三种榆属树种种子萌发特性及活力变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探讨榆属树种种子萌发的生理活动的变化特征,种子老化及劣变机理,探明种子萌发的一些生理生化变化规律和种子活力下降的原因,本文以白榆(Ulmus pumila Linn.)和沙地榆(Ulmus pumila L. var. sabulosa)、春榆(Ulmus propinqu Koidz)三种榆林地区较为常见榆属树种为材料,研究了盐分和水分胁迫对种子萌发的影响,种子在自然条件和人工加速老化条件下萌发的所发生的一系列生理生化变化,在此基础上探索反映种子活力水平的显著指标,试验结果如下:
     1.不同浓度的盐胁迫和水分胁迫对几种榆属树种种子的萌发具有明显的抑制作用,表现在降低种子的萌发率,推迟种子的初始萌发时间、延长种子的萌发时间上。NaCl溶液处理的种子发芽率显著高于等渗的PEG溶液处理,水分胁迫的抑制作用远大于等渗的盐胁迫,表明榆属植物中起主要抑制作用的是渗透胁迫。
     2.自然条件下种子在吸水萌发的过程中,3个树种种子活力生理指标大小比较结果是:沙地榆>春榆>白榆。萌发过程中淀粉被分解,可溶性糖含量的变化趋势是先升后降,还原糖含量一直在增加,说明在后期种子萌发的过程中消耗的可溶性糖主要是非还原性的蔗糖。
     3.一般在干的种子中主要是β-淀粉酶或完全是β-淀粉酶,但是3种榆属树种干种子α-淀粉酶也存在。种子α-淀粉酶活性比较结果为沙地榆>春榆>白榆。β-淀粉酶在萌发的过程中不断被消耗,在萌发的过程中β-淀粉酶活性在大多数时间较α-淀粉酶活性要高,而且变化幅度也大,说明在榆树种子萌发过程中起主导作用的淀粉酶是β-淀粉酶。
     4.对于供试的3个树种,随着老化时间的延长,发芽势、发芽率和活力指数都呈下降趋势,且这三个发芽指标其不同老化天数之间均存在极显著差异。其中发芽势和活力指数的下降幅度比发芽率大。由此说明随着老化加深,种子活力先于生活力衰退,表现为发芽速率减慢,出苗不整齐,幼苗的健壮程度下降,生活力降低。由此可见,人工老化种子活力先于生活力衰退,老化时间越长,种子的生理劣变越深。
     5.供试的3个树种种子的SOD、POD、CAT和脱氢酶活性本身存在较大差异,并随着种子老化的加剧而明显递减,因此SOD、POD、CAT和脱氢酶活性活性下降是导致榆属树种种子活力降低的一个重要原因。
     6.种子浸出液相对电导率和MDA含量均随种子老化程度的加深而升高,说明老化对细胞膜系统影响较大,电导率和MDA含量的大小能在一定程度上反映膜脂过氧化作用的强弱和细胞膜系统的完整性程度。
     7.将包括脱氢酶活性、相对电导率在内的6个指标进行主成分分析。结果表明,这些指标可分为两类,第一类包括SOD活性、POD活性、CAT活性和脱氢酶活性,它们是种子活力变化的主要原因,也是衡量种子活力的可靠指标,第二类是相对电导率和MDA含量。
In order to discuss physiological activity during seed germination progress, seed aging and deterioration mechanism, search for some physiological and biochemical changes and reasons of decline in seed vigor, the author carried out three common elm species including Ulmus pumila Linn, Ulmus pumila L. var. sabulosa, Ulmus propinqu Koidz in yulin area in this paper, conducted a serious laboratory tests to study effects of water and salts tress on seed germination and a series of physiological and biochemical changes of seeds germination under natural conditions and under conditions of artificial accelerated aging, in order to explore the significant indicators of seed vigor. The results are as follows.
     1. Different concentrations of salt stress and water stress on several elm species seed germination is inhibited with a performance in the reduction of seed germination rate, delayed the initial seed germination time, extend the time of seed germination. Seed germination rate was significantly higher under iso-osmotic NaCl and iso-osmotic PEG had a greater inhibitory effect than iso-osmotic NaCl, suggesting that osmotic stress was the main factor affecting elm seed germination.
     2. The comparison result of seed vigor’s physiological index of three elm species under natural conditions was: U. pumila L.var. sabulosa >U.propinqua Koidz.> U. pumila L. The starch was broken down during germination process, the changes trend of soluble sugar content first up and then down, reducing sugar content had been on the increase. This showed that consumption of seed germination in the latter part in the process was the main soluble sugar of non-reducing sugar.
     3. There is mainly or totallyβ-amylase in the dry seeds, but three elm species hasα-amylase in the dry seeds. The comparison result ofα-amylase activity was: U. pumila L. var. sabulosa > U.propinqua Koidz. > U. pumila L.β-amylase in the process of germination had been consumed,β-amylase activity is higher thanα-amylase activity at most of the time in the germination process, It showed thatβ-amylase played a leading role in the amylase on elm seed germination.
     4. With Prolonging of the aging, germination energy, germination percentage and vigor index of the seeds tested had a dropping tendency and there were obvious difference in the three indexes during different aging days, which indicate the vigor of the manual aged seed declines quickly than its life-force. The longer the aging lasts the more seriously the seed deterioration.
     5. SOD activity, POD activity, CAT activity and dehydrogenase activity of the seed tested had obvious difference themselves, and the four indexes significantly reduced with the aggravated aging. So the descent of these four indexes another important reason causing the vigor descent of elm species seed.
     6. Relative conductivity and MDA content of the seed’infiltrating solution both rose with the more serious degree of the seed aging, which showed the aging has a high effect on the cell membranous system. And conductivity and MDA content change will illustrate, to a certain extent, the strength of the membrane lipid peroxidation and the integration degree of the cell membranous system.
     7. Results of the principal component analysis of the six indexes, including dehydrogenase activity and the relative conductivity, showed that these indexes maybe classified into two categories. The first category includes SOD, POD, CAT activity and dehydrogenase activity which are not only the main factors of the vigor change but also the reliable indexes to examine the seed vigor. Another category has relative conductivity and MDA content. .
引文
[1]李德全,高辉远,孟庆伟.植物生理学[M].北京:中国农业科学技术出版社,1999.
    [2] Bewley J D, Black M. Physiology and Biochemistry of seeds [M]. Berlin: Springer-Verkag, 1982
    [3] Bewley J D.Seed germination and dormancy [J]. Plant Cell, 1997, 9: 1-5.
    [4] Crowe J H, Crowe L M. Membrane integrity in anhydrobiotic organisms: Toward a mechanism for stabilizing dry seeds[J]. In Water and Life[A]. Berlin: G.N.Somero, C.B.Osmond, C.L.Bolis, et al, 1992: 87-103.
    [5]傅爱根,王爱国,罗广华.大豆萌发过程的活性氧代谢[J].热带亚热带植物学报,1997,5(4):32-38.
    [6]赵玉锦,王台.水稻种子萌发过程中α-淀粉酶与萌发速率关系的分析[J].植物学通报,2001,18(2):226-230.
    [7] Morohashi Y, Bewley J D. Development of mitochondrial activities in pea cotyledons during and following germination of the axis[J]. Plant Physiol, 1980, 66: 70-73.
    [8] Morohashi Y. Patterns of mitochondrial development in reserve tissue of germinated seeds: A survey[J]. Physiol Plant, 1986, 6: 653-658.
    [9] Ehrenshaft M, Brambl R. Respiration and mitochondrial biogenesis in germinating embryos of maize[J].Plant Physiol, 1990, 93: 295-304.
    [10]王忠.植物生理学[M].北京:中国农业出版社,2000.
    [11]赵玉锦,王台.水稻种子萌发过程中α-淀粉酶与萌发速率关系的分析[J].植物学通报,2001,18(2): 226-230.
    [12]陆定志,施天生,陈龙飞.杂交水稻及其亲本三系种子萌发过程中淀粉酶活性与胚乳物质消长的关系[J].杂交水稻,1987(3): 21-25.
    [13]陆定志,杨煌峰,施天生,等.杂交水稻干种子内存在α-淀粉酶[J].植物生理学报,1987,13: 418-421.
    [14]柴家荣.不同烟草类型种子萌发期淀粉酶及糖类物质动态研究[J].种子,2006,25(10):9-12.
    [15]陈禅友,刘磊.长豇豆种子萌发进程中生理生化指标动态变化[J].种子,2006,(9):30-33.
    [16]颜启传.种子学原理[M].北京:中国农业出版社,2002.
    [17]张知彬,王福生.鼠类对山杏种子存活和萌发的影响[J].生态学报,2001,21(11):1762一1768.
    [18]傅家瑞.种子生理[M].北京:中国农业出版社,1992,18-21,68-70.
    [19]中山包(马云彬译).发芽生理学[M].北京:农业出版社,1988: 3-13.
    [20]曾彦军,王彦荣,萨仁,等.几种旱生灌木种子萌发对干旱胁迫的响应[J].应用生态学报,2002,13(8): 953-956.
    [21]任继周,李向林,侯扶江.草地农业生态学研究进展与趋势[J].应用生态学报,2002,13(8):1017-1021.
    [22]段德玉,刘小京,冯凤莲,等.盐分和水分胁迫对盐生植物灰绿黎种子萌发的影响[J].植物资源与环境学报,2004,13(l): 7-11.
    [23]曾彦军,王彦荣,庄光辉,等.红砂和霸王种子萌发对干旱与播深条件的响应[J].生态学报,2004,24(8): 1629-1634.
    [24]鱼小军,王彦荣,曾彦军,等.温度和水分对无芒隐子草和条叶车前种子萌发的影响[J].生态学报,2004,24(5): 883-887.
    [25]李利,张希明,何兴元.胡杨种子萌发和胚根生长对环境因子变化的响应[J].干旱区研究,2005,22(4): 520-525.
    [26]曾幼玲,蔡忠贞,马纪,等.盐分和水分胁迫对两种盐生植物盐爪爪和盐穗木种子萌发的影响[J].生态学杂志,2006,25(9): 1014-1018.
    [27]张树清,张夫道,刘秀梅,等. NaCl对大白菜种子萌发和幼苗生长的影响[J].植物营养与肥料学报,2006,12(l): 138-141.
    [28]阎志红,刘文革,赵胜杰,等. NaCl胁迫对不同西瓜种质资源发芽的影响[J].植物遗传资源学报,2006,7(2): 220-225.
    [29]王广印,韩世栋,赵一鹏,等. NaCl胁迫及Ca2+和GA对南瓜属3种蔬菜种子发芽的影响[J].植物资源与环境学报,2005,14(l): 26-30.
    [30]段德玉,刘小京,冯凤莲,等.不同盐分胁迫对盐地碱蓬种子萌发的效应[J].中国农学通报,2003,19(6): 168-172.
    [31]黄振英,Guttermany,胡正海,等.白沙篙种子萌发特性的研究环境因素的影响[J].植物生态学报,2001,25(2): 240-246.
    [32] Gul B, Weber D J. Effect of salinity, light and temperature on germination in Alenrolfea occidentalis[J]. Can. J. Bot, 1999, 77: 240-246.
    [33] Gulzar S, Khan M A. Seed germination of a Halopytic grass, Aeluropus lagoppoides[J]. Annals of Botany, 2001, 87: 319-324.
    [34] Masuda M, Maki M, Yahara T. Effects of salinity and temperature on seed germination in a Japanese endangered Halophyte Triglochin maritimum (Jun caginaceae)[J]. J.Plant Res, 1999, 112: 457-461.
    [35]张建锋,李吉跃,邢尚军,等.盐分胁迫下盐肤木种子发芽试验[J].东北林业大学学报,2003,31(3): 79-80.
    [36]颜启传主编.种子学[M].北京:中国农业出版社,2001.
    [37] L.0.考布莱德.种子科学原理与技术[M] .黑龙江:黑龙江科学技术出版社,1987.
    [38]傅家瑞.种子生理[M].科学出版社,1985.
    [39] Perry D.A. Handbook of vigor testing methods [M]. Zurich: ISTA, 1981.
    [40] McDonald. Seed vigor testing handbook[M]. New York: AOSA, 1983.
    [41]郑光华.种子生理的研究[J].植物生理学通讯,1979,(2): 7-13.
    [42]傅家瑞.关于种子活力的问题[J].植物生理学通讯,1980,(4): 21-23.
    [43]郑光华,徐本美,顾增辉.受冷害豆类种子的活力测定问题[J].植物生理学通,1980,(6): 46-48.
    [44]郑光华.积极开展种子活力研究的建议[J].种子,1981,(1): 1-2.
    [45]陶嘉龄,郑光华.种子活力[M].北京:科学出版社,1991:1-32,233-250.
    [46]郑光华.种子活力的原理及其应用[J].植物生理生化进展,1986,(4): 77-78.
    [47]邢广萍.关于刺槐种子活力测定方法的研究[J].科技简报,1997,4: 32-34.
    [48]孙群,王建华,孙宝启.种子活力的生理和遗传机理研究进展[J].中国农业科学,2007,40(l): 48-53.
    [49]黄峥,俞亭,章志宏,等.水稻种子活力QTLs定位及上位性分析[J].遗传学报,2004, 31(6): 596-603.
    [50]余四斌,陈晚贞,徐才国.水稻种子活力的基因型差异[J].种子,1999(2): 24-26.
    [51]程春明,王瑞珍,吴问胜.大豆种子活力基因型差异的研究[J].江西农业学报,2003, 15(1):8-1.
    [52] Chloupeko. Evaluation of the size of a plant root system using it select rical capacitance [J]. Plant And Soi1,1977,(48): 525-532.
    [53] Tckrony D M, Hunter J L. Effect of seed maturation and genotype on seed vigor in maize [J]. Crop Science,1995, 3(53): 857-862.
    [54] Tckrony D M, Hunter J L.玉米种子的成熟度和基因型对种子活力的影响[J].国外农学杂粮作物,1996,3: 40-43.
    [55]孙彩霞,沈秀瑛.不同基因型玉米种子萌发特性与芽、苗期抗旱性的关系[J].种子,2001,5: 32-35.
    [56]徐本美.种子活力研究的调查报告[J].种子,1987,(2): 58-63.
    [57]杜宏鹏,陈凤毛.不同家系枫香种子活力的研究[J].林业科技开发,2005, 4:31.
    [58]张运吉,赵兰勇等.七叶树种子级别与种子活力及苗木品质的相关性研究[J].山东林业科技,2005,02: 4.
    [59]方升佐,朱梅.不同种源青檀种子的营养成分及种子活力的差异[J].植物资源与环境,1998,7(2): 16-21
    [60]罗成荣.柏木种子活力探讨[J].四川林业科技,1992,5(2): 177-181.
    [61]刘文明.失水对青皮种子劣变的影响[J].林业科学研究,1993,6(2): 162-166.
    [62]宋学之.红锥种实主要储藏条件的研究[J].林业科学研究,1992,5(2):134-145.
    [63]刘文明.海南红豆种子生理特性及萌发影响因素的研究[J].林业科学研究,1990,3(4):32-35.
    [64] Hall R D, Wiesner L E. Relationship between seed vigor tests and field performance‘Regar’meadow bromgrass [J]. Crop science, 1990, (5): 967-970.
    [65] Wang T L, Bogracheva T Y, Hedley C L. Manipulating Starch quality in seeds: a genetic approach in MiehaelBlaek, Kent J, Bradford, Jorge Vazquez-Ramoseds[M]. Seed biology: advances and applications. Wallingford: CABI Publishing, 2000: 439-448.
    [66] Smith M T, Berjak P. Deteriorative changes associated with the loss of viability of stored desiccation-tolerant and desiccation-sensitive seed[A]. Seed Development and Germination [C]. New York: Marcel Dakker Inc, 1995, 701.
    [67]陈禅友.豉豆种子活力研究进展[J].种子,1992(5): 45-48.
    [68]曹帮华.幼苗分级法测定臭椿种子活力初探[J].山东林业科技,1997,02.
    [69]颜启传主编.种子检验原理和技术[M].杭州:浙江大学出版社,2001.
    [70]张春庆,王建华.种子检验学[M].北京:高等教育出版社,2006.
    [71]陈光仪,傅家瑞.花生种子的活力与电导率的关系[J].种子,1983(3): 16-20.
    [72]宋军,杜小霞.山杏沙棘种子活力测定的电导法[J].种子,1994(1):21-24.
    [73] Te May Ching.种子生理学讲义.中国林业科学研究院林业研究所,1980. 10
    [74] Te May Ching. Biochemical aspects of Seed Vigor[J]. Seed Science and Technology, 1973(1): 73-76.
    [75]智慧,陈洪斌.电导法测定谷子种子活力的研究[J].种子,1993 (6): 41-44.
    [76]徐本美,顾增辉.测定种子活力方法的探讨[J].种,1994 (3) : 18-23.
    [77]张文明,倪安丽,王昌初,等.杂交水稻及其三系种子活力的研究[J].安徽农业大学学报,1997(1):41-44.
    [78]张文明,倪安丽,王昌初,等.杂交水稻种子活力的研究[J].种子,1998 (2) : 6-10.
    [79]郑光华. Na+/K+比率作为检测种子活力的敏感指标及其理论价值[J].自然杂志,1991(9 ) :718.
    [80] Albert B. Molecular Biology of the cell[M]. Garland Publishing, 1983.
    [81] Abdul_BakiAA. Biochemical aspects of seed vigor[J]. Hort Science, 1980, 15: 765-771.
    [82] McDonald M B. Seed quality assessment[J]. Seed Science Research, 1998, (8):265-275.
    [83]张春山,雷平.玉米种子活力测定及其评价[J].种子,1994(2): 27-28.
    [84]丁淑兰,孙秀敏.落叶松种子活力测定和间育苗结比试验[J].种子,1993: 18-21.
    [85]孙丽华,朱翔.杉木种子活力研究[J].四川林业科技,2002,23 (1) : 60-64.
    [86]王景升.种子活力及其检测方法[J].种子1987,2: 51-55.
    [87]王显国,韩建国,陈志红,等.新麦草种子成熟过程中活力变化的研究[J].草地学报,2000,8: 306-311.
    [88]毛培胜,韩建国,浦心春,等.高羊茅种子成熟过程中的活力变化[J].中国草地,1997,2: 36-41.
    [89] Adam N M, McDonnald M B, Hender long P R. The influence of seed position, planting and harvesting dates on soybean seed quality[J]. Seed Science and Technology, 1989, 17:143-152.
    [90]张建成,王辉.不同成熟度花生种子发芽率及活力差异性研究[J].种子,2005,24(1):3-4.
    [91]中山包著.马云彬译.发芽生理学.北京:农业出版社,1988: 142-151
    [92] Anderson J D. Science[M]. 1972.
    [93] Abdalla F H, E H.Roberts.Ann.Bot[M]. 1969.
    [94] Crocker W, G.T.Harrington. J.Agr.Res[J]. 1918,15:137-174.
    [95] Macleod A .M .Trans Bot[J].Soc Edin, 1952, 36:1 8-23.
    [96] Marotta. D, R.Kaminka. Ann.Chem Appl 1924...14:207
    [97] Davis. W . C.1926.Boyce Thompson Inst. Res. Prof .Paper.1:6-12
    [98] Macleod, A.M.,1952.Trans Bot. Soc. Edin 36:18-23
    [99]赵海珍,王桂凤.马尾松种子活力测定方法研究.种子,1985, 6: 22-25
    [100]郑光华.吡啶核酸对杨树种子脱氢酶活性消失的恢复作用.植物学报,1964, 12(4): 325-332.
    [101]汤学军,傅家瑞,黄上志.决定种子寿命的生理机制研究进展[J].种子,1996.
    [102]余四斌,陈晚贞,徐才国.水稻种子活力的基因型差异[J].种子,1999,2: 24-26.
    [103]马守才,张改生,王军卫,等.小麦种子活力性状的遗传变异和相关研究[J].西北植物学报,2004,24: 1674-1679.
    [104] Soltani A, Zeinali E, Galeshi S. Genetic variation for and interrelation ships among seed vigor traits in wheat from the Caspian Sea coast of Iran[J] . Seed Science and Technology, 2001, 29: 653-662.
    [105] Tekrony D M, Hunter J L. Effect of seed maturation and genotype on seed vigor in maize[J] .Crop science, 1995, 3(53): 857-862.
    [106]孙彩霞,沈秀瑛,谷铁实.不同基因型玉米种子萌发特性与芽、苗期抗早性的关系[J].种子,2001,5: 32-35.
    [107] Dickson M H. Genetic aspects of seed quality[J]. Horti culture science, 1980, 15:771-774.
    [108] Cui K H, Peng S B, et al. Molecular dissecting of seedling-vigor and associated physiological traits in rice[J]. Theoretical and applied genetics, 2002,105:745-753.
    [109] Miura K, Lin S Y, Yano M, et al. Mapping quantitative trait loci controlling seed longevity in rice [J]. Theoretical and Applied Genetics, 2002, 104: 981-986.
    [110] Zhang Z H, Yu S B, Yu T. Mapping quantitative trait loci(QTLs)for seedling-vigor using recombinant inbred lines of rice(OryzasativaL.)[J]. Field Crops Research, 2005, 91:161-170.
    [111] Emile J M, Hetty B V, Gerda J R et al. Genetic differences in Seed longevity of various Arabidopsis mutants[J]. Physiologia Plantarum, 2004, 121: 448-461.
    [112] Bettey M, Fineh-Savage W E, KingGJ, et al. Quantitative genetic analysis of seed vigor and preemergence seedling growth traits in Brassica oleracea[J]. New Phycologist, 2000,148:227-286.
    [113] Loomis L S, Smith E O. The effect of artificial aging on the concentration of Ca, Mg, and Cl in imbibing cabbage seed[J]. J.Amer.Soc.Hort.Sci, 1980, 105(5): 647-650.
    [114] Bewley J D, Black M. Physiology and Biochemistry of seeds[J].Springer-Verkag, Berlin, 1982,2.
    [115] Halmer P, Bewley J D. A physiological perspective on seed vigor testing [J]. Seed Sci Technol.1984, 12:501-575.
    [116] Altschul A M. Biological processes of cotton seed[J]. Cotton seed andcotton seed products, 1982: 34-36.
    [117] Crocket W. Growth of Plant[J]. Reinh Publ Corp, 1948.
    [118]谷建,孔祥辉,陈杭.番茄种子人工老化前后吸湿一回干处理的生理生化变化[J].植物生理学报,1993,19(2): 131-136.
    [119]庄伟建,庄彪,张书标,等.花生种子药剂处理贮藏技术的生理基础研究药剂处理对种子活力和自由基含量的影响[J].花生学报,2002,31(2): 1-6.
    [120]陈熙.植物免疫学[M].上海科学技术出版社,1989.
    [121]王雅平.小麦对赤霉病抗性不同品种的SOD活性[J].植物生理学报,1993,19(4):353.
    [122]唐祖君,宋明.大白菜种子人工老化及劣变的生理生化分析[J].园艺学报,1999,26(5):319-322.
    [123] Burlyn E M, Kaufmann R. The osmotic potential of ployethylene glycol 6000 [J]. Plant Physiology , 1973, 51: 914-916.
    [124] Robinson S. Electrolyte solutions, 450-500, Butterworths scientific publication of drought and it s effects on germination of five pasture species [J] . Agronomy Journal, 1995, 85:982-987.
    [125]潘瑞炽主编.植物生理学(第五版)[M].北京:高等教育出版社,2004.
    [126]傅家瑞.种子的活力及其生理生化基础[J].种子,1984,3(3):1-6.
    [127]郑光华,史忠礼.实用种子生理学[M].北京:农业出版社,1990,113,123,240.
    [128]毕颖,刘燕,张平等.蒽酮比色法测定大豆乳清废水中总糖含量[J].大豆通报,2006,3(82): 24-25.
    [129]黄广民,刘秋实.香蕉根部球干粉中还原糖含量的测定[J].食品科学,2008,8(29):484-488.
    [130]谢逸萍,李洪民,王欣.贮藏期甘薯块根淀粉酶活性变化趋势[J].江苏农业学报,2008,24(4): 406-409.
    [131]曾幼玲,蔡忠贞等.盐分和水分胁迫对两种盐生植物盐爪爪和盐穗木种子萌发的影响[J].生态学杂志,2006 ,25 ( 9) : 1014-1018.
    [132] Varki, Ajit, Glycobiology[Q]. Beijing: Tsinghua Publishing House, 2002.
    [133]王亚馥,王仑山,杨汉民等.烟草组织培养形态发生过程中糖类代谢的研究,西北植物学报,1988,01: 24-27.
    [134]韩建国.实用牧草种子学[M].北京:中国农业大学出版社,1997.93-112.
    [135] Ungar I A. Halophyte seed germination [J]. Botanical Review , 1978 , 44 : 233-264.
    [136]孙国荣,阎秀峰.盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化[J].植物研究,1999 (4) : 445– 451.
    [137]张万钧,王斗天,范海,等.盐生植物种子萌发的特点及其生理基础[J].应用与环境生物学报,2001,7 (2) : 117-121.
    [138]段德玉,刘小京,李存祯.不同盐分与水分胁迫对灰绿黎种子萌发效应研究[J].中国生态农业学报,2005,13 (2) : 79-81.
    [139]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.
    [140]李淑娴,陈幼生等.湿地松种子活力测定方法的研究[J].南京林业大学学报,1999,20(3): 23-24.
    [141]吴道潘,宋明.提高甘蓝种子活力的方法与机理研究[J].园艺学报,2002,29(6):542-546.
    [142]王彦荣,余玲,刘友良.数种牧草种子劣变的生活力与膜透性的关系[J].草业学报,2002 ,11 (3) :85-91.
    [143]赵垦,李立华,人工老化过程红松种胚细胞物质外渗和超微结构变化[J].东北林业大学学报,2000,28(3): 5-7.
    [144]毛培胜.人工老化处理对羊草种子膜透性的影响[J].草业学报,2008,17(6): 34-38.
    [145]王明霞,易津,乌仁其木格.人工劣变处理对华北驼绒藜种子活力的影响[J] .中国草地,2003,25 (4) :31-35.
    [146] Cookson W R, Rowarth J S, Sedcole J R. Seed vigor in perennial ryegrass (L ol i um perenne L.): Effect and cause[J ] . Seed Science and Technology, 2001, 29: 255-270.
    [147]崔鸿文,王飞.黄瓜种子人工老化过程中某些生理生化规律研究[J].西北农业大学学报,1992,1: 51-54.
    [148]唐祖君,宋明.大白菜种子人工老化及劣变的生理生化分析[J].园艺学报,1999,5: 319-322.
    [149]赵海珍,王桂凤.马尾松种子活力测定方法研究[J].种子,1999,6:22-25.
    [150]杨剑平,唐玉林.小麦种子衰老的生理生化分析[J].种子,1995,2:13-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700