher the ceramic reproduction and reliability.
     A self dispersion technology was developed. The possibility of preparing ceramic by half wet chemical method using self dispersion technology was studied and several results were obtained. First was that ceramic sintered temperature was lower and wear resistance was higher, second was that ceramic sintered temperature decreased and density and wear resistance incereased with the increase of nano AlOOH powder in ceramic body (as AlOOH lower than 3.5%). The secondary crystal phase distributed uniformly in crystal boundary increased the binding strength of crystal boundary, leadding to the increase of transcrystal fracture.
     Tested in the same conditions, the wear rate of the preapred ceramic ball with 75% Al_2O_3 was 0.0188% and with 85% Al_2O_3, was 0.0124%, while the wear rate of the world best 95 ceramic ball was 0.0523%/h. Furthermore, the ceramic ball prepared in this dissertation exhibits higher ratio of performance to price, raw materials predominance and extensive.
引文
[1] 师昌绪.跨世纪材料科学技术的若干热点问题.世界科技研究与发展,1999,20(2):1~10
    [2] 曾汉民,陆耕,陈水挟.环境功能材料及其在环境治理和资源回收中的应用.高科技纤维与应用,1997(5,6):2~9
    [3] 马鸿昌,朱耀华,季成富等.有害废物的安全处置.北京:中国环境科学出版社,1993,143~394
    [4] Zhang L and Chen Changhe. Atmospheric Pollution Control by Using Briquets and Building Insolution Materials in Northen Cities of Chna, In Ecom-Conf'95 Proceedings. Xi'an China. 1995, 387~389
    [5] 朱幼棣.中国工程院环境委员会成立.人民日报,1996-11-25:5
    [6] 金宗哲,方锐.“绿色材料”的新发展.材料导报,1997,11(5):7~10
    [7] 翁端.环境材料学.北京:清华大学出版社,2001,1~60
    [8] 左铁镛.材料产业可持续发展与环境保护.共同走向科学—百名院士科技系列报告集(中).北京:新华出版社,1997:141~145
    [9] 左铁镛.资源利用率—一个战略管理目标.奥地利:克那根夫,欧亚会议,1998,122~126
    [10] 王秀峰.绿色材料.科技导报,1994(9):44~45
    [11] 王天民,徐金城,左铁蒲.环境材料的概念和我国开展环境材料研究的必要性与紧迫性.兰州大学学报(自然科学版).1996,32(10):10~16
    [12] 中国材料研究学会.生物及环境材料2—环境材料.北京:化学工业出版社,1997,561~562
    [13] 山本良一.日本科学技术,1992,33(265):18~19
    [14] 陈俐敏,林茹.国外生态环境材料的研究与发展动态,国外建材科技,1999,20(4):7~12
    [15] 左铁镛.生态环境材料的研究与发展动态.新材料产业,2001,(5):97~102
    [16] 刘江龙.环境材料导论.北京:冶金工业出版社,1999,1~22
    [17] 王振成.固体废弃物的处理与应用.西安:西安交通大学出版社,1987,1~200
    [18] 国家高技术新材料领域专家委员会.国家高技术研究发展计划新材料领域(863-715主题)项目申请指南(1996-2000),1996,3
    [19] 国家高技术新材料领域专家委员会.新材料及其制备技术规划专家组,5-863计划纲要建议研究,1996.8.29
    [20] 王天民.生态环境材料.天津:天津大学出版社,2000,1~209
    [21] 贡长生,张克立.新型功能材料.北京:化学工业出版社,2001,13~14
    [22] 董保厨.固体废弃物的处理与应用.北京:冶金工业出版社,1988,1~25
    [23] 马鸿昌,朱耀华,季成富等.有害废物的安全处置.北京:中国环境科学出版社,1993,143-394
    [24] 陈肇友.钢铁工业用耐火材料的发展动向.耐火材料,1994,28(6):309~315
    [25] 马军.中国钢铁工业用耐火材料的市场分析.耐火材料,2001,35(3):249~251
    [26] 王诚训,王珏.耐火材料技术与应用.北京:冶金工业出版社,2000,1~199
    [27] 陈贻瑞,王建.基础材料与新材料,天津:天津大学出版社,1994,104~105
    [28] 徐维忠.耐火材料.北京:冶金工业出版社1992,1~100.
    [29] 廖建国.水泥回转窑用再循环利用镁铬砖.国外耐火材料,2003(4):36~39
    [30] 陈映明.大型高风温热风炉用耐火材料的现状及发展.耐火材料,1995,29(2):108~1111
    [31] 郑海中,梁永和,吴芸芸等.含碳耐火制品的再生利用.武汉科技大学学报(自然科学版),2001,24(4):338~341
    [32] 景龙.新型干法窑用耐火材料的合理选用,中国建材科技,1995(5):36~39
    [33] 田军.中国钢铁消耗量仍将保持增势.山东冶金,2005,27,30
    [34] 陶若璋,刘解华,周宁生.第二届世界耐火材料大会论文综述.耐火材料,2004,38(6):432~434.
    [35] 白丙中.我国钢铁生产技术的发展及耐火材料的需求.鞍钢技术,1997(10):1~5
    [36] 陶若璋.我国耐火材料工业的回顾与展望,耐火材料,2000,34(4):187~190
    [37] 康建红,秦刚刚,申向利.玻璃工业用硅酸铝耐火材料.建材技术与应用,2001(3):16~17
    [38] 巴春秋译.俄罗斯耐火材料的生产及其发展前景.国外耐火材料,2002(3):11~20
    [39] 佚名.玻璃工业用硅酸铝耐火材料,国外耐火材料,2000(2):25~28
    [40] J.D.Smith, H.Fang, K.D.Peaslee. Characterization and recycling of spent refractory wastes from metal manufacturers in Missouri. Resources, Conservation and Recycling, 1999,(25):151~169
    [41] 佚名.炼钢用耐火材料的发展趋势.国外耐火材料,1995(7):5~9
    [42] 茅宏逹.平板玻璃熔窑中耐火材料侵蚀形成的结石.硅酸盐通报,1998(1):68~71
    [43] Othman A.G.M, Nour W.M.N. Recycling of spent magnesite and ZAS bricks for the production of new basic refractories, Ceramics International, 2005(31): 1053~1059
    [44] Ismail Demir, Mehmet, Orhan.Reused of waste bricks in the production line. Building and Enviroment, 2003, 38: 1451~1455
    [45] 柏彬.钢铁工业用镁碳制品——环保和循环利用问题.国外耐火材料,1998(8):3~7
    [46] Noga J. Refractory recycling developments. Ceram Eng Sci Pro 1994, 15(2): 73~7
    [47] Kendall T. Recycling of refractories: what price waste? Ind Mineral 1994, 323: 32~40
    [48] Martin E, Petty AV, Jr. Recycling spent chrome refractories from steelmaking furnaces. RI 8489, USBM, 1980
    [49] Hanelwald RH, Schweers ME, Onuska JC. Recycling chromium-bearing refractories through pyrometallurgical technology. Ceram Eng Sci Proc 1993, 14(3-4):218~22
    [50] 肖建华译.欧洲耐火材料的环境管理.国外耐火材料,2004,29(6):1~8
    [51] Bruvoll A, Ibwenholt K. Future waste generation forecasts on the basis of a macroeconomic model. Resour Conserv Recycl, 1997, 19: 137~149
    [52] Bennett JP., Maginnis MA. Recycling/disposal issues of refracotory. Ceram Eng. Sci Proc,1995a, 16(1): 127~141
    [53] Finnveden G.. Methodological aspects of life cycle assessment of integrated solid waste management systems. Resource Conserv Recycl, 1999, 26: 173~187
    [54] Nema AK, Gupta SK. Optimization of regional hazardous waste management systems:and improved formulation. Waste. Manage, 1999: 441~451
    [55] Read AD. A weekly doorstep recycling collection. I had no idiea we could! Overcoming the local barriers to participation. Resour Conserv Recycl, 1999, 26:217~249
    [56] Wittmer DE, Petty AV. Recycled materials for refractories. Ceram Eng Sci Proc, 1995, 16 (1):158-169
    [57] Bennett J P., Kwong JK. Recycling/alternative use of spent refractories, Iron &Steel Making, 1997a, January: 23~27
    [58] Oxnard RT. Refractory recycling. Am Ceram Soc Bull, 1994, 73(10): 46~49
    [59] Schulle W. Refractories-trends and new developments. Indus Ceram, 1996, 16 (3): 181~184
    [60] 姜华.宝钢用后耐火材料的技术研究与综合利用.宝钢技术,2005(3):9~12
    [61] Parratt J., Aumonier J. Recycling ferrous by-products. Steel Tech. Intern.1996, 75~78
    [62] Smithman CM. Eliminating waste through recycling technologies. Iron & Steel Making. 1997, 13~16
    [63] Abrino DE. Waste minimization in industries using refractory materials. Proc. of the United Intl. Tech. Congress on Refactories, 1997, 465~471
    [64] Smith JD, Peaslee KD, Barnes AS, et al. An economic, logistic, and technological approach to refratory recycling. Proc. of the United Intl. Congress on refractories. 1997:509~517
    [65] Sheppard LM. Minimizing refractory waste:recycling and reusing spent refractory material. Ceramic Ind., 1999, 39~47
    [66] Alexander LD. Waste disposal options for refractory tear out. Am Ceram Soc Bull, 1995, 74(1): 68~70
    [67] Webber RA. Recycling at Corhat—a 30-year success story. Ceram Eng Sci Proc, 1995, 16(J): 214~219
    [68] Chiz A. Problems and concerns of a refractory contractor. Ceram Eng Sci Proc. 1994:633~640
    [69] Maginnis MA, Bennett JR Recycling spent refractory materials at the U.S. Bureau of mines. Ceram Eng Sci Proc. 1995,16(1):190~198
    [70] Nystrom HE, Thompson PB, Refractory waste management financial dicision model. Refractories Application, 1998, 5~6
    [71] Hogan WT. Environmental legislation and the U.S.steel industry. Iron Steel Eng, 1995, 72(6): 40~42
    [72] A.O.V aloref. Recovery and recycling of scrap refractories, World Ceram. Refract. 1998, 9, 13~16
    [73] Nakamura Y., N. Hirai, Y.TSUTSUI, k. Uchinokura, S.I.Tamura, Recucling of refractories in the steel industry, Ind. Ceram. 1999, 19(2): 111~114
    [74] C.Viklund-White, K.Ruotanen, S.Gehor, Spent ladle refractories characterisation and reuse in new refractory materials, in: International Colloqium on Refractories, Aachen, Germany, 2001, 86~91
    [75] Kwong KS, Bennett JP, Collins KW, Wynne AE. The recycling of a 70%Al_2O_3 spent refractory. Proc. of the United Intl. Tech. Congress on Refractories. 1997, 487~496
    [76] Edwards GH. Glassmaking wastes as specialty glass raw materials. Ceram Eng Sci Proc, 1993:14(3-4):228~235
    [77] Theriot BD, Greeer WL, Rone KJ. Recycling cement kiln refractory brick at Ash Grove Cement Company. Proc. of the United Intl. Tech. Congress on Refr. 1997, 497~507
    [78] 曲远方,环境陶瓷材料.硅酸盐通报,2003(6):3~6
    [79] 佚名.炼钢厂用过的耐火材料的回收再利用.国外耐火材料,1999(10):1~9
    [80] J.H. Chester, Refractories, Production and Properties, Iron and Steel Institute, London,1973
    [81] D.R.ESpencer, Basic refractory raw materials, Trans. J. Br. Ceram. Soc. 1972,71,123~134
    [82] T.Evans, J.Quin, P.G.Whiteley, Magnesia-graphite refractories for basic oxygen coverters, Steel Techn. Int., 1994, 105~108
    [83] Abrino DE. Waste minimization in industries using refractory materials. Proc. of the United Intl. Tech. Congress on Refactories, 1997,465~471
    [84] Smith JD, Peaslee KD, Barnes AS, Fang H. An economic, logistic, and technological approach to refratory recycling. Proc. of the United Intl. Congress on refractories. 1997, 509~517
    [85] Bennett JP, Kwong JK. Rusing spent refractory materials. Cermic Ind., 1997b:Novenber:46~54
    [86] Sultan C. Overview of ceamics recycling in France. Key Eng Matls, 1997,132-136(3):2200~2203
    [87] 梁训裕.用过耐火材料的回收利用,国外耐火材料,1998(6):31~35
    [88] Zhong Xiangchong, Sun Gettgchen, Yin Rusan, Relationship of creep properties of bauxite refractories with microstructure. Ceram Eng Sci Proc.1986, (7): 314~323
    [89] Maity S, CHaudhuri J, Sarkar B K. Cyclic fatigue behavionr of porcelain under repeated impact. Trans Indian Cer., 1994, 53(1): 1~7
    [90] Malyshkin Y K, Basyas I P. A Study on the fatigue of commerical refractories. Trans Indian Cer. Sci., 1985, 44(5): 112~116
    [91] Von Nievoll J. Maguesiaspinell-steine fur die zementindnstrie. ZKG International.1995, 48(3):146~156
    [92] 王杰曾,金宗哲.耐火材料损伤蚀变研究的进展.耐火材料,1997,31(1):51~54.
    [93] 佚名.在废弃物焚烧炉内高温气体对陶瓷的侵蚀.国外耐火材料,2001(3):26~29
    [94] Jon Wells, Gerry Riley, Jim Williamson. Ineractions between coal-ash and burner quads. Part Ⅰ: Characteristics of buenr refractories and deposits taken from utility boilers. Fuel, 2003, 82:1859~1865.
    [95] 佚名.废弃耐火材料回收利用的前景.国外耐火材料,1998(5):26~28.
    [96] 佚名.德国重视用后耐火材料的回收利用.耐火材料,1997(4):247
    [97] Nuran, Mevlut, unal. The use of waste ceramic tile in cement production. Cement and Concrete Research, 2000, 30:497~499
    [98] Fang H, Smith JD, Peaslee KD. Study of spent refracoty waste recycling from metal manufacturers in Missouri. Resource Conserv Recycl, 1999, 25:111~124
    [99] 姜雅.世界主要国家废弃物相关法制.国土资源情报,2005(5):11~15
    [100] Bennettt JP, Kwong JK, Kikich SW. Recycling and disposal of refracotries. Am Ceram Soc Bull, 1995a, 74(12): 71~77
    [101] Ismail Demir, Mehmet, Orhan. Reused of waste bricks in the production line. Building and Enviroment, 2003, 38:1451~1455.
    [102] 李光辉译.日本耐火材料的回收利用.耐火材料,2001(2):75
    [103] 佚名.用后耐火材料的处理.国外耐火材料,2003,25(1):19~21
    [104] Edwards Geoge H, Elmira, NY, Recysle of glass furnace waste materials. J. Cleaner Prod., 1996, 4(3-4): 260.
    [105] 徐庆斌译.废弃耐火材料的再生利用.国外耐火材料,1999(7):36~38
    [106] 张建.耐火材料的再利用研究,耐火材料,1999(5):267~270
    [107] 田守信.用后耐火材料的再生利用.耐火材料,2002,36(6):339~341
    [108] 顾文飞,张孝德.宝钢固体废弃物资源化综合利用的现状和发展方向.宝钢技术,2005,(3):1~4
    [109] 冯慧俊,田守信.宝钢用后废弃MgO-C砖的再生利用.宝钢技术,2006(1):17~20.
    [110] 王晓阳,魏同.第二届耐火材料会议述评.国外耐火材料,2004,29(5):1~6
    [111] 李先明.对攀钢冶材公司产业发展的思考.冶金标准化与质量,2005,42(5):41~44
    [112] 刘志国.工业废料生产瓷砖技术探讨.山东陶瓷,2004,27(1):30~32
    [113] 郑海忠,梁永和,艾云龙.再生铝镁碳砖的研制.耐火材料,2004(4):294~295
    [114] 金志浩,高积,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000,5~206
    [115] 曾汉民.高技术新材料要览.北京:中国科学技术出版社,1993:253~255
    [116] 袋金辉,葛兆明,吴泽,罗兆红.无机非金属材料概论.哈尔滨:哈尔滨工业大学出版社,1999,159~161
    [117] 尹衍生,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001,1~200
    [118] 马如璋,蒋民华,徐祖雄.功能材料概论.北京:冶金工业出版社,1999,150~152
    [119] 宋玉泉,徐进,胡萍,杨正海.结构陶瓷的超塑性.吉林大学学报(工学版),2005,35(3):225~242
    [120] 任向东,同继峰.氧化铝研磨介质的磨耗分析.陶瓷,991,89(1):8~12
    [121] 李玉书.瓷器热稳定性与研磨体.中国陶瓷,1990,110(3):43~47
    [122] 邓国英.我国建筑陶瓷的现状分析及发展预测.国外建材科技,1997,18(4):8~12
    [123] 徐刚,谢建林,侯华英等.氧化铝陶瓷球、衬在陶瓷釉浆球磨中的应用.现代技术陶瓷,1999,(3):26~29
    [124] 佚名.玻陶短信:2004年我国建筑陶瓷出口增长迅速.建材发展导向,2005,(3):92
    [125] 佚名.我国陶瓷产量占世界半壁江山.建材发展导向,2005,(3):93~94
    [126] 王世群,金佩红,黄静宇.产业集群、比较优势与中国陶瓷产业竞争力.山东陶瓷,2005,28(3):12~15
    [127] 孙星寿,袁新民.建材行业2005年上半年进出口形势分析与展望.中国建材,2005,(7):19~22
    [128] 吴汉阳,汪用瑜,卢祥军.瓷用研磨介质.陶瓷研究,1994,9(3):133~135
    [129] 滕元成.刘敏.中铝瓷球的应用研究.中国陶瓷,2003,39(5):38~41
    [130] 陈达谦.精细陶瓷在建陶行业中的应用,陶瓷,1997,130(6):7~13
    [131] Donan C P, Hawk J A. Role of composition and microstructure in the abrasive wear of high-alumina ceramic. Wear, 1999, 225-229:1050~1058
    [132] Esposito L, Tucci A. Microstructural dependence of friction and wear behaviour in low purity alumina ceramic. Wear, 1997, 205:88~96
    [133] Sathiyalumar M, Gnanam F D. Influence of dditives on density, microstructure and mechanical properties of alumina. Journal of Materials Processinn Technolony, 2003, 133:282~286
    [134] Eugene Medvedovski. Wear-resistant engineering ceramic.Wear, 2001, 249:821~828
    [135] 秦麟卿,吴伯麟,谢济仁等.耐磨氧化铝瓷球的生产和应用.武汉理工大学学报,2001,23(3):12~14
    [136] 吴汉阳,汪用瑜,卢祥军.瓷用研磨介质.陶瓷研究,1994,9(3):133~135
    [137] 黎忠乾,王利涛,刘海燕.低成本生产白色中高铝瓷球.佛山陶瓷,2006,116(2):16~18
    [138] 朱志斌,郭志军,刘英等.氧化铝陶瓷的发展与应用,陶瓷,2001,134(6)6):5~8
    [139] 刘永先.影响95氧化铝瓷球耐磨性的几个关键因素.山东陶瓷,2000,23(2):27~28
    [140] 袁向东.以技术营销为先导开创科技型企业营销工作新局面.新材料产业,2005,(5):27~31
    [141] 许剑雄,殷耀如.我国陶瓷企业海外市场拓展策略.陶瓷2005,(3):44~46
    [142] 杨洪儒,史哲民,同继锋.中国建筑卫生陶瓷工业的发展.硅酸盐通报,2005,(5):119~123
    [143] 陈国华,江惠民.我国建筑陶瓷企业国际化发展之路.2006,(2):42~44
    [144] 沪铝:动荡中的均衡将有不俗的表现.期货日报,2003.11.27
    [145] 麦格里银行指氧化铝将上涨.中国证券报(互动版),2003.11.26
    [146] 国家建筑材料工业局.JC/T848.1-1999.中华人民共和国建材行业标准—耐磨氧化铝球、衬砖.北京
    [147] 陆佩文.硅酸盐物理化学.南京:东南大学出版社,1991:280~307
    [148] 郭瑞松,杨正方,袁启明等.复合助剂对ZTA陶瓷烧结性能的影响.硅酸盐学报,1999,27(2):258~262
    [149] M. Sathiyakumar, ED.Gnanam. Influence of additives on density, microstructure and mechanical properties of alumnia. Journal of Materials Processing Technology,2003,133:282-286
    [150] Phase Diagrams for Ceramists. Emest M.Levin, Carl R. Robbins and Howard E McMurdie. The American Ceramic Society, U.S.A.Ohio., 1969, 219,598.
    [151] Phase Diagrams for Ceramists. Emest M.Levin, Carl R. Robbins and Howard E McMurdie. The American Ceramic Society, U.S.A.Ohio,1969, 246
    [152] ZHOU Qi, MA Qin, WANG Gui-xia. Mechanochemical Variation on MoSi_2 Powder in Ball Milling Process, Nonferrous Metals, 2004,56(1):17~20
    [153] CHENG Xiu, JIE Xiaohua, CAI Lianshu, XIE Guangrong. Triburation of Nanometer Powder Silicon Carbide by High Energy Ball Milling. Materials and surface treament, 2003(11):41~42
    [154] 齐民,杨大智,朱民.机械合金化过程中的故态相变.功能材料,1995,26(5):472~476
    [155] 中华人民共和国国家质量技术监督局.GB/T3810.3-1999.中华人民共和国国家标准—陶瓷砖-吸水率、显气孔率、表观相对密度和容重的测定:中国标准出版社,1999-11-01
    [156] 陆章明.提高95瓷性能及低温烧成的途径.电子元件与材料,1995.14(4):12~14
    [157] 郭景坤.陶瓷材料的强化与增韧新途径的探索.无机材料学报,1998.13(1):23~26
    [158] 梁继文.矿物学(下).1984,台北:五南图书出版公司,中华民国73年:1258~1259
    [158] Zum Gahr K H, Bundschuh W, Zimmerlin B. Effect of grain size on friction and sliding wear of oxide ceramics, wear, 1993,162-164:269~279
    [159] Yingjie H., Louis W, Anothonie JR, et al. Grain size dependence of sliding wear in tetragonal zirconia polycrystals[J].J Am Ceram Soc, 1996, 79(12):3090~3096.
    [160] Rice R W. Micromechanics of microstructural aspects of ceramic wear [C]. Proc. 9th Annual Conf on Composite and Advanced ceramic Material Weasterville, OH, 1985,940~945
    [161] 刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993,98~111
    [162] Wada S. Solid Particle Erosion of Brittle Material (part 4)-the Erosive of Thirteen Kinds of Commercial Al_2O_3 Ceramic-yogyo-kyokai-shi, 1989, 95(9): 835~836
    [163] 颜东亮.利用辊棒废料制造研磨介质的研究:[硕士学位论文].桂林:桂林工学院材料与化学工程系,2004
    [164] 汪庆正.简明陶瓷辞典.上海辞书出版社,1989,62
    [165] Cho J,Hockey B J,Lawn B R. Grain-size and R-cueve effects in the abrasive wear of alumina. J Am Ceram Soc, 1989, 72(7): 1249~1258
    [166] 秦麟卿,吴伯麟,牟善彬.陶瓷研磨球的磨损分析.陶瓷,2002,1:39~41
    [167] 崔国文.缺陷、扩散与烧结.北京:清华大学出版社.1990,25~30
    [168] M.EHochella, J. R. and G.E.Brown, Jr., Structural Mechanisms of Anomalous Thermal Expansion of Cordierite-Beryl and Other Framework Silicates, J. Am. Ceram. Soc., 1986,69(1):13~18
    [169] M.EHochella et al., High Temperature Crystal Chemistry of Hydrous Mg- and Fe- Cordierite, Am Mineral., 1979, 64:337~351
    [170] G.V.Gibbas, The Polymorphism of Cordierite of Low Cordierit, Am. Mineral., 1966,51:1068~1087
    [171] J.P.Cohen, F.K.Ross, and G.V.Gibbs, An X-ray and Neutron Diffraction Study of Hydrous Low Cordierite, Am. Mineral.,1977,62:67~78
    [172] E.P.Meagher and G.v.Gibbs. The Polymorphisms of Cordierite Ⅱ: The Crystal Structure of Indialite, Can. Mineral., 1977,15:43~49
    [173] D.L.Eans., Thermal Expansion and Chemical Modification of Cordierite, J. Am. Ceram Soc., 1980,63(11-12):629~634.
    [174] S.J.Cho, B.J.Hockey. S.J.Bennison. Grain-size and R-curve Effects in the abrasive Wear of Alumina, J. Am. Ceram. Soc, 1989,72:1249~52
    [175] G.K.L. Goh, L.C.Lim. Effect of Alumina Cutting Tools, Wear, 1997,206:24~32
    [176] Tetsuya Senda, E.Yasuda, M.Kaji, R.C.Bradt. Effect of grain Size on the Sliding Wear and friction alumina at Elevated temperature. J. Am. Ceram. Soc., 1999.82(6):1505~11
    [177] S.J.innison, H.M.Chan, B.R.Lawn. Effect of heat treatment on crack-resistance curves in a liquid-phase-sintered alumina. J.Am. Ceram. Soc, 1989, 72:677~79
    [178] 陈达谦.工程陶瓷的磨损机理与氧化铝陶瓷耐磨性的提高.陶瓷,2000,146(4):9~11
    [179] 孙勇发.结构陶瓷的摩擦磨损.硅酸盐通报,1995(6):32~38
    [180] G. R. Heath. Solid Particle Erosion of Alumina linings for Pulverized Fuel Transport Pinping, Br. Ceram. J, 1990(89):17~21
    [181] H.H.K.Xu. Mechanisms of material removal in machining of ceramics, Interceram, 1998,47(6):380-385
    [182] S. C.Carnigia, Ibid, 1972,53(4):243~249
    [183] Zun Gahr K H. Bundschuh W, Zimmerlin B. Effect of grain size on friction and sliding wear of oxide ceramics [J].weat 1993, 162-164, 269~279
    [184] Dogan C P, Hawk JA. Role of composition and microstructure in the abrasive wear of high-alumina ceramics[J].Wear 1999,225-229,2050~1058
    [185] 高如琴.对瓷性能的影响,现代技术陶瓷,2000,21(3):23~26
    [186] 朱震峰,杨俊,陈元魁.铝质高强度电瓷显微结构与强度关系的研究.电瓷避雷器,2002,(5):17~21
    [187] 杨久俊等.无机材料化学,郑州:河南科学技术出版社,1998,147
    [188] BOND EC. Mining Eng.. 1958,10,592-595
    [189] DAVIS E.W. Trans. AIME, 1919,61,250-296
    [190] AUSTIN L.G., SHOJI K., LUCHIE P.T. Powder Technol, 1976,14,71-79
    [191] RADZISZEWSKI P.. Minerals Engineering, 13(8-9), 949-961 (2000)
    [192] LIU Guangwen. Factor of milling media on the milling effect. Plastic Industry, 1996(2):34-35
    [193] Y.Rao,Nararajan: Mineral Processing & Extractive Metallurgy Review, 7(1991), 137-173.
    [194] 秦麟卿,吴伯麟,谢济仁等.微孔对氧化铝瓷球磨损特性的影响.武汉工业大学学报,2000,22(5):12~15.
    [195] 曹南萍,廖宇清,王静海,吴方贵.1300度烧成的75氧化铝瓷的研究.陶瓷科学艺术,2004,(4):20-23
    [196] 钟旭东,胡智荣.坯柚配方对陶瓷烧成及其质量的影响,江苏陶瓷,2000,33(2):15~17
    [197] 王芬,罗宏杰,朱建锋.烧结气氛对电瓷材料机械性能的影响.中国陶瓷,2002,38(3):1~5
    [198] 周传雄,尹洪峰,任耘等.钛酸铝—莫来石复合材料热稳定性的研究.耐火材料,2004,38(2):97~99
    [199] 程小苏,曾令可,王慧等.陶瓷窑炉的还原烧成技术,工业炉,2002,24(4):27~30
    [200] 江文能,邱文记.釉面砖素坯环状红心缺陷分析.佛山陶瓷.1998,(3):16~17
    [201] Wagner C D, Riggs W M,Davis L E, et al. Handbook of X-Ray photoelectroscope, Pubblished by Perki-Elmer Corporation, Physical Electronics Davision, 6509 Flying Cloud Drive, Fden Prairie, Minnesota 55344, USA.
    [202] H.萨尔满,H.舒尔兹著(黄照柏译).陶瓷学(下册:陶瓷材料):北京:轻工业出版社,1980,94~98
    [203] 张继平.一次快烧墙地砖产品黑心缺陷分析.现代技术陶瓷,1995,(3):37~41
    [204] 韩乐静,金艳,周玉所..高铝瓷用高温瓷釉.山东陶瓷,1998,21(3):16~19
    [205] 任国彬,尹汝珊,张海川等.冶金工业出版社,1986,Al_2O_3-SiO_2系统使用耐火材料,272~279
    [206] 李懋强.湿化学法合成陶瓷粉料的原理和方法.硅酸盐学报,1994,22(1):85~92
    [207] 张洪喜,刘大格,徐崇泉.湿化学法合成PZT微分的工艺研究,压电与声光,1995,17(5):49~54
    [208] 郑仕远,陈健,潘伟.湿化学方法合成及应用.材料导报,200 14(9):25~27
    [209] Ewell R H. Insley H J Nat Bur Stand, 1935,15(2):173
    [210] Kijowski A K, Komarm S, Roy R Mater Res Soc Symp, 1988,121:245
    [211] Roy R. JAm Ceram Soc, 1969, 52, 35:135
    [212] Dawson W. Hydrothermal synthesis of advanced ceramic powders. Am. Ceram Soc Bull, 1988, 67 (10): 1673~1678

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700