考虑压降的能量集成水网络优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和水资源短缺已经引起世界各国的普遍关注,大力推进节能减排已成为各国政府的共识。节能减排就是要节约能源、降低能耗、减少污染物排放,过程工业既是耗能大户也是污染物排放大户,因此,设计合理的用水网络和换热网络对过程工业节能减排至关重要。目前,过程工业换热网络和水网络的优化设计都已比较成熟,但是在水网络中考虑换热的优化设计还较少,对其换热网络综合优化时考虑压降因素的优化设计更少,而忽略压降影响会导致设计与工程实际差别很大,甚至不能实施。本文采用改进粒子群优化算法这一有力工具,对考虑压降的能量集成水网络优化设计问题进行研究。
     首先对国内外考虑压降的换热网络综合问题进行研究,将换热网络综合优化问题归结为普适性的混合整数非线性规划问题。针对目前求解混合整数非线性规划模型存在的问题和局限性,提出改进的粒子群优化算法,采用MATLAB编程,测试函数验证算法的可行性和有效性,为后续考虑压降的换热网络模型优化和考虑压降的能量集成水网络模型优化提供有效的求解工具。
     其次针对考虑压降的换热网络综合问题,在换热网络分级超结构基础上,以年度化费用最小为目标函数,建立有分流的混合整数非线性规划模型,该模型能囊括无分流情况,加强获取最优解能力,通过改进粒子群算法对模型求解,对换热网络换热面积、换热单元数、公用工程耗量和压降消耗进行同步优化,使换热网络的优化设计更符合工程实际情况,并通过实例验证方法的可行性和有效性。
     最后在求解考虑压降的换热网络综合问题方法和思路的基础上,本文尝试对考虑压降的能量集成水网络进行优化设计,利用分步优化方法对该用水用能网络进行同时优化,使获得的能量集成水网络设计更接近工程实际,本文的研究可以为过程工业节能降耗与节水减排提供设计依据和理论指导。
Energy crisis and shortage of water resources have caused widespread concern all over the world. And vigorously promote energy saving and emission reduction has become a consensus of governments in the world. Energy saving and emission reduction is to save energy and reduce energy consumption and reduce emissions. Process industry is not only energy-intense but also is the main pollutant emission. So it is very important to design the reasonable water network and heat exchanger network for process industry. The optimal design study of water network and heat exchanger network are relatively mature now, but the study of water network optimal design considering heat exchanger is less. What is more, considering pressure drop effects are more less when heat exchanging. Ignore the pressure drop impact will lead to great difference between the design and engineering practical situation, even can not implementation.This paper studies optimal design of integrated water networks considering pressure drop effects, by using particle swarm optimization, which is an effective tool.
     First, this paper researches on the theory and method of the heat exchanger comprehensive and optimization problem about home and abroad. According to the existing limitations of solving algorithm, an improved particle swarm optimization is presented, which was verified through the test function. And for the following model of heat exchange network and heat integrated water networks, which both considering pressure drop effects, the new algorithm is an effective tool.
     Second, for the synthesis and optimization of heat exchanger network considering pressure drop effects, based on stage-wise superstructure, an mixed integer nonlinear programming model with least annual cost as objective function is established. Which optimizing heat transfer area, unit number, utility consumption and pressure drop consumption simultaneously. The model is split heat exchanger network while containing the case of the stream no splitting. The proposed model will be solved by particle swarm optimization and can do better in global optimal solution. Optimizing heat transfer area, unit number, utility consumption and pressure drop consumption simultaneously. All that in order to make the optimization design of heat exchanger network more accord with engineering practice. And at last through four examples to verify the feasibility of the method.
     Last, basing on the idea and method of the proposed model of heat exchanger network synthesis and optimize, this paper attempts to optimize and design the heat integrated water network, which considering the pressure drop. The stepwise method is used to optimize the water utilization and heat exchanger networks simultaneously. While expecting the specific design of the heat integrated water network more close to the actual project, and also can provide some theoretical guidance for energy-saving and emission reduction in process industry.
引文
[1]崔峨,尹洪超.热能系统分析与最有综合[M].大连:大连理工大学出版社,1994.
    [2]Umeda T, Itoch J and Shiroko K. Heat exchanger system synthesis[J]. Chemical Engineering Progress,1978.74:70-76.
    [3]Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science,1983.38:373-387.
    [4]Linnhoff B, Turner J. A Heat-recover networks new insight yield big savings[J]. Chemical Engineering,1981(88):56-70.
    [5]Papoulias S A, Grossmann I E. A Structural Optimization Approach in Process Synthesis-II:Heat Recovery Networks [J]. Computers& Chemical Engineering,1983,7 (6):707-721.
    [6]Floudas C A, Ciric A R, Grossraann I E. Automatic Synthesis of Optimum Heat Exchanger Network Configurations [J]. IAChE,1986,32 (2):276-290.
    [7]Rezaei E, Shafiei S. An efficient coupled genetic algorithm-NLP Method for Heat exchanger network synthesis[J]. IAChE,2008,1:22-33.
    [8]Khorasany R M, Fesanghary M. A novel approach for synthesis of cost-optimal heat exchanger networks [J]. Computers and Chemical Engineering,2009,33:1363-1370.
    [9]Yee T F, Grossmann I E, Kravania I. Simultaneous optimization models for heat integration-I. Area and energy targeting and modeling of multi-stream exchangers[J], Computers and Chemical Engineering,1990,14 (10):1165-1184.
    [10]Dolan W B, Cummings P T, Levan M D. Process optimization via simulated annealing: application to network design. American Institute of Chemical Engineers Journal.1989.
    [11]Lewin D R. A generalized method for HEN synthesis using stochastic optimization-Ⅱ. The synthesis of cost optimal networks. Computers and Chemistry.1998.
    [12]严丽娣,霍兆义,尹洪超.粒子群算法最优同步综合换热网络[J].化工进展,2009,28:439-442.
    [13]王文劲.换热网络的最优合成和优化改造的研究[D].华南理工大学硕士学位论文,1999:1-2,6,
    [14]Polly G T, Panjeh Shahi M H. Interfacing heat exchanger network synthesis and detailed heat exchanger design. Transactions of the Institute of the Chemical Engineers,1991,69:445-457.
    [15]Ponce-Ortega J M, Serna-Gonzalez M, Jimenez-Gutierrez A, Heat exchanger network synthesis including detailed heat exchanger design using genetic algorithms, Industrial and Engineering Chemistry Research,2007,46 (25):(8767-8780.
    [16]S. Fraustro-Hernandez V. Rico-Ramirez A. Jimenez-Gutierrez S. Hernandez-Castro, MINLP synthesis of heat exchanger networks considering pressure drop effects(J). Computers and Chemical Engineering,2003,27(8.9):4019-4027.
    [17]Mizutani F T, Pessoa F L P, Queiroz E M, Hauan S, Grossmann I E. Mathematical programming model for heat-exchanger network synthesis including detailed heat exchanger designs-2:Network synthesis, Industrial and Engineering Chemistry research,2003,42(17):4019-4027.
    [18]Polly GT, Panjeh Shahi M H, Jegede F O. Pressure drop considerations in the retrofit of heat exchanger networks. Transactions of the Institute of Chemical Engineers, 1990,68 (Pt. A):211-220.
    [19]Townsend D W, Linnhoff B. Surface area targets for heat exchanger networks[C]. IChemE 11th Annual Res. Meeting, April, Bath-UK,1984.
    [20]Zhu X X, Nie X R, Pressure drop considerations for heat exchanger network grassroots design, Computers and Chemical Engineering,2002,26(12):1661-1676.
    [21]Zhu X X, Nie B K, Toach U R. A new method for heat exchanger network synthesis using area targeting procedures[J]. Computers and Chemical Engineering,1995, (19):197-222.
    [22]Mizutani F T, Pessoa F L P, Queiroz E M. Mathematical programming model for heat exchanger network synthesis including detailed heat-exchanger design.1. Shell-and-Tube heat exchanger design[J]. Industial&Engineering Chemistry Research,2003,42,4009-4018.
    [23]Serna G M, Ponce-Ortega, J M. Total cost target for heat exchanger networks considering simultaneously pumping power and area effects[J]. Applied Thermal Engineering 31(2011)1964-1975.
    [24]Bagajewicz M J. Manousiouthakis V. Mass-Heat Exchange Network Representation of Distillation Network[J]. AIChE Journal,1992,38(11):1769-1800.
    [25]薛东新.废物最小化为目标的质量集成方法研究[D].大连理工大学博士学位论文,2001.
    [26]Wang Y P, Smith R. Wastewater Minimization[J], Chemical Engineering Science, 1994,49(7):981-1006.
    [27]Wang Y P, Smith R. Time pinch analysis[J]. Transaction of the Institution of Chemical Engineers, Part A,1995(73):905-914.
    [28]Vikas R. Dhole, Nand Ramchandani, Richard A. Tainsh and Marek Wasilewski. Make your process water pay for itself. Chemical Engineering,1996, January:100-103.
    [29]Polley G T, Polley H L, Design better water networks. Chemical Engineering Progress, 2000, February, Vol.96, No.2:47-52.
    [30]Takama N, Kuriyama T, Shiroko K, Umeda T. Optimal water allocation in a petroleum refinery[J]. Computers and Chemical Engineering,1980,4(4):251-258.
    [31]Huang C H, Chang C, Ling H C, et al. A mathematical programming model for water usage and treatment network design[J]. Industrial and Engineering Chemistry Research,1999,38 (7):2666-2679.
    [32]徐冬梅,胡仰栋,华贲,王修林.逐步非线性规划求解多组分废水最小化问题[J].计算机与应用化学,2003,20(6):789-792.
    [33]都健,王洪卫,孟小琼,李英,杜红彬,樊希山,姚平经.基于自适应模拟退火遗传算法的多杂质水网络设计[J].计算机与应用化学,2004,79-82.
    [34]LUO Yiqing, YUAN Xigang. Global Optimization for the Synthesis of Integrated Water Systems with Particle Swarm Optimization Algorithm. Chinese Journal of Chemical Engineering.2008,11-15.
    [35]Savelski M, Lingareddy S, Bagajewicz M, Design and retrofit of water utilization systems and zero discharge cycles in refineries and process plants, In:American Institute of Chemical Engineering annual meeting, Los Angeles,1997.
    [36]Savulescu, L E, Smith R. Simultaneous energy and water minimization. AICHE Annual Meeting, Miami,1998.
    [37]Bagajewicz M J, Savelski M J. Energy efficient water utilization systems in process plants[J]. Computers and Chemical Engineering,2002,26(1):59-79.
    [38]Savulescu, L., Kim, J. K. and Smith, R.,2005, Studies on simultaneous energy and water minimisation-part I:systems with no water re-use. Chemical Engineering Science,60:3279-3290.
    [39]Savulescu, L., Kim, J. K. and Smith, R.,2005, Studies on simultaneous energy and water minimization—Part Ⅱ:systems with maximum re-use of water. Chemical Engineering Science,60:3291-3308.
    [40]Du Jian, Meng xiaoqiong and Du Hongbin, et al. Optimal design of water utilization network with energy integration in process industries. Chinese J Chem Eng,2004, 12(2):247-255.
    [41]Zheng Xuesong. Optimal mathematical model of water-using network with different structures[D]. Xi'an:Xi'an Jiaotong University,2005.
    [42]廖祖维,阳永荣,王靖岱,蒋斌波.考虑热集成的用水网络优化[J],化工学报,2007,58:396-402.
    [43]Leewongtanawit B and Jin-Kuk Kim. Synthesis and optimization of heat-integrated multiple-contaminant water systems. Chemical Engineering and Processing,2008, 47:670-694.
    [44]Kim Jiyong, Kim Jinkyung, Kim J W, etl. A simultaneous optimization approach for the design of wastewater and heat exchange networks based on cost estimation[J]. Journal of Cleaner Production,2009,17(2):162-171.
    [45]Polley G T, Picon-Nunez M, Davalos LC. Design of water and heat recovery networks for the simultaneous minimization of water and energy consumption. Applied Thermal Engineering 2010,30:2290-2209.
    [46]Kennedy J, Eberhart R. Particle swarm optimization [A], in:Proceedings of the 4th IEEE International Conference on Neural Networks [C], Piscataway:IEEE Service Center,1995, pp.1942-1948.
    [47]Shi Y, Eberhart R C A modified particle swarm optimizer[C]. IEEE International Conference of Evolutionary Computation,1998:69-73.
    [48]Clerc M. The swarm and queen:towards a deterministic and adaptive particle swarm optimization[A]. Proceedings of the IEEE Congress on Evolutionary Computation, 1999:1951-1957.
    [49]Shi Y, Eberhart R C. Empirical study of particle swarm optimization[C]. The Congress on Evolutionary Computation. Washington,1999,1945-1950.
    [50]R C Eberhart, Y Shi. Tracking and optimizing dynamic systems with particle swarms[C]. Proceedings of IEEE Congress on Evolutionary Computation. Seoul, Kores, 2001:94-97.
    [51]Y Shi, R C Eberhart. Fuzzy adaptive particle swarm optimization[C]. Proceedings of IEEE Congress on Evolutionary Computation. Kores, IEEE Service Center. 2001.1:101-106.
    [52]Chatterjee A, Siarry P. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization[J], Computers&Operations Research.2006,33: 859-871.
    [53]陈贵敏,贾建援,韩琦.粒子群优化算法的惯性权值递减策略研究.西安大学学报[J],2006,40(1):53-56.
    [54]张顶学,关治洪,刘新芝.一种动态改变惯性权重的自适应粒子群算法[J].控制与决策,2008,23(11):1253-1257.
    [55]Ratnaweera A, Halgamuge S K, Watson H C. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients[J]. IEEE Transaction on Evolutionary Computation,2004,6(3):240-255.
    [56]Cai X J, Cui Z H, Zeng J C, et al. Particle Swarm Optimization with Self-adjusting Cognitive Selection Strategy[J]. International Journal of Innovative Computing, Information and Control,2008,14(4):943-952.
    [57]Dorigo M. Optimization, Learning and Natural Algorithm [in Italian, D]. PhD Thesis, Dipartimentodi Elettronica, Politecnico di Milano, Milan,1992.
    [58]Dorigo M, Gambardella L M. Ant colony system:a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997,1(1):5366.
    [59]Holland J H, Adaptation in Natural and Artificial Systems[M]. University of Michigan Press,1975:23-75.
    [60]Wang K P, Huang L, Zhou C G, Pang W. Particle swarm optimization for traveling Salesman problem[C]. Proc. of the 2nd Int'1 Conf. On Machine Learning and Cybernetics. Piscataway, N J:IEEE Service Center,2003,1583-1585.
    [61]Chen J J J, Letter to editors:comments on improvement on a replacement for the logarithmic mean[J]. Chemical Engineering Science,1987,42:2488-2489.
    [62]Serna G M. Desarrollo de Algoritmos Rigurosos para la Integracion Termica de Procesos. PhD thesis, Departamento de Ingenieria Quimica, Instituto Tecnologico de Celaya,1999.
    [63]王克峰,尹洪超,袁一.遗传算法最优同步综合换热网络[J].大连理工大学学报,1996,37(1):54-58.
    [64]都建,田婷婷,陈理.基于非线性规划的多杂质体系水和能量同时最小化研究[J].计算机与应用化学.2010,27(10):1337-1340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700