米诺环素在鲤、氧阿苯达唑在鲫体内的代谢研究暨鲤CYP450的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是一个渔业大国。由于鱼病的泛滥,各种各样的药物已经被广泛用于鱼病的治疗,渔药的滥用导致了药物在鱼类可食部分的残留。由于我国的气候有明显的季节差异,所以研究药物在不同水温条件下在鱼体内的药动学和残留消除规律可以为该药物给药方案以及休药期的制定提供了理论依据。
     本文研究了在冬、夏季水温(10℃和25℃)条件下,米诺环素(MINO)在鲤、氧阿苯达唑(ABZSO)在鲫体内的药动学及残留消除规律。生物样品通过萃取、吹干、浓缩等步骤的前处理,用高效液相色谱法(HPLC)测定样品中药物的含量。本文所建立的标准工作曲线线性关系良好,相关系数(r)均在0.9997以上。试验药品在血浆中的回收率均在88%以上,在组织中的回收率均在73%以上。日间变异系数均小于10%,日内变异系数均小于5%。
     对鲤以10mg/kg·bw剂量的MINO口灌溶液、对鲫以10mg/kg·bw剂量的盐酸氧阿苯达唑口灌溶液单次给药进行药物动力学研究表明水温对两种药物的代谢有显著的影响,夏季水温条件下吸收速率相对较快、消除半衰期相对较短。通过药物动力学软件分析表明MINO、ABZSO及其代谢产物的药-时曲线均符合有吸收一室模型。冬季水温(10℃)条件下,MINO的药物动力学参数为:吸收半衰期(t1/2ka)2.65h,达峰时间(Tmax)7.21h,峰浓度(Cmax)2.34μg/mL,消除半衰期(t1/2ke)11.16h,表观分布容积(Vd/F)4.09L/kg,清除率(CLb)0.25L/(h-kg),药时曲线下面积(AUC)59.07μg-h/mL; ABZSO的药动学参数为:t1/2ka3.89h, Tmax10.58h, Cmax3.20μg/mL, t1/2kel6.34h, Vd/F1.99L/kg, CLb0.08L/(h·kg), AUC118.21μg·h/mL; ABZSO2的药动学参数为:t1/2ka6.39h, Tmax12.82h, Cmax0.78μg/mL, t1/2kel2.86h, Vd/F6.43L/kg, CLb0.34L/(h·kg), AUC28.86μg·h/mL。夏季水温(25℃)条件下,MINO的药动学参数为:t1/2ka1.65h, Tmax3.50h, Cmax2.97μg/mL, ti/2ke3.78h, Vd/F2.66L/kg, CLb0.49L/(h-kg), AUC30.77μg·h/mL; ABZSO的药动学参数为:t1/2ka1.29h, Tmax3.80h, Cmax4.39μg/mL, t1/2ke6.72h, Vd/F1.53L/kg, CLb0.19L/(h·kg), AUC63.21μg·-h/mL;ABZSO2的药动学参数为:t1/2ka3.73h, Tmax7.04h, Cmax1.03μg/mL, t1/2ke6.56h, Vd/F4.61L/kg, CLb0.49L/(h·kg), AUC20.52μg·h/mL。
     在残留研究中,对鲤以10mg/kg·bw剂量的MINO口灌溶液、对鲫以10mg/kg·bw剂量的盐酸氧阿苯达唑口灌溶液连续给药3d。结果表明水温对MINO在鲤、ABZSO及其代谢产物在鲫体内的消除速率有显著的影响,皮肤中的药物代谢速率与其他组织相比相对较慢。所以,建议两种药物的残留靶组织均为皮肤。若MINO和ABZSO均以10mg/kg·bw的剂量口灌给药,建议MINO的休药期为:在冬季水温(10℃)条件下19d,在夏季水温(25℃)条件下8d;建议ABZSO的休药期为:在冬季水温(10℃)条件下17d,在夏季水温(25℃)条件下10d。
     细胞色素P450(CYP450)是由大量同工酶组成的一组超基因家族,对大多数内源性化合物和外源性化合物的代谢起着重要的作用,该酶系在药理学中具有极其重要的研究意义。尽管CYP450对动物体内药物的代谢起着重要的作用,但目前对于该酶的研究主要集中在实验动物和人体上,关于食品动物CYP450酶的研究相对较少。我国是鱼类食品的消费大国,渔药的合理使用与人类的健康及环境安全密切相关。本试验以我国市场需求量大的鲤为研究对象,研究了不同的水温(10℃和25℃)对鲤肝微粒体生化指标的影响;常用磺胺类药物(SD、SMD、SM2)对鲤肝微粒体CYP450生化指标的影响;以氯唑沙宗(CZX)作为探针药物研究不同水温(5℃、10℃、15℃、20℃、25℃、30℃)对鲤CYP2E1同工酶活性的影响。本实验旨在为水产动物CYP450酶系的进一步研究以及指导水产动物合理用药和鱼类用药的安全性问题提供理论基础。具体研究结果如下:
     1.水温对鲤肝微粒体CYP450生化指标的影响
     通过比较可以看出在冬季水温(10℃)条件下鲤肝细胞色素P450酶的部分生化指标与在夏季水温条(25℃)件下的相比明显偏低,这为解释鱼类在夏季水温(25℃)条件下药物代谢速率会明显高于在冬季水温(10℃)条件下的代谢速率提供了理论依据。该结果为进一步研究细胞色素CYP450亚酶的活性与温度的关系奠定了基础。
     2.磺胺类药物对鲤肝微粒体CYP450生化指标的影响
     结果表明常用磺胺类药物(SD、SM2、SMM)对鲤肝微粒体蛋白含量,CYPb5的活性、ERND的活性没有明显的影响,对CYP450含量、AND、AH的活性具有明显的抑制作用(P<0.01),这对磺胺类药物在水产动物上的合理应用具有指导意义。
     3.温度对CYP2E1同工酶活性的影响
     实验结果表明CYP2E1同工酶的Km值(以CZX作为探针)在反应温度为25℃时相对较低,其Vmax(以CZX作为探针)在该温度时相对较高;反应温度对CYP450酶活性的影响能够间接反映水温对鱼类体内药物代谢的影响。由此可见,鱼类在不同水温条件下药物动力学参数的差异主要是由于其CYP450酶在不同温度下的活性差异所造成的。
China is a big fishing country. Due to the prevalence of fish disease, various drugs have been used extensively to control it. The abuse of fishery drugs leads to disposition of residues in the edible parts of treated fish. However, Chinese climate shows significant seasonal variations. So the studies of pharmacokinetics and residues of drugs in fish at different seasons could provide theoretical basis for the formulation of dosage regimen and withdrawal time.
     Pharmacokinetics and residues elimination of minocycline(MINO) in carp (Cyprinus carpio) and albendazole sulfoxide(ABZSO) in crucian carp (Carassius auratus) were studied kept at winter water temperature(10℃) and summer water temperature (25℃). The drug concentrations in biological samples were analyzed by means of high-performance liquid chromatography (HPLC) after sample pretreatment steps. The correlation of calibration curves (correlation coeffcients were above0.9997) was all good. The average of experimental drug extraction recoveries were more than88%from plasma and more than73%from other tissues. The coefficients of variation (inter-day and intra-day) were less than10%and5%, respectively.
     Fish were administration orally (a single dose of10mg/kg·bw) in the pharmacokinetics group (MINO in carp and ABZSO in crucian carp). The results revealed that the influence of water temperature on the drug metabolism was significant. There were higher absorption rate and shorter elimination half-lives (t1/2ke) compared with those at winter water temperature. The plasma concentration-time data (MINO in carp, ABZSO and ABZSO2in crucian carp) conformed to one-compartment open model at two water temperatures. At winter water temperature(10℃), the pharmacokinetics parameters of MINO:the absorption half-lives(t1/2ka) was2.65h, the peak time(Tmax) was7.21h, the peak concentration (Cmax) was2.34μg/mL, the elimination half-lives(t1/2ke) was11.16h, the distribution volumes(Vd/F) was4.09L/kg, the total body clearances(CLb) was0.25L/(h-kg), the areas under the concentration-time curve(AUC) was59.07μg·h/mL; the pharmacokinetics parameters of ABZSO:t1/2ka was3.89h, Tmax was10.58h, Cmax was3.20μg/mL, t1/2ke was16.34h, Vd/F was1.99L/kg, CLb was0.08L/(h·kg), AUC118.21μg·h/mL; the pharmacokinetics parameters of ABZSO2:t1/2ka was6.39h, Tmax was12.82h, Cmax was0.78μg/mL, t1/2kewas12.86h, Vd/F was6.43L/kg,CLb was0.34L/(h-kg), AUC28.86μg·h/mL. At summer water temperature(25℃), the pharmacokinetics parameters of MINO:t1/2ka was1.65h, Tmax was3.50h, Cmax was2.97μg/mL, t1/2ke was3.78h, Vd/F was2.66L/kg,CLb was0.49L/(h·kg), AUC30.77μg·h/mL; the pharmacokinetics parameters of ABZSO:t1/2ka was1.29h, Tmax was3.80h, Cmax was4.39μg/mL, t1/2ke was6.72h, Vd/F was1.53L/kg, CLb was0.19L/(h·kg), AUC63.21μg·h/mL; the pharmacokinetics parameters of ABZSO2:t1/2ka was3.73h, Tmax was7.04h, Cmax was1.03μg/mL, t1/2ke was6.56h, Vd/F was4.61L/kg, CLb was0.49L/(h·kg), AUC20.52μg·h/mL.
     In the residues study, fish were given a multi-dose of10mg/kg·bw (MINO in carp and ABZSO in crucian carp) for3consecutive days by oral gavages. The results showed that the influence of water temperature on the elimination rate (MINO in carp, ABZSO and its metabolites in crucian carp) was significant and the drug metabolic rate in skin was relatively slower than that in other tissues. So the elimination of MINO and ABZSO in skin could be behaved as a reservoir. If fish were administered MINO and ABZSO orally with a single dose(10mg/kg·bw) for several days, the withdrawal periods of MINO could be not less than19d at winter water temperature(10℃) and8d at summer water temperature(25℃), which of ABZSO could be not less than17d and10d, respectively.
     Cytochrome P450(CYP450) enzymes represent a superfamily of monooxygenases that play a pivotal role in metabolism of endogenous and exogenous compounds, which have great research significance in pharmacology. The research on CYP450only focused on the experimental animal and human, although it plays an important in animal drug metabolism. The research of CYP450in edible animal was relatively fewer. As China is a big consuming country in fish food, rational use of fishery drug relates closely to human health and experimental safety. The experiment(with carp as object) studied on the influence of water temperature and3sulfonamides(SD, SM2, SMM) on the CYP450biochemical indicators; studied on the influence of reaction temperature(5℃,10℃,15℃,20℃,25℃,30℃) on the CYP2E1-like isoform activity with Chorzoxazone (CZX) as substrate. This experiment provided theoretical basis for further research of fish CYP450and the rational use of fish drug. Detail results are as follows.
     1. The influence of water temperature on CYP450biochemical indicators
     Some biochemical indicators at winter water temperature(10℃) were lower compared to those at summer water temperature(25℃), which provided theoretical basis for it that fish metabolic rate at summer water temperature(25℃) is higher than that at winter water temperature(10℃). These results laid the foundation for the future research in relationship between temperature and CYP450isoform.
     2The influence of3sulfonamides on CYP450biochemical indicators
     These results showed that sulfonamides (SD, SM2, SMM) could make the content of liver microsomal protein decreased and make the activity (AND and AH) inhibited significantly (P<0.01); these sulfonamides have no effect on the content of CYPb5or the activity of ERND. Those provided directive significance on the rational use of sulfonamides in fish.
     3The influence of temperature on CYP2El-like isoform activity
     These results revealed that the Michaelis constant (Km) value of CYP2El-like isoform(with CZX as probe) was minimal and Maximum reaction velocity (Vmax) was maximal at25℃compared with those at other temperatures. The influence of reaction temperature on CYP450activity could reflect the influence of water temperature on drug metabolism in fish indirectly. So variations of fish pharmacokinetic parameters at different water temperatures could be due to the variation of CYP450activity at different temperatures.
引文
1.蔡勤仁,李铁军,王旭.氧阿苯达唑和阿苯达唑在绵羊体内代谢的比较药物动力学.华中农业大学学报,2000,19(5):461-464
    2.操继跃,卢笑丛.兽医药物动力学.北京:中国农业出版社,2005,49-50;108-111;151-153
    3.操继跃,刘雅红.兽医药理学与治疗学.北京:中国农业出版社,2012,831-842;979-986
    4.巢磊.磺胺类药物在水产养殖中的应用.水利渔业,2002,22(3):50-51
    5. 陈大健.鲫鱼肝微粒体细胞色素P450酶系的初步研究.[硕士学位论文].南京:南京农业大学,2006
    6.陈毓荃.生物化学试验方法和技术.北京:科学出版社,2002:96-97
    7.陈杖榴(主编).兽医药理学(第二版).北京:中国农业出版社,2001:269-271
    8. 戴栗洁.土霉素微生物检定条件的改进.锦州医学院学报,2001,22(5):34
    9.樊慧蓉,和凡,刘昌孝.Cocktail探针药物法用于评价细胞色素P450同功酶影响的研究进展.中国药学杂志,2006,41(14):1045-1048
    10.高洪志,梁宇光,林丽娜,胡锦超,刘泽源.盐酸米诺环素的人体药动学研究.中国兽药杂质,2007,16(22):1904-1908
    11.高守红,温燕,邬蓉,金晓玲,恽芸蕾,李静娴,缪海均.注射用盐酸米诺环素在健康人的药物动力学.药学实践杂质,2009,27(3):193-194
    12.高燕霞,姜建国,杜增辉.HPLC测定盐酸米诺环素胶囊和片剂的含量及有关物质.华西药学杂志,2005,20(6):531-534
    13.关天颖,宫相义,孙伟之,刘淑珍,孙晓秋,朱桂芝.丙硫苯咪唑在猪体内的药代动力学研究.兽医大学学报,1989,9:118-123
    14.胡屹屹.猪肝微粒体细胞色素P450酶系的初步研究.[硕士学位论文].南京:南京农业大学,2006
    15.黄立信,胡金玉.抗棘球蚴药物研究:阿苯达唑代谢产物及其类似物的合成.中国医药工业杂质,1995,26(2):55-59
    16.江善祥,毛鑫智.实验感染肝片吸虫对大鼠肝脏药物代谢功能的影响.南京农 业大学学报,2003,26(4):82-85
    17.冷辛夫.细胞色素P450酶系的结构、功能与应前景用.北京:科学出版社,2001,21-22
    18.李春明.复方伊维菌素注射液在猪体内的药物动力学研究.[硕士学位论文].武汉:华中农业大学,2008
    19.李俊锁,邱月明,王超.兽药残留分析.上海:科学技术社,2002:459-495
    20.李晓宇,刘皋林.CYP450酶特性及其应用研究进展.中国临床药理学与治疗学,2008,13(8):942-946
    21.李雪梅.土霉素和磺胺甲噁唑在三种淡水鱼体内的药动学和残留研究.[硕士学位论文].重庆:西南师范大学,2005:31-65
    22.柳晓泉,王广基,钱之玉.细胞色素P450酶在药物代谢及开发研究中的应用.药学进展,2000,24(6):334-338
    23.罗华.健康养鱼必须规范用药.农村养殖技术,2007,(8):5-6
    24.骆文香,张银娣.药物代谢中的肝细胞色素.药学进展,1999,23(1):27-32
    25.农业部畜牧兽医局.动物性食品中兽药最高残留限量.中国兽药杂志,2003,37(3):5-11
    26.邱梅.阿苯达唑及其代谢产物在鲫体内的药代动力学及残留检测的研究.[硕士学位论文].扬州:扬州大学,2009,24-25
    27.石杰,庄安士,张雪玲.体外方法研究海洋药物911和971对大鼠CYP2E1的影响.中国海洋大学学报,2005,35(3):478-482
    28.舒耀皋.几种农药对鲫鱼肝微粒体P450酶系的影响.[硕士学位论文].乌鲁木齐:新疆农业大学,2008
    29.宋苏祥,刘洪柏,孙大江,范兆廷.史氏鲟稚鱼的耗氧率和窒息点.中国水产科学,1997,4(5):100-103
    30.唐跃年,张顺国,李岚,张宛陵.肝细胞微粒体的制备和细胞素P450氧化酶活性测定.中国医院药学杂志,1998,18(12):535-536
    31.王慧.嗯喹酸在养殖牙鲆体内的残留消除规律研究.[硕士学位论文].青岛:中国海洋大学,2006
    32.王莉娥,杨明学,谢广云.一种用聚乙二醇制备微粒体的方法.生物化学与生物理进展,1995,22(5):462-464
    33.王睿,向倩.细胞色素P450氧化酶基因多态性对药物代谢影响的研究进展.中国临床药理学杂志,2004,20(2):134-138
    34.伍忠銮,谢红光,周宏灏.细胞色素P4502E1的研究进展.中国临床药理学杂志,1997,13(1):57-62
    35.夏世均,吴中亮.分子毒理学基础.武汉:湖北科学技术出版社,2001,23-38
    36.谢慧心,王大菊,操继跃.丙硫苯咪唑及其代谢物在黄牛体内的药物动力学研究.华中农业大学学报,1989,8(2):155-159
    37.徐叔云,卞如廉.药理学实验方法.北京:人民卫生出版社,2001,第三版,511-512
    38.宣贵达,朱心强,郑一凡,黄幸纾.大鼠肝细胞色素P4503A的性别差异.癌变·畸变·突变,1997,9(1):50-52
    39.薛东红,孙伟之.反相高效液相色分析丙硫咪唑及代谢其产物.吉林农业大学学报,1988,10(2):114-116
    40.杨海峰.鸡肝微粒体的细胞色素P450酶系的初步研究.[硕士学位论文].南京:南京农业大学,2006
    41.杨跃辉,郜琪臻,丁平田.反相高效液相色谱法测定盐酸米诺环素原位凝胶中盐酸米诺环素的含量.化学与生物工程,2011,28(2):92-95
    42.余冰宾.生物化学实验指导.北京:清华大学出版社,2004,136-139
    43.余露山,胡晓渝,姚彤炜.反相高效液相色谱法测定鼠肝微粒体中依普黄酮及其在代谢研究中的应用.中国现代应用药学杂志,2003,20(6):447-449
    44.于相满,张其中,叶柏喜,陈国权,甘安辉,朱泽尧.土霉素在奥尼罗非鱼体内的药动学研究.淡水渔业,2009,39(1):64-67
    45.周宏灏.遗传药理学.北京:科学出版社,2001,107-117
    46.周晖,刘宇,王东凯.反相高效液相色谱法测定注射用盐酸米诺环素含量.中国医药药学杂志,2003,23(9):515-516
    47. Abedini S, Namdari R, Law F C P. Comparative pharmacokinetics and bioavailability of oxytetracycline in rainbow trout and chinook salmon. Aquaculture,1998,162:23-32
    48. Acta Veterina-ria Scandinavica. Supplementum (Denmark),1991,87:385-386
    49. Agwuh K N, and MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. JAntimicrob Chemo,2006,58:256-265
    50. Alvarez L I. Plasma disposition kinetics of albendazole metabolites in pigs fed different diets. Research in Veterinary Science,1996,60:152-156
    51. Anderson C D, Wang J, Kumar G N, McMillan J M, Walle U K, Walle T. Dexamethasone induction of taxol metabolism in the rat. Drug Metab Dispos,1995, 23(11):1286-1290
    52. Bardag-Gorce F, Wilson L, Nan L, Li J, French B A, Morgan T R, Morgan K, French S W. CYP2E1 inhibition enhances Mallory body formation. Exp Mol Pathol,2005, 78(3):207-211
    53. Benitz K F, Roberts G K S, Yusa A. Morphologic effects of minocycline in laboratory animals. Toxicol Appl Pharmacol,1967,11:150-170
    54. Black W D, Ferguson H W, Byrne P, Claxton M J. Pharmacokinetics and tissue distribution study of oxytetracycline in rainbow trout following bolus intravenous administration. Journal of Veterinary Pharmacology and Therapeutics,1991,14(4): 351-358
    55. Breimer D D. Interindividual variations in drug disposition:Clinical implications and methods of investigation. Clinical Pharmacokinetics,1983,8(5):371-377
    56. Brown H, Matzuk A, Ilves I R, Peterson L H, Harris S A, Sarett L H, Egerton J R, Yakstis J J, Campbell W C, Cuckler A C. Antiparasitic drugs Ⅳ.2-(4'-thiazolyl) benzimidazole, a new anthelmintic. Journal of the American Chemical Society,1964, 83,1764-1765
    57. Buhler D R, Wang-Buhler J L. Rainbow trout cytochrome P450s:purification, molecular aspects, metabolic activity, induction and role in environmental monitoring. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol,1998,121(1-3):107-137
    58. Capece B P, Afonso S M, Lazaro R, Harun M, Godoy C, Castells G, Cristofol C. Effect of age and gender in the pharmacokinetics of albendazole and albendazole sulphoxide enantiomers in goats. Research in Veterinary Science,2008,86(3):498-502
    59. Celander M, Buhler D R, Forlin L, Goksoyr A, Miranda C L, Woodin B R, Stegeman J J. Immunochemical relationships of cytochrome P4503A-like proteins in teleost fish. Fish Physiol Biochem,1996,15:323-332
    60. Celander M, Stegeman J J. Isolation of a cytochrome P450 3A cDNA sequence (CYP3A30) from a marine teleost Fundulus heteroclitus and phylogenetic analyses of CYP3A genes. Biochem Biophys Res Commun,1997,236:306-312
    61. Chen L, Yang C S, Effects of cytochrome P4502E1 modulators on the pharmacokinetics of chlorzoxzone and 6-hydroxychorzoxazone in rats. Life Sci,1964, 18:1575-1585
    62. Chen Z L, Zeng Z L, Yuan Z H, Fung K F. Pharmacokinetic study of albendazole in swine. Congress of the European Association for Veterinaria pharmacology and Toxicology, Copenhagen (Denmark),1991,18-22
    63. Chung W G, Buhler D R. The effete of spironolactone treatment on the cytochromes P450-mediated metabolism of the prrrolizidine alkaloid senecionine by hepatic microsomes from rats and guinea Pigs. Toxicol Appl Pharmacol,1994,127(2): 314-319
    64. Colovic M, Caccia S. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat. J Chromatogr B Analyt Technol Biomed Life Sci,2003,791:337-343
    65. Crivello J F, Schultz R J. Genetic variation in the temperature dependence of liver microsomal CYP2E1 activity, within and between species of the viviparous fish poeciliopsis. Environ Toxicol Chem,1995,14 (1):1-8
    66. Csiko G Y, Banhidi G Y, Semjen G, Laczay P, Vanyine S G, Lehel J, Fekete J. Metabolism and pharmacokinetics of albendazole after oral administration to chickens. Journal of Veterinary Pharmacology and Therapeutics,1996,19(4):322-325
    67. Cuyue T, Magang S, David R. Substrate dependent effect of acetonitrilein human liver microsomal cytochrome P4502C9 activity. Drug metab Dipos,2000,28(5): 567-572
    68. Delatour P, Gamier F, Benoit E, Caude I. Chiral behaviour of the metabolite albendazole sulphoxide in sheep, goats and cattle. Research in Veterinary Science, 1991,50:134-138
    69. Delatour P, Parish R C. Benzimidazole anthelmintics and related compounds:toxicity and evaluation of residues. In Drug Residues in Animals,1986:175-204
    70. De Wasch K, Okerman L, Croubels S, De Brabander H, Van Hoof J De Backer P. Detection of Residues of Tetracycline Antibiotics in Pork and Chicken Meat: Correlation between Results of Screening and Confirmatory Tests. The Analyst,1998, 1239 (12):2737-2741
    71. Ding F K, Cao J Y, Ma L B, Pan Q S, Fang Z P, Lu X C. Pharmacokinetics and tissue residues of difoxacin in crucian carp (Carassius auratus) after oral administration. Aquaculture,2006,256:121-128
    72. Dong Z G, Hong J Y, Ma Q A, Li D C, Bullock J, Gonzalez F J, Park S S, Gelboin H V, Yang C S. Mechanism of induction of cytochrome P-450ac (P-450j) in chemically induced and spontaneously diabetic rats. Arch Biochem Biophys,1988,263(1):29-35
    73. Dupont I, Berthou F, Bodenez P, Bardou L, Guirriec C, Stephan N, Dreano Y, Lucas D. Involvement of cytochromes P4502E1 and 3 A4 in the 5-hydroxylation of alicylate in humans. Drug metab dispos,1999,27(3):322-326
    74. Ekins S, Ring B J, Grace J, McRobie-Belle D J, Wrighton S A. Present and future in vitro approcaches for drug metabolism. Journal of Pharmacological and Toxicological methods,2000,44(1):313-324
    75. Ellis A E, Roberts R J, Tytler P. The anatomy and physiology of teleosts. In:Roberts, R.J. (Ed.), Fish Physiology, Balliere Tindall, London,1978,13-54
    76. Eliasson E, Mkrtchian S, Ingelman-Sundberg M. Hormone-and substrate- regulated intracellular degradation of cytochrome P450 (2E1) involving Mg ATP-activated rapid proteolysis in the endoplasmic reticulum membrances. J Biol Chem,1992, 267(22):15765-15769
    77. Eustratio S P, Alastair R L. Effect of incubation temperature on carbohydrate digestion in important teleosts for aquaculture. Aquac Res,2005,36:1252-1264
    78. Formentini E A, Mestorino O N, Marino E L, Errecalde J O. Pharmacokinetics of ricobendazole in calves. Journal of Veterinary Pharmacology and Therapeutics,2001, 24:199-202
    79. Fuhr U, Strobl G, Manaut F, Ander E M, Sorgel F, Lopez-de-Brinas E, Chu D E, Pernet A G, Mahr G, Sanz F. Quinolone antibacterial agents:relationship between structures and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol Pharmacol,1993,43:191-199
    80. Fuhr U, Wolff T, Harder S, Schymanski P, Staib A H. Quinolone inhibition of cytochrome P450-dependent caffeine metabolism in human liver microsomes. Drug Metb Dispos,1990,18:1005-1010
    81. Fujii-Kuriyama Y, Mizukami Y, Kawajiri K, Sogawa K, Muramatsu M. Primary structure of a cytochrome P450:coding nucleotide sequence of Phenobarbital-inducible cytochrome P4S0 cDNA from rat liver. Proc Natl Acad Sci USA,1982,79(9):2793-2797
    82. Gelboin H V, Krausz K. Monoclonal antibodies and multifunctional cytochrome p450: drug metabolism as paradigm. Journal of Clinical Pharmacology,2006,46(3): 353-372
    83. Geraudie P, Hinfray N, Gerbron M, Porcher J M, Brion F, Minier C. Brain cytochrome P450 aromatase activity in roach (Rutilus rutilus):Seasonal variations and impact of environmental contaminants. Aquat Toxicol,2011,105(3-4):378-384
    84. Hennessy D R, Sangster N C, Steel J W, Collins G H. Comparative pharmacokinetic behaviour of albendazole in sheep and goats. International Journal for Parasitology, 1993,23:321-325
    85. Hennessy D R, Steel J W, Lacey E, Eagleson G K, Prichard R K. The disposition of albendazole in sheep. Journal of Veterinary Pharmacology and therapeutics,1989,12: 421-429
    86. Hu Y, Oscarson M, Johansson I, Yue Q Y, Dahl M L, Tabone M, Arinco S, Albano E, Ingelman-Sundberg M. Genetic polymorphism of human CYP2E1:characterization of two variant alleles. Mol Pharmacol,1997,51(3):370-376
    87. Imai Y, Ito A, Sto R. Evidence for biochemically different types of vesicles in the hepatic microsomal faction. Biochem,1966,60(4):417-428
    88. Imaoka S, Hashizume T, Funae Y. Localization of rat cytochrome P450 in various tissues and comparison of arachidonic acid metabolism by rat P450 with that by human P450 orthologs. Drug Metabolism and Pharmacokinetics,2005,20(6): 478-484
    89. Kaplan LAE, Fielding E, Crivello JF. Genetic regulation of liver microsomal CYP2E1 activity among strains of the viviparous fishes Poeciliopsis occidentalis and Poeciliopsislucida. Environ Biol Fish,1999,53 (4):337-343
    90. Kirischian N, McArthur A G, Jesuthasan C, Krattenmacher B, Wilson J Y. Phylogenetic and Functional Analysis of the Vertebrate Cytochrome P4502 Family. J Mol Evol,2001,72(1):56-71
    91. Koop D R, Laethem C L, Tierney D J. The utility of p-nitrophenol hydroxylation in P450IIE1 analysis. Drug Metab Rev,1989,20:541-551
    92. Kotlyar M, Carson S W. Effects of obesity on the cytochrome P450 enzyme system. Int J Clin Pharmacol Ther,1999,37(1):8-19
    93. Lanusse C E, Alvarez L, Saummel C, Sanchez S. Effect of diet on pharmacokinetic behaviour of albendazole metabolite in pig. Proceedings of the 6th Congress of the European Association for Veterinary Pharmacology and Toxicology. Edinburgh UK, 7-11.1994a,259-260, Blackwell Science. Oxford
    94. Lanusse C E, Sanchez S, Alvarez L. Influence of fasting and nutritional status on the disposition kinetics of albendazole in cattle. Proceedings of the 6th International Congress of the European Association for Veterinary Pharmacology and Toxicology, Edinburgh,1994b:249-250
    95. Lee S S, Scott J G An improved method for preparation, stabilization, and storage of house fly (Diptera:Muscidae) microsomes. J Econ Entomol,1989,82(6): 1559-1563
    96. Leyden J J. Absorption of minocycline hydrochloride and tetracycline hydrochloride. J Am Acad Dermatol,1985,12:308-312
    97. Ma Y, Sachdeva K, Liu J, Song X, Li Y, Yang D, Deng R, Chichester C O, Yan B. Clofibrate and perfluorodecanoate both upregulate the expression of the pregnane X receptor but oppositely affect its ligand dependent induction on cytochrome P450 3A23. Biochemical Pharmacology,2005,69(9):1363-1371
    98. McKellar Q, Galbraith E A, Baxter P. Oral absorption and bioavailability of fenbendazole in the dog and the effect of concurrent ingestion of food. Journal of Veterinary Pharmacology and Therapeutics,2008,16:189-198
    99. McKellar Q, Scott E. The benzimidazole anthelmintic agents-A review. Journal of Veterinary Pharmacology and Therapeutics,1990,13:223-247
    100.Miranda C L, Wang J L, Henderson M C, Zhao X, Guenqerich F P, Buhler D R. Comparison of rainbow trout and mammalian cytochrome P450 enzymes:evidence for structural similarity between trout P450 LMCS and human P450IIIA4. Biochem Biophys Res Commun,1991,176(2):558-563
    101.Mirfazaelian A, Dadashzadeh S, Rouini M R. Effect of gender in the disposition of lbendazole metabolites in humans. European Journal of Clinical Pharmacology, 2002,58:403-408
    102.Monshouwer M, Witkamp R F, Nijmeijer S M, Van L L A, Verheijden J H, Van M A S. Infection (Actinobacillus pleuropneumoniae) mediated suppression of oxidative hepatic drug metabolism and cytochrome P4503A mRNA levels in pigs. Drug Metab Dispos,1995,23(1):44-47
    103.Nelson D R, Koymans L, Kamataki T, Stegeman J J, Feyereisen R, Waxman D J, Waterman M R, Gotoh O, Coon M J, Estabrook R W, Gunsalus I C, Nebert D W. P450 superfamily:update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics,1996,6(1):35-42
    104.Nicolau D P, Freeman C D, Nightingale C H, Quintiliani R. Pharmacokinetics of minocycline and vancomycin in rabbits. Lab Anim Sci,1993,43(3):222-25
    105.Noble J F, Kanegis L A Hallesy D W. Short-term toxicity and observations on certain aspects of the pharmacology of a unique tetracycline-minocycline. Toxicol Appl Pharmacol,1967,11:128-149
    106.Nouws J F M, Grondel J L, Boon J H, Van Ginneken V J T. Pharmacokinetics of antimicrobials in some fresh water spesies. In:Michel C, Alderman D J (Eds.), Chemotherapy in Aquaculture:From Theory to Reality. Symposium, Paris,1991, 12-15
    107.Oliw E H, Guengerich F P, Oates J A. Oxygenation of arachidonic acid by hepatic monooxygenases. Isolation and metabolism of four epoxide intermediates. J Biol Chem,1982,257(7):3771-3781
    108.Omura T, Sato R. The carbon monoxide-binding pigment of liver mocrosomes. Biol chem,1964,239(7):2370-2378
    109.Parke D V. P450 and the detoxication of environmental chemicals. Aquatic Cytochrome Toxicology,1981,1(5-6):367-376
    110.Pavan K, Mittapalli, Madhusudan R, Yamasani, Apte, Shashank. Improved Bioavailability of Albendazole Following Oral Administration of Nanosuspension in Rats. Current Nanoscience,2007,3(2):191-194
    111.Pollenz R S. The aryl-hydrocarbon receptor, but not the aryl-hydrocarbon receptor nuclear translocator protein, is rapidly depleted in hepatic and nonhepatic culture cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Pharmacol,1996, (49): 391-398
    112.Prichard R K, Hennessy D R, Steel J W, Lacey E. Metabolite concentrations in plasma following treatment of cattle with five anthelmintics. Research in Veterinary Science,1985,39(2):173-178
    113.Sanchez S, Sallovitz J, Savio E, McKellar Q, Lanusse C. Comparative availability of two oral dosage forms of albendazole in dogs. The Veterinary Journal,2000,160: 153-156
    114.Sarkar M, Polk R E, Guzelian P S, Hunt C, Karnes H T. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes. Antimicrob Agents Chemother,1990,34:594-599
    115.Scheer M. Studies on the Antimicrobial Agents against Five Pathogaents Isolated in Calves in the Netherlands. Vet Quart,1990,12 (4):212-219
    116.Shaikh B, Rummel N, Gieseker C, Serfling S, Reimschuessel R. Metabolism and residue depletion of albendazole and its metabolites in rainbow trout, tilapia and atlantic salmon after oral administration. Journal of Veterinary Pharmacology and Therapeutics,2003,26:421-427
    117.Shun-ichi N, Shozo Y, Masahiko K, Masao K, Seiji H, Yoshinari K, Toru A. Pharmacokinetics and tissue distribution of minocycline hydrochloride in horses. AJVR,2010,71(9):1062-1066
    118.Stephen F, Zhang H J. In vitro evaluation of reversible and irreversible cytochrome P450 inhibition:current status on methodologies and their utility for predicting Drug-drug interactions. Journal of American Association of Pharmaceutical Scientists,2008,10(2):410-424
    119.Suzuka I, Kaji H, Kaji A. Binding of specifi c sRNA to 30S ribosomal subunits: effect of 50S ribosomal subunits. Proc Natl Acad Sci,1966,55:1483-1486
    120.The United States Pharmacopoeia Convention Inc. The United states Pharmacopoeia ⅩⅩⅤ. The Board of Trustees,2002,1158
    121.Thorir D B, John T C, Heidi J E, Volker F, Lawrence G, Scott G, John K, Peter K, Gerald M, Lan N, Gondi K, James M R, Scott O, Stanley R, Amy R, Anita S, Fred S, John T S, Donald T, Jose M V, John W, Steven A Wl. The conduct of in vitro and in vivo drug-drug interaction studies:A Pharmaceutical research and manufacturers of America (PhRMA) perspective. Drug Metabolism and Disposition,2003,31(7): 819-825
    122.Umeno M, McBride O W, Yang C S, Gelboin H V, Gonzalez F J. Human ethanol-inducible P4502E1:complete gene sequence promoter characterization, chromosome mapping, and cDNA directed expression. Biochemistry,1988,27 (25): 9006-9013
    123.Uttamsingh V, Lu C, Miwa G, Gan L S. Relative contributions of the five major human cytochromes P450,1A2,2 C9,2 C19,2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib. Drug Metab Dispos,2005,33: 1723-1728
    124.Wall K L, Crivello J F. Chorzoxazone metabolism by winter flounder liver microsomes:evidence for existence of a CYP2El-like isoform in teleosts. Toxicol Appl Pharmacol,1998,151(1):98-104
    125. Wilson R C, Green N K. Pharmacokinetics of minocycline hydrochloride in clinically normal and hypoproteinemic sheep. AJVR,1986,47(3):650-652
    126.Wilson R C, Kitzman J V, Kemp D T, Goetsch D D. Compartmental and noncompartmental pharmacokinetic analyses of minocycline hydrochloride in the dog. AJVR,1985,46(6):1316-1318
    127.Wrighton S A, Thomas P E, Molowa D T, Haniu M, Shively J E, Maines S L, Watkins P B, Parker G, Mendez-Picon G, Levin W. Characterization of ethanol-indueible human liver N-nitrosodimethylamine demethylase. Bioehemistry, 1986,25(22):6731-6735
    128.Yanlei ZH, Yeping T, Chunmei W et al. Pharmacokinetics and tissue residues of marbofloxacin in crucian carp (Carassius auratus) after oral administration. Aquaculture Research,2009,40,696-709
    129. Yuan R, Madani S, Wei X X, Kellie R, Huang S M. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metabolism and Disposition,2002,30(12):1311-1319
    130.Yu LZ, Yang XL. Effects of fish cytochromes P450 inducers and inhibitors on difloxacin N-demethylation in kidney of Chinese idle(Ctenopharyngodon idellus). Environ Toxicol Pharmacol,2010,29 (3):202-208
    131.Zamaratskaia G, Zlabek V. Para-nitrophenol hydroxylation by fish liver microsomes: kinetics and effect of selective cytochrome P450 inhibitors. Fish Physiol Biochem, 2011,37:969-976
    132.Ziv G, Sulman F G. Analysis of pharmacokinetic properties of nine tetracycline analogues in dairy cows and ewes. AJVR,1974,35:1197-1201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700