用水网络优化设计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染和水资源短缺是人类面临的重大问题。对于过程工业来讲,提高水资源的利用效率,改善用水网络的设计以节约新鲜水,减少废水排放是值得认真研究的课题。本论文对过程工业中用水网络的优化设计进行了研究,其中对于有温度要求的工业用水过程的设计进行了初步探索。主要内容有以下几点:
     1、本文利用线性规划法对确定用水过程最小用水量的问题进行了研究。分别研究了单组分再利用、再生再利用、再生循环最小用水量问题,把它们归结为线性规划来求解,其中对于再生再利用和再生循环分别提出了两步线性规划法。对于再生再利用过程,第一步建立线性规划1,以确定整个过程的最小新鲜水和相应的最小再生水用量,第二步将第一步所获得的整个过程的最小用水量和相应的最小再生量以及最低再生浓度区间作为已知量,采用与线性规划1同样的约束建立线性规划2,再次求解即可得最低再生浓度C_b。
     2、本文发现再生再利用过程的最小用水量和再生浓度之间存在两种关系,这两种关系表明获得最小新鲜水用量和再生量的最低再生浓度存在两种可能:夹点处和夹点之上,从而得出了与文献“夹点处再生能获得最小新鲜水用量”不同的结论,即夹点处再生未必总能获得最小新鲜水用量。例子求算结果表明本文方法是有效和简便易行的。
     3、本文对多组分用水系统的优化设计即废水最小化问题进行了研究,在逐步线性规划法的基础上,提出了逐步非线性规划法的过程优化设计方法。新方法首先按每个组分的限定浓度对各操作进行排序,然后对每个操作序列进行逐级优化匹配。然后通过比较选出一个用水量最小的设计,作为过程的最终设计。其中,对单元操作ⅰ的优化匹配就是解非线性规划问题。例子计算结果表明本文算法是简捷的。
     4、对于有温度要求的工业用水过程,往往既要消耗大量的水也要消耗大量的能量,然而长期以来用水网络的热集成问题却往往被人所忽略。本文对于含有热集成的单组分用水网络进行了初步探讨,提出了两阶段设计法的简化设计策略,以实现整个过程的用水最小化和用能最小化。本文只研究了第一阶段的设计,第二阶段将在以后的研究中探讨。第一阶段以同时的用水量最小和(火用)损最小为目标,采用逐级优化匹配的设计方法来设计用水网络,把整个用水系统分为两个层面来求解。第一个层面为用水单元层面,采用序列两步线性规划法确定用于每个单元用水操作的各
    
    股水源流量以及相应的初始温度和目标温度(包括新鲜水和废水),以实现单元用水
    操作的用水量最小和朋损最小化。第二个层面为整个用水系统层面,采用逐级优化
    匹配设计的方法来完成整个用水网络的设计,以实现整个用水系统的用水和朋损最
    小化。第一个层面和第二个层面求解紧密结合共同完成问题2的用水系统第一阶段
    的设计。例子求解结果表明本文所提方法是简单有效的。
Water pollution and scarcity of water is a life-and-death problem that human being is facing, it is worthy of investigation evolving water-using processes to reduce both fresh water consumption and wastewater production. This paper will focus on the optimization design of water-using networks, in which the design of a set of water-using processes requiring water of a certain temperature is approached preliminarily. The key ideas in the paper are extracted and listed below:
    1. A new method is addressed for determining minimum flowrate of fresh and regenerated water in water-using processes. This paper approaches reuse, regeneration reuse, regeneration recycling process for single contaminant respectively, the mathematical formulation of these synthesis problems leading to a linear programming, of which the two-step linear programming are presented respectively for regeneration reuse and regeneration recycling. For regeneration reuse, in step 1, the linear programming 1(LP1) is established, which targets the minimum flowrate of fresh water and corresponding regenerated water. In step 2, based on the minimum flowrate of fresh water and corresponding regenerated water along with the interval in which C'b exists, the linear programming (LP2) with the same constraints with LP1 is established, which can be easily solved to yield the value of the Cb.
    2. In addition, two different relationships between the fresh water flowrate required and inlet concentration to regeneration are found out, which indicate two possibilities with Cb : at pinch or above pinch, therefore a new conclusion is drawn, which differs from "Regeneration of water at pinch minimizes fresh water flowrate" derived by some papers and points out that in some cases, regeneration at pinch point can't always minimizes fresh water flowrate. One example is solved to demonstrate the advantage and validity of the new method.
    3. This paper approaches the optimized design of water-using systems of multiple contaminants, i.e. wastewater minimization. Stem from the step-by-step linear programming method, a modified method is addressed, which we name step-by-step non-linear programming method. From the beginning, the processes are collated according to the limiting operating data of each contaminant, and then the matching
    
    
    between the rich streams and lean steams (water sources) is optimized step by step in accordance to the collated processes for each process sequence, ultimately the design of water-using network which minimizes the fresh water usage is selected by comparison. Two examples are solved to demonstrate the effectiveness and convenience of the new method.
    4. Water and energy are among the most highly used commodities for water-using system requiring water of a certain quality and temperature, however, the influence of heat integration on the solution of water-using systems has been ignored for a long time. This paper approaches the design of single contaminant water-using system requiring water of a certain quality and temperature, and introduces a two-stage reduced design approach for the design of water-using networks targeting minimum freshwater usage and minimum energy consumption in process plants by water reuse and energy integration. This paper focuses on the research of the design method in stage 1, and the design method in stage 2 will be researched later on. In stage 1, the step-by-step optimization matching method is presented to design the water-using network, which targets minimum freshwater usage and minimum exergy loss and resolves the water network design into two layers. The first layer is the water-using unit, in which, the sequential two-st
    ep linear programming is used to determine each water source flowrate, the corresponding original temperature and target temperature for each water-using unit, which targets minimum freshwater usage and minimum exergy loss of the water-using unit. The second layer is the overall water-using system, in which, the step-by-step optimization matching meth
引文
[1] 冀文海.21世纪—人类将爆发“水战争”?http://www.shuiwang.com/news/news40.htm
    [2] 姜文来.21世纪中国水资源安全战略研究,“中国水资源论坛”,http://www.waterinfo.net.cn/tech/shuililuntan/zgshuiziyuan/jianwl.htm
    [3] 朱冬菊,陈芳.我国水资源危机四伏但希望犹存,新华M,http://202.84.17.11/ssii/water/htm/170720121.htm
    [4] 徐庆光.山东水资源可持续利用问题研究.山东经济,2002,总109期,第2期:56-59
    [5] 唐传义,党永良.山东省水资源形势和可持续利用对策.山东水利,200l,第9期:45-47
    [6] 刘兆德.山东省水资源可持续利用探讨.地域研究与开发,1999,第18卷(第1期):34-36
    [7] 姚平经.化工过程系统过程,大连:大连理工大学出版社,1992
    [8] 杨友麒.可持续发展时代的过程系统集成.《化工进展》,1999,第3期:15-19
    [9] El-Halwagi M.M., Manousiouthakis V.. Sythesis of Mass Exchange Network, AICHE. J.. 1989, 8:1233-1244
    [10] Linnhoff B., Hindmarsh E.. Chem. Engng Sci., 1983, 38:745-763.
    [11] Gupta. A., Manousiouthakis V.. Waster Reduction Through Multicomponent Mass Exchange Network Sythesis,Comp.Chem.Eng. 18(3), 1994, s585
    [12] Srinivas B.K., El-Halwagi M.M.. Syththesis of Combined Heat and Reactive Mass-Exchange Network, Chem. Eng. Sci., 1994, 49[13):2059-2074
    [13] Zhu M., El-Halwagi M. M.. Synthesis of Flexible Mass-Exchange Networks, Chem. Eng. Comm., 1995, 138:193-211
    [14] El-Halwagi M. M., Manousiouthakis V.., Simultaneous Synthesis of Mass-Exchange and Regeneration Networks,AICHE J., 1990, V36(8): 1209-1219
    [15] El-Halwagi M. M., Srinivas B.K.. Synthesis of Reactive Mass-Exchange Networks, Chem.Eng.Sci., 1992, V47(8): 2113-2119
    [16] Lakshmanan A., Biegler L.T.. Synthesis of Optimal Chemical Reactor Networks with Simultaneous Mass integration, Ind. Eng. Chem. Res., 1996,V35:4523-4536
    [17] N.Hallale, D.M.Fraser, Capital cost targets for mass exchange networks, Chem.Eng.Sci. 1998, V53(2) 293-313
    [18] El-Halwagi M.M., Srinivas B.K., Nunn R,F.. Synthesis of Optimal Heat-induced Separation Networks, Chem.Eng.Sci., 1995, 50(1):81-97
    [19] El-Halwagi M.M., Srinivas B.K.. Optimal Design of Pervaporation Systems for Waste Reductino, Comp. Chem. Eng.,1993, 17(10):957-970
    [20] El-Halwagi M. M., Manousiouthakis V.., Automatic Synthesis of Mass -Exchange Networks With Single-Component Targets, Chem. Eng. Sci., 1990, .V45(9)2813-1831
    [21] Bagajewicz M. J., Mansiouthakis V.. Mass/Heat- Exchange Network Representation of Distillation Networks, AICHE.J., 1992,V38(11)
    
    
    [22] Gupta. A., Manousiouthakis V.. Minimum Utility Cost of Mass-Exchange Networks with Variable Single Component Supplies and Targets, Ind.Eng.Chem.Res., 1993,32:1937-1950
    [23] Wang Y.P.. Smish R.. Wasterwater Minimisation, Chem. Eng. Sci.,1994, V49:981-1006
    [24] Wang Y. P., Smith R.. Wasterwater Minimisation with Flowrate Constraints, Trans Ind. Chem. Engng., 1995, 73(A). 889-904
    [25] Wang Y.P., Smish R.. Design of Distributed Effluent Treatment Systems, Chem. Eng. Sci.,1994, 49(18):3127-3145
    [26] Wang Y. P.. Smith R.. Time Pinch Analysis, Trans IChemE, November 1995,V73(A), 905-914
    [27] Lee S., Park S.. Synthesis of Exchange Network Using Process Graph Theory, Comp.Chem.Eng., 1996,V20(suppl):201-205
    [28] Gupta. A., Manousiouthakis V.. Variable Target Mass-Exchange Network Synthesis through Linear Programming, AICH E.J., 1996,V42(5): 1326-1340
    [29] El-Halwagi M. M.,Spriggs D.H.. Solve Design Puzzles with Mass Integration, Chem. Eng. Progress, 1998, 94(8):25-43
    [30] N.Hallale, D.M.Fraser. Capital Cost Targets for mass Exchange Networks, Comp.Chem.Eng., 2000, V53(2): 1661-1679
    [31] N.Hallale, D.M.Fraser. Capital Cost Targets for mass Exchange Networks, Comp.Chem.Eng., 2000, V53(2): 1681-1699
    [32] V.R. Dhole, N. Ramchandani, R. A. Tainsh, M. Wasillewski. Pinch technology can be harnessed to minimize raw- water demand and wastewater generation alike, Chem.Eng.,Jan.1996,100-103
    [33] P.Tripathi. Pinch Technology Reduces Wastewater, Chem.Eng., Nov. 1996, 87-90
    [34] Graham T. Polley, Helem L. Polley. Chemical Engineering Progress, February 2000,47-52
    [35] El-Halwagi M. M.,Spriggs D.H.. an Integrated Approach to Cost and Energy Efficient Pollution Prevention, Proceedings, 5th World Congr. of Chem. Eng. (San Diego), Ⅲ, AICHE, New York, 49(1996):pp.344
    [36] El-Halwagi M. M.. Pollution Prevention through Process Integration: Systimatic Design Tool, Academic Press, San Diego(1997)
    [37] El-Halwagi M. M., A. A. Hamad, G. W. Garrison, Synthesis of Mass Exchange Networks, A ICH E.J.,Nov. 1996, 42(11):3087-3101
    [38] Dunn R. F., B.K. Srinivas. Synthesis of Optimal Heat-induced Waste Minimization Networks, Adv. Env. Res.,1997, 1(3):275-301
    [39] El-Halwagi M. M., Manousiouthakis V.. Design and Analysis of Mass -Exchange Networks with multicomponent Targets, presented at AICHE Annal Meeting (San Fransisco), AICHE, New York(Nov. 1989)
    [40] Kiperstok A., P. N. Sharratt. On the Optimization Mass Exchange Networks for Removal of Pollutants, Trans. I.Chem.E., Nov. 1995, 73(B):271-277
    [41] Papalexandri K. P., E. N. Pistikopoulos. A Multiple MINLP Model for the Synthesis of Heat and Mass Exchange Networks, Comp.Chem.Eng., 1994, 18(12): 125-139
    
    
    [42] Huang Y. L., L. T. Fan. Intelligent Process Design and Control for In-plant Waste Minimization Through Process Design. A. P. Rossiter, ed., MaGraw-Hill, New York, 1995.80:pp. 165
    [43] Hamad A. A,,V, Varma. G. Kriahnagopalan, M, M, El-Halwagi. Application of Mass lntergration to Reduce Methnol and Effluent Discharge in Pulp Mills, TAPPI J., 1998
    [44] Hamad A. A., El-Halwagi M. M.. Simutaneous Synthesis of Mass Separating Agents and Interception Networks, Trans. I.Chem.E., 1998, 76(A):pp.376-388
    [45] Warren E. A., B. K, Srinivas, M. M. El-halwagi. Design of Cost-Effective Waste-Reduction Systems for Synthetic Fuel Plants, J. Env. Eng., 1995, pp.742-746
    [46] El-Halwagi A. M., El-Halwagi M. M.. Waste Minimization via Computer-Aided Chemical Process Synthesis-a new design philosophy, Trans. Egypt. Soc. Chem. Eng., 1992, 18(2):pp. 155-187
    [47] Stanley C., El-Halwagi M. M.. Synthesis of Mass-Exchange Networks Using Linnear Programming through Process Design. A. P. Rossiter, ed., McGraw-Hill, New York, 1995, 24:pp.209
    [48] Spriggs H. D. Design for Pollition Prevention, AICHE Symp. Ser.,1995, 90(303):pp.1001
    [49] A. Alva-Argaez, A.C. Kokossis, R, Smith, Wastewater Minimization of Industrial Systems Using an Integrated Approach, Comp.Chem.Eng., 1998, V22(s):s741-s744
    [50] A. Garrard, E.S. Fraga. Mass Exchange Network Synthesis Using Genetic Algorithms, Comp.Chem.Eng., 1998, 22 (12) :pp. 1837-1850.
    [51] Dongfeng Xue, Shaojun Li, Yi Yuan, Pingjing Yao. Synthesis of waste interception and allocation networks using genetic-alopex algorithm, Comp.Chem.Eng., 2000, 24 (2-7) :pp. 1455-1460
    [52] Castro P, Matos H, M.C. Fernandes, et al. Improvements for Mass Exchange Networks Design, Chem, Engng Sci.. 1999, 54:1649-1665
    [53] Miguel Bagajewicz. A Review of Recent Design Procedures for Water Networks in Refineries and Process Plants, Comp.Chem.Eng., 2000, 24:2093-2113
    [54] Savelski M., Bagajewicz M.J.. Design of Water Utilization Systems in Process Plants with a Single Contanminants, Waste Management, 2000, 20:659-664
    [55] Olesen S. G., Policy G. T.. A Simple Methdology for the Design of Water Networkd Handling Single Contaminants, Trans. i.Chem.E., May 1997, 75(A):pp.420-426
    [56] Minimizing Wastewater Emission Using WaterPinch Analysis, http://www.linnhiffmarch.co.uk/Water./WK%20Downloads.html
    [57] Takama N., Kuriyama T., et al.. Optimal Water Allocation in a Petroleum Refinery, Comp.Chem.Eng., 1980, 4:251-258
    [58] Alva-Argaez A., Vallianatos A. Kokossis A,. A Multi-contanminantt transshipmentModel for Mass Exchange Networks and Wastewater Minization Problems, Comp.Chem.Eng.,1999, 23:1493-1495
    [59] Yang Y. H., Lou H. H., Huang Y. L.. Synthesis of an Optimal wastewater Reuse Network, Water ,Management, 2000, 20:311-319
    [60] Mariano J., Savelski,Miguel J., Bagajewicz.. On the Optimality Conditions of Water Utilization Systems in Process Plants with Single Contaminants, Chem. Engng Sci.,2000, 55:5035-5048
    
    
    [61] Mariano J.Savelski., Miguel J.Bagajewicz. Algorithmic procedure to design water utilization systems featuring a single contaminant in process plants, Chemical Engineering Science ,56 (2001):1897-1911
    [62] Bagajewicz. Mariano J., Rivas M., Savelski, Miguel J.. A Robust Method to Obtain Optimal and Sub-optimal Design and Retrofit Solution of Water Utilization Systems with Multiple Contaminants in Process Plants, Comp.Chem.Eng., 2000, 24:1461-1466
    [63] Bagajewicz. Mariano J., Rivas M., Savelski, Miguel J.. A New Approach to Design of Water Utilization Systems with Multiple Contaminants in Process Plants, Annual American Institute of Chemical Engineering Meeting 1999 ,Dallax, TX
    [64] Bagajewicz. Mariano J., Savelski Miguel J., Rodera. H.. On the effect of heat integration in the design of water utilization systems in refineries and process plants, Annual American Institute of Chemical Engineering Meeting 1999 ,Dallax, TX
    [65] Savelski, M, Lingareddy, S., & Bagajewicz, M. Design and retrofit of water utilization systems and zero discharge sycles in refineries and process plants. Paper 188g. American Institute of Chemical Engineering annual meeting. 1997, Los Angeles.
    [66] Bagajewicz. Mariano J., Rodera. H., Savelski Miguel J.. Energy efficient water utilization systems in process plants, Comp.Chem.Eng., 2002, 26:59-79
    [67] Savulescu, L. E., & Smith, R. Simultaneous energy and water minimization. American Institute of Chemical Engineering annual meeting. 1998, Paper 41f. Miami, FL.
    [68] Benko, N., Rev, E., Szitkai, Z., & Fonyo, Z.. Optimal water use and treatment allocation, Comp. chem. Engng., 23(Supp.) (1999) S589-S592.
    [69] Kuo, W. C. J., & Smith, R.. Design for the interactions between water-use and effluent treatment, Trans ICHemE, Part A, 1998, 76:287-301
    [70] Ching-Huei Huang, Chuei-Tin Chang, & Han-Chern Ling, A mathematical programming model for water usage and treatment network design, Ind. Eng. Chem. Res., 1999, 38, 2666-2679
    [71] Alva-Argaez A., Kokossis A., & Smith R.. Automated design of industrial water networks, American Institute of Chemical Engineering annual meeting. 1998, Paper 13f. Miami, FL.
    [72] Doyle, S. J. & Smith, R., Targeting water reuse with multiple contaminants, Transactions of International Chemical Engineering, Part B, 1997, 75(3), 181-189
    [73] Bin Wang, Xiao Feng, Zaoxiao Zhang, A design methodology for a multiple-contaminant water networks with single internal water main, Computers and Chemical Engineering, 27 (2003) :903-911
    [74] N. Hallale .A new graphical targeting method for water Minimization, Advances in Environmental Research, 6 (2002): 377-390
    [75] 胡仰栋.徐冬梅,韩方煜,华贲.逐步线性规划法求解废水最小化问题.化工学报,2002,53(1):66-71.
    [76] 冯霄,李勤凌.《化工节能原理与技术》.第1版.北京:化学工业出版社,1998.1
    [77] 李保红.水分配网络设计与改造方法研究.博士学位论文.大连理工大学.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700