西北地区金属尾矿地根瘤菌的重金属抗性及其系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从陕西、甘肃金属尾矿废弃地采集鸡眼草、刺槐、胡枝子、截叶铁扫帚、草木樨、截叶铁扫帚、狼牙刺等19种豆科植物的根瘤,分离纯化得到188株根瘤菌。采用平板筛选的方法分析供试菌株对Cu~(2+)、Zn~(2+)、Pb~(2+)、Cd~(2+)、Cr6+、Hg~(2+)、Ni~(2+) 7种重金属的耐受能力、确定其最大抗性水平(MRL),并对其中9株对各种重金属均具有较好抗性的菌株进行系统发育地位研究。本实验首次对金属尾矿废弃地根瘤菌的重金属抗性及其系统发育地位进行了研究。
     筛选与最大抗性水平分析结果表明:液体培养基比固体培养基中有较高的耐受性;不同菌株对重金属的耐受性存在较大差异,其中3株可同时耐受6种重金属,大部分菌株表现出对(<0.5 mmol/L)Hg~(2+)、Cd~(2+)、Cr6+敏感,而对(<2.5 mmol/L)Pb~(2+)不敏感。CCNWSX0403和CCNWSX0360均可耐受4.0 mmol/L Zn~(2+),分别可耐受2.4 mmol/L和2.8 mmol/L Cu~(2+),CCNWGS0139可耐受0.4 mmol/L Hg~(2+),CCNWSX0003可耐受2.4 mmol/L Ni~(2+),CCNWGS0284和CCNWGS0142可耐受4.8 mmol/L Pb~(2+)。CCNWSX0403的生理生化特性研究表明:供试菌株产碱,在4℃低温条件下不能生长,能在60℃高温瞬间处理10min和pH 5-12之间良好的生长;能够耐受5%的NaCl,耐受300μg /mL氨卞西林钠、50μg /mL硫酸链霉素、300μg /mL林可霉素、300μg /mL磷雷素钠、50μg /mL硫酸阿米卡星、150μg /mL青霉素钠、50μg /mL氯霉素、0.2% NaNO2、900 mg/L的苯酚。
     对9株抗性菌株的16S rDNA全序列分析表明,CCNWGS0122、CCNWSX0003分别属于中慢生根瘤菌属(Mesorhizobium)和中华根瘤菌属(Sinorhizobium)。另外发现对Pb~(2+)、Hg~(2+)耐受性较好的4株菌CCNWSX0386、CCNWGS0139、CCNWGS0284和CCNWGS0142在分类地位上均属于土壤杆菌属(Agrobacterium);而属于慢生根瘤菌属(Bradyrhizobium)的3株菌CCNWGS0309、CCNWSX0403和CCNWSX0360对Cu~(2+)、Zn~(2+)耐受性较好。总体上来看, Agrobacterium对Hg~(2+)和Pb~(2+)的耐受性较好,Bradyrhizobium比Rhizobium、Sinorhizobium、Mesorhizobium有较强的重金属耐受性。
     实验对重金属处理下抗性菌株与豆科植物的结瘤情况进行了研究。结果表明:低浓度的Cu~(2+)、Zn~(2+)促进根瘤菌与豆科植物结瘤,高浓度抑制结瘤,与对照相比高浓度重金属处理下根瘤菌结瘤的时间延迟,根瘤变小,相同浓度下Cu~(2+)对结瘤的影响大于Zn~(2+),重金属Cu~(2+)、Zn~(2+)对植物的地上部分和根部的影响同样表现为低浓度促进生长高浓度抑制生长,但差异不明显。Cu~(2+)对植物生长的影响大于Zn~(2+)的影响。
To screen heavy metals resistant rhizobial strains and study maximum resistance level (MRL), 188 rhizobial strains were isolated from 19 species of legume plants nodules: R.pseudoacacia, A.abrachystach, L. cuneata, S. viciifolia, L.bicolor Turcz., M. officinalis and so on, which generated in metal mining tailing in Shaanxi and Gansu province. These strains were used to screen resistance strains and analyses MRL to seven heavy metals: Cu~(2+)、Zn~(2+)、Pb~(2+)、Cd~(2+)、Cr6+、Hg~(2+)、Ni~(2+). We also studied the phylogeny of 9 resistance strains.This study reaserch the rhizobium resistance in the metal tailing and phylogeny of resistant strains for the first time.
     The result showed that there were great differences in the resistance of rhizobial strains to heavy metals. The resistant strains have higher tolerance in liquid media (TY) than in soild (YMA). Strain CCNWSX0386, CCNWGS0138 and CCNWGS0310 was almost tolerant to six heavy metals tested. In general, all of the strains were senstive to low concentration (<0.4 mmol/L) Hg~(2+), Cd~(2+) and Cr6+. But most of strains were less sensitive to Pb~(2+) (<2.5 mmol/L). Strain CCNWSX0403 and CCNWSX0360 both tolerated Zn~(2+) 4.0 mmol/L and tolerated Cu~(2+) concentration up to 2.4mmol/L and 2.8mmol/L, respectively. Strain CCNWGS0139 could tolerate 0.4 mmol/L Hg~(2+),CCNWSX0003 could tolerate 2.4 mmol/L Ni~(2+) and CCNWGS0284, CCNWGS0142 could tolerate 4.8 mmol/L Pb~(2+).
     One heavy metals resistant excellent strain CCNWSX0403 were characterized with physiological and biochemical characteristics. The result indicated that CCNWSX0403 can produce alkali. It has well growth on the plate with initial pH 5-12 and grow well after treated with 60℃for 10 min, but can not grow at 4℃incubate condition. The strain can tolerated 5% NaCl, 300μg/mL Ampicillin Sodium, 50μg/mL Streptomycin Sulfate, 300μg/mL Lincomycin, 300μg/mL Fosfomycin Sodium, 50μg/mL Amikacin Sulfate, 150μg/mL Benzylpenicillin Sodium, 50μg /mL Chloramphenicol, 0.2% NaNO2 and 900mg/L phenol.
     16S rDNA sequences of nine resistant strains screened were analyzed. Strain CCNWGS0122 and CCNWSX0003 were identified as Mesorhizobium and Sinorhizobium, respectively. Four of strains, specifically CCNWSX0386, CCNWGS0139, CCNWGS0284 and CCNWGS0142, which had better resistance to Pb~(2+) and Hg~(2+) belonged to the genus of Agrobacterium. But three of strains, specifically CCNWGS0309, CCNWSX0403 and CCNWSX0360, which belonged to the genus of Bradyrhizobium had better resistance to Cu~(2+) and Zn~(2+). In general, Agrobacterium were highly resistant to Hg~(2+) and Pb~(2+), Bradyrhizobium had higher resistance to heavy metals than Rhizobium, Sinorhizobium and Mesorhizobium.
     Experiment were performed to analyse the nodulation in the different Cu~(2+), Zn~(2+) concentration .The result indicate that low concentration of Cu~(2+), Zn~(2+) both can facilitate the nodulation and the high concerntration inhibit the nodulation. In contrast with control, the root nodule change smaller and the time of nodulation are delayed in the high concerntration heavy metal.The toxicity of Cu~(2+) are stronger than Zn~(2+) in the same concentration. The toxicity to the growth of plant has the same effect, but the effect is not significant. The phytoxicity effect of Cu~(2+) is stronger than Zn~(2+) to pant, which similar to the nodulation.
引文
[1] Bradshaw, A D.et al. Understanding the fundamentals of succession [M]. In: Miles J, Walton DH. eds. Primary Succession on Land. Blackwell, Oxford.1993, 1-4.
    [2] Li, R W., Daniels W L. Nitrogen accumulation and form over time in young mine soils [J]. Journal of Environmental Quality, 1994, 23(1):166-172.
    [3] UNEP. Industry and environment. mining facts and figures, 1997, 20: 1-91
    [4]林雅兰,黄秀梨.现代微生物学与实验技术[M].北京:科学出版社, 2000.
    [5] Simarov B V, Aronshtam A A. Biotechnology of symbiotic nitrogen fixation [J]. Agric Biol, 1987, 11:104-110.
    [6] Pan M. Land reclamation in China: Review, trend and strategy in mine land reclamation and ecological Restoration for the 21st centuryp roceedings of Beijing international symposiumon land Rreclamation[R]. Beijing, 2000. 1-6
    [7] Yan Y, Lu J , Chen D, et al. Studyon the modelsof land reclamation and ecological reconstructionof the coal mining subsidence areas in Tangshan. In: MineLand Reclamation and Ecological Restorationfor the 21st Century, Proceedings of Beijing International Symposiumon Land Reclamation[R]. Beijing, 2000. 156-165
    [8] Peng D. Review and prospects of land reclamation and ecological restorationin China. In: MineLand Reclamation and Ecological Restoration for the 21st Century, Proceedings of Beijing International Symposium on Land Reclamation[R]. Beijing, 2000.
    [9]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报, 2003, 40 (2):161-167.
    [10]黄铭洪.环境污染与生态修复[M].北京:科学出版社, 2003.
    [11]吴攀,刘丛强,杨元根,等.矿山环境中重金属的释放迁移地球化学及环境效应[J].矿物学报,2001, 21:213-218.
    [12]程峰,王杰光,靳丽辉,等.植物修复在治理矿区重金属污染土壤中的应用[J].土壤学报, 2003, 40(2).161-170
    [13]束文圣,叶志鸿,张志权等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报, 2003, 23(8): 1629-1639.
    [14]宋书巧,周永章.矿区废弃地及其生态恢复与重建[J].矿产保护与利用, 2001(5): 43-49
    [15]黄铮,徐力刚,徐南军,等.土壤作物系统中重金属污染的植物修复技术研究现状与前景[J].农业环境科学学报. 2007,26(增刊): 58- 62
    [16] Meagher R B. Phytoremediation of toxic elemental and organic pollutants [J]. Current opinion on Plant Biology, 2000, 3(2): 153-162.
    [17] Rugh C L, Senecoff J F, Meagher R B. Development of transgenic yellow poplar for mercury phytoremediation [J]. Nature Biotechnolog, 1998, 16: 925–928
    [18] Banuelos G S, Ajwa H A, Mackey B, etal. Evaluation of different plant species used for phytoremediaitionof high soil selenium[J]. Journal of Environmental Quality, 1997, 26(3) :639-646.
    [19] Smith R A H, Bradshaw A D. The use of metal tolerant plant populationsfor the reclamation of metal liferous wastes[J]. Journal of Applied Ecology, 1979, 16:595-612.
    [20] Ledin M, Pedersen K. The environmental impact of mine wastes-roles of microorganism and their significance in treatment of mine wastes[J]. Earth Sci Revi, 1996, 41: 67-108.
    [21] Leng C C, Phyllis B T, Environment samples. Franklin Rl. use of the micro-toxicity assay system for environment samples[J]. Bull Contain Toxicola, 1981, 26:150-156.
    [22]李建明.环境污染物在生体内的浓缩、积累和放大[J].生物学教学, 2002, 27 (3):38.
    [23]陈素华,孙铁珩,周启星,等.微生物与重金属间的相互作用及其应用研究[J].应用生态学报, 2002, 13 (2):239-242.
    [24]金洪钧,杨戎.水环境中化学品的生物积累与监测[J].环境监测管理技术, 1990, 2 (4 ): 12-18.
    [25]王宝利,刘丛强.水体内藻类的生物地球化学[J].矿物岩石地球化学通报, 2004, 23 (1): 79-82.
    [26] A.Y.Dursun. A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger [J]. Biochemical Engineering Journa1, 2003, 15:87-92.
    [28]朱雪强,韩宝平.重金属生物吸附研究进展[J].中国环保产业, 2004, 5:19-21.
    [29]邱廷省,唐海峰,等.生物吸附法处理重金属废水的研究现状及发展[J].南方冶金学院学报, 2003, 24 (4): 65-69.
    [30]张慧,李宁,戴友芝.重金属污染的生物修复技术[J].化工进展, 2004, 23 (5):562-566.
    [31]陈志强,温沁雪.重金属废水生物处理技术[J].给水排水, 2004, 31(7):49-52.
    [32]胡厚堂,王海宁.生物吸附法处理水体中的重金属的现状与展望[J].矿山环保, 2003, 49 (6):39-43.
    [34] Perry J, Carol A. Role of a Candida albicans P1-Type ATPase in resistance to copper and silver ion toxicity [J]. Journal of Bacteriology, 2000, 182(17):4899-4905.
    [35]潘学冬,虞云龙. Genetic modification of bacteria for bioremediation [J].微生物学报, 2002, 42(1):121-124
    [36]黄波,金泰等.金属硫蛋白检测方法的适用性和局限性[J].劳动医学, 1999, 16(2): 114-117
    [37]李令媛,马宏宝,吕迎春,等.镉诱导威廉环毛蚓金属硫蛋白的分离纯化及特性研究[J].生物化学杂志, 1994, 10(4): 444 - 450.
    [38]郭祥学,赵晖,施定基.小鼠金属硫蛋白在聚胞藻中的金属诱导表达与纯化[J].生物工程学报, 1998, 14(4): 405-11.
    [39] Owet D W. Phytochelatin mediated cadmium tolerance in schicosacharomyces pombe [J]. In Vit Ro Cell Development Biology, 1993, 2: 213 -219.
    [40] Richard B,Meager. Phytoremediation of toxic elemental and organic pollution [J].Current Opinion In Plant Biotechnoligy, 2000, 34 (3): 153-162.
    [41] Hawden R, Cobbett C S. Cadmium-sensitive mutants of a rabi dopsis thalana [J]. Plant Physiology, 1992, 100: 100 -107.
    [42] Mutphy A, Taiz L. Comparison of metallothionein gene expression and nonprotein thiols in ten a rabi dopsis ecotypes [J]. Plant Physiology, 1995, 109:945 -954.
    [43] Murphy A, Zhou J, Goldsbrogh P B.Purification and immunological identification of metallothione-ins 1 and 2 from a rabi dopsis thalana [J]. Plant Physiology, 1997, 113: 1293-1301.
    [44] Evans K M,Gatehouse J A,Inday W P. Expression of the pea metallothinein - like gene PsMTA in Escherichia coli and Ara-bidpsis thaliana and analysis of trace metal in accumulation:implication for PsMTA function[J ]. Plant Molecular Biology, 1992, 20: 1019-1028.
    [45] Hasegawa I, Treada H, Sunairi M,et al. Genetic improvement of heavy metal tolerance in plants bytransfer of the yeast metal -lothioneion gene (CUPI) [J] . Plant and Soil, 1997, 196: 277-281.
    [46] Hattori J, Labbe H, Miki B L, et al. Construction and expression of a metallothioneion beta glucuronidase gene fusion [J]. Genome. 1994, 37: 505-512.
    [47] Pan A, Tie F, Duau Z. Alpha- domain of human metallothioneion IA can bind to metals in transgenic tobacco plants [J]. Molecular and General Genetics, 1994, 242: 666-674.
    [48] Pan A,Yang M,Tie F . Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants [J].Plant Molecular Biology, 1994, 24: 341-351.
    [49] Rensing C,Kues V .Expression of bacterial mercuric ion reductase in Saccharomyces cerevisiae[J] Journal of Bacteriology. 1992. 174: 1288-1292.
    [50] Summer A O,Sugarman L T .Cell - free mercury( II) reducing activity in a plasmid-bearing strain of Escherichia coli[J]. Journal of Bacteriology, 1974, 119: 242-249.
    [51] Rugh C L, Wild H D, Stack N M .Mercuric ion reduction and resistance in transgenic a robi dopsis thaliana [J]. Proceeding of Thenational Academy of Sciences USA, 1996 (93): 3182 - 3187.
    [52] Rugh C L, Senecoff J F, Meagher R B. Development of transgenic yellow poplar for mercury phytoremediation [J]. Nature Biotechnolog, 1998, 16: 925–928
    [53] Varvara P G. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn[J]. Journal of Biotechnology, 2000, 81: 45-53.
    [54] Chen S, Wilson D B. Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg2+-contaminated environments [J]. Aplly Environ Microbiol, 1997, 63: 2442-2445.
    [55] Krishnaswamy R,Wilson D B. Construction and characterization of Escherichia coli genetically engineered for Ni (Ⅱ) bioaccumulation [J]. Aplly Environ Microbiol, 2000, 66: 5383-5386.
    [56] Sanuelson P, Wernrus H,Svedberg M,et al. Staphylococal surface display of metal-binding polyhistidly peptides [J]. Aplly Environ Microbiol, 2000, 66: 1243-1248
    [57]简曙光,杨中艺.瘤对长喙菁在铅锌尾矿环境适应中的意义Ⅱ——瘤对长喙菁固氮和积累重金属的影响[J].植物生态学报. 2002, 26(2): 209-215.
    [58]黄名洪.环境污染与生态恢复[M].北京:科学技术出版社. 2003:168-169.
    [59]张志权,束文圣,廖文波,等.豆科植物与矿业废弃地植被恢复[J].生态学杂志, 2002, 2002(2):47-52.
    [60]聂湘平,蓝崇钰,张志权,等.锌对大叶相思—根瘤菌共生固氮体系研究影响[J].应用生态学报, 2002, 26(3):264-268.
    [61] Delorme T A, Gagliardi J V, et al. Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a zinc and cadmium contaminated soil [J]. Soil Biology&Biochemistry, 2003, 67:1746-1754.
    [62] Figueura E, Lima A, Pereira S. Cadmium tolerance plasticity in Rhizobum leguminosarum bv. Viciae: glutathione as a detoxifying agent [J].Canadian Journal of Microbiology, 2005, 51:7-14.
    [63] Carrasco JA, Armario P, Pajuelo E, et al. Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine [J]. Soil Biology & Biochemistry, 2005, 37:1131–1140.
    [64] Martinez-Romero E, Stacey G, Mullin B. Lessons from R. tropici and R. etli biology of plant-microbe Interactions: International Society for Molecular Plant[M]. Microbe Interactions, l994:503-508.
    [65] Young J P W, Haukka K. Diversity and phylogeny of rhizobia [J]. New Phytol, l996, 133:87-94.
    [66] De udie P, Willems A, Pot B, et al. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. Nov, S. saheli sp. nov and Sinorhizobium teranga sp. nov [J]. Int J Syt Bacteriol, 1994, 44:715-733.
    [67] Sullivan J T, Patrick H N, Lowther W L, Scott D B, Ronson C W. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment[J]. Proc Natl Acad Sci, 1995, 92: 8985-8989.
    [68] Uullivan J T, Eardly B D, Van Berkum P, Ronson C W. Four named species of nonsymbiotie rhizobia isolated from the rhizosphere of Lotus corniculatus [J]. Appl Environ Microbiol, 1996. 62:28l8-2825.
    [69] Fox G E, Wisotzkey J D, and Jurtshuk P J. How close if close: 16S rRNA sequence identity may not be sufficient to guarantee species identity [J]. Int. J. Syst. Bacterio1, 1992, 42:166-170.
    [70] Terefework Z, Nick Q, Suomalainen S, et al. Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria [J]. Int J Syst Bacterio1, 1998, 48:349-356.
    [71] Mesfin T, Brian H F. Group-specific differentiation of Rhizobium from clover species by PCR amplification of 23S rDNA sequences [J]. Can J Microbiol, l998, 44:1102-1105.
    [72] Mesfin T, Pertersen D J, Brian H F. Comparison of partial 23S rDNA sequences from Rhizobium species [J]. Can J Microbiol, 1997, 43:526~533.
    [73] Kwon S W, Park J Y, Kim J S. Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rDNA gene and internally transcribed spacer region sequences[J].Int J Syst Evol Microbiol, 2005, 55:263-270.
    [74] Pesole G, Gissi C, Lavane C,et al. Glutamine synthetase gene evolution in bacteria[J]. Mol Biol Evol, 1995, 12:l89-l97.
    [75] Bradshaw A D, Chadiwick M J. The restoration of land black well, Oxford. 1980.
    [76] Poonam C, Dudeja S S, Kapoor K K. Effectitivity of host-rhizobium leguminosarum symbiosis receiving sewage water containing heavy metal [J]. Microbiological Research. 2004.159(2): 121-127
    [77] Liu, Y.G., Zhang, H. Z., Zeng, G.M, et al. Heavy metal accumulation in plants on Mn mine tailings [J]. Pedosphere, 2006, 16 (1): 131-136
    [78] Thatoi H. Comparative growth nodulation and total nitrogen content of six tree legume species grown in iron mine waste soil [J]. Journal of Tropical Forest Science, 1995, 81:107-115.
    [79] Smith S R, Giller K E. Effective Rhizobium leguminosarum biovar trifolii presentive soils contaminated with heavy metals from long term applications of sewage sludge or metal mine spoils [J]. Soil Boil Biochem. 1992, 24: 781-788
    [80] Obbard J P, Jones K C. The effect of heavy metals on nitrogen fixation by Rhizobium white clover in a range of long term sewage sludge amended and metal contaminated soils [J]. Enviro. Pollut, 1993,79: 105~112
    [81]Sofia I A P, Ana I G L, Etelvina A P F. Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated portuguese soils [J]. Microbial Ecology, 2006, 56: 176 - 186.
    [82]陈卫民,张执欣,张宏昌,等.甘肃中西部豆科植物根瘤菌多样性调查研究[J].干旱地区农业研究.2006, 24 (1): 183-186.
    [82]Terefewor Z, Kaijainen S, Lindstrom K. AFLP fingerprinting as a tool to study the genetic diversity of
    Rhizobium galegae isolated from Galega orientalis and Galega officinalis [J]. Journal of Biotechnology, 2001, 91 (2-3): 169 - 180.
    [83]Dedyukhina E G, Eroshin V K. Essential metal ions in the control of microbial metabolism [J]. proc. biochem. 1991, 26: 31-37.
    [84]陈雯莉,黄巧云,郭学军,等.根瘤菌对土壤铜、锌和镉形态分配的影响[J].应用生态学报,2003,14: 1278-1282.
    [85]朱毓华,韦革宏,陈卫民,等.陕西太白尾矿区根瘤菌多样性及抗性菌株筛选[J].西北植物学报,2006, 26(7): 1443– 1448.
    [86]聂湘平,蓝崇钰,张志权,等.铜对大叶相思—根瘤菌共生固氮体系的影响[J].应用生态学报,2002,13(2):137 - 140.
    [87] Diels L, Dong Q, Baeyens W, et al. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metal [J]. Ind. Microbiol. 1995, 14: 142-153.
    [88] Guo X J, Huang Q Y, Chen W L, et al. Effect of microorganisms on the mobility of heavy metals in soil environments[J]. China Appl Environ Biol, 2001, 8 (1): 105 -110.
    [89]You C S, Jiang Y M, Song H Y. Biological nitrogen fixation [M]. Beijing: Science Press. 1987.
    [90]Gadd G M, Herbert R A, Codd G A. Fugal response towards heavy metals. In microbes in extreme environments [M]. Academic Press, London, 1986, 36:83-110.
    [91] Chen W X, Wang E T, Wang S Y, et al. Characteristics of Rhizobium Tianshanense sp.nov, a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China [J]. Int. J. Syst. Bacteriol., 1995, 45:153-159.
    [92]Mhamdi R, Mrabet M, Laguerre G, et al. Colonization of Phaseolus vulgaris nodules by Agrobacterium like strains [J]. Can. J.Microbiol. 2005, 51:105 - 111.
    [93] Matsuda A, Moreirafmde S, Siqeira J O, et al . Tolerance of rhizobia genera from different origins to zinc, copper and cadmium [J].Pesquida Agropecuaria Brasileira, 2002, 37 (3): 343-355.
    [94] Kinkle B K, Angle J S, Keyser H H. Long term effects of metal-rich sewage sludge application on soil population of Bradyrhizobium japonnicum [J]. Applied and Enviromental Microbiology. 1987, 53, 315-319.
    [95]Mohamed S H, Smouni A, Neyra M, et al. Phenotypic characteristics of root-nodulating bacteria isolated from Acacia spp. grown in Libya [J]. Plant and soil. 2000, 2241: 71-183.
    [96] Pennanen T, Frostergord A. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests [J]. Apply Environment Microbial, 1996, 62: 420-428.
    [97] Jiri S, Rudolf A, Ingrid H ,et al. Phylogenetic analysis andin situ identification of bacteria in activated sludge[J]. A pply Environment Microbial, 1997, 7:2884-2896.
    [98] Chen W X, Wang E T, Chen W F, et al.The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments[J]. Scientia A gricultura Sinica, 2004 ,37(1) :81-86 .
    [99]Tu A Q, Lai C R. Effects of chromium iron on symbiotio nitrogen fixation of vetch (Vicia villosa)[J]. China Environ, 1986, 6 (1): 19-25.
    [100]Zhao C Y, Sun J D, Nin G W, et al. Effect of heavy metal on enzyme activity of soil microorganisums [J]. Chin.J.Soil Sci, 2001, (32): 93-94.
    [101]Devo G H R. Increased resistance to copper-induced damage of root cell plast malemma in coppertolerant silence cucubalus [J]. Physiol Plant, 1991, 2: 523-528.
    [102]Foy C D. The physiologyof metal toxicity in plant [J]. Annual Review of Plant Physiology, 1978, 29: 511~566.
    [103]Obbard J PK, Jonnes C. The effect of heavy metalson dinitrogen fixation by Rhizobium white clover in a range of long-term sewage sludge amended and metal-contaminated soil [J]. Environmental Pollution, 1993, 79:105-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700