岩盐溶解速率影响因素实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于我国能源安全和西气东输工程,急需建立巨型油气储备库,用来储集石油、天然气、核废料及工业垃圾等。地下能源储存一般放置在低渗透性岩层(如岩盐和花岗岩等)以及多孔隙岩层中。而岩盐具有非常低的渗透特性(渗透率小于10-20m2)与良好的蠕变行为,能够保证储存洞室的密闭性。岩盐的力学性能较为稳定,能够适应储存压力的变化,且岩盐易溶解于水的特性使岩盐洞室的施工开挖更加容易和经济。地下储备库的重要功能有保安、调峰、环保、战略储备、商业运作等。
     岩盐储备库建腔过程中,首先解决的问题是盐的溶解,为此要研究影响岩盐溶解速率的因素,这些因素既有矿石本身决定的不可调控内在因素,又有可以调控的外部因素。本文研究岩盐溶解的基础实验,通过岩盐的室内实验来研究溶解面面积、溶液的温度、溶液的浓度、溶液的流速及层理夹角等因素对溶解速率的影响。实验研究岩盐的溶解规律,得到如下结论:
     ①溶解面的面积对溶解速率的影响不明显,但是溶解面面积越大溶解的质量越大;
     ②溶液温度的升高对溶解速率影响很大,在高温下岩盐溶解很快,并且随着温度的升高,岩盐溶解速率逐渐增大,成指数关系;
     ③随着溶液浓度的增大岩盐溶解速率逐渐减小,在饱和氯化钠溶液中岩盐基本不再溶解,其关系曲线成二次曲线;
     ④在一定的流速范围内,岩盐的溶解速率随流速的增大而增大,其关系成指数关系;
     ⑤研究层状岩盐层理夹角对溶解速率的影响,层理夹角90°的溶解速率比0°的大,但是层理夹角下溶解速率差别不大,说明试件各向异性不明显;
     ⑥通过溶液浓度、温度和溶液流速三因素对岩盐溶解速率影响的灰色关联分析可以发现,温度是最重要的影响因素,溶液流速的影响次之,最后是浓度的影响。三个参数的灰色关联度都大于0.85,对溶解速率影响都比较大。
     以上研究及得出的相关的结论,为进一步研究岩盐的流场和浓度场分布规律提供理论基础,为快速造腔提供基本的理论和实验基础。
Based on China's energy security and the West-East Gas pipeline Project, oil-gas storage cavern is established in urgent need. It is used to store oil, natural gas, nuclear waste and industrial refuse etc. Underground energy storage is usually placed in low-permeability rocks (eg, rock salt and granite, etc.) and porous layers of rock. The salt rock has a very low permeability (penetration rate is less than 10-20m2) and good creep behavior, which can ensure the leak tightness of storage cavern. The mechanical properties of rock salt are steady to adapt to the changes storage pressure. And the salt rock’s property that easily dissolved in water makes it more easy and economical to excavate salt rock cave. The underground storage base still have many important functions, such as security, peaking shaving, environmental protection, strategic reserves, and business operation.
     The first problem during the progress of building salt rock storage base cavity is the dissolution of salt rocks. So we must to study the factors that affect the dissolution rate of salt rock. These factors include the uncontrolled internal factors and external factors that can be controlled. The paper studied basic experimental study of dissolution of rock salt. Through laboratory experiment, dissolution rate were studied on different dissolution areas, solution temperatures, solution concentrations, solution flows and the angles between bedding. The experiment studied the laws of rock salt dissolution, the conclusions are as follows:
     ①It was not obvious that the effect of the dissolution rate on different dissolution area, but the bigger dissolution area, the higher the dissolving quality.
     ②Solution temperature had little effect to the solubility of salt rock, but solution temperature had great influence on the dissolution rate. In high temperature salt rock dissolved rapidly, and as the temperature raised, salt rock’s dissolution rate gradually increased. The relationship between rock salt dissolution and temperature was being index mark;
     ③From the chemical kinetics point of view, the difference of solution concentration and the saturated solution concentration is the mostly reason. Dissolution rate decreased with solution concentration of rock salt increased. Salt rock stopped dissolving under saturated solution. it was found that the relation between dissolving rate and solution concentration was quadratic curve
     ④In a range of value, the higher the velocity of flow, the higher dissolving rate, its relationship is being index mark;
     ⑤Through study the impact of bedding angle of layered salt rocks on dissolution rate, the dissolution rate was higher 90°compared with 0°. But the dissolution rate difference was not significant under the angles between bedding, which indicated the anisotropic of salt rock specimen is not obvious.
     ⑥Using gray correlation analysis in this paper, it was analyzed primary and secondary factors that affect the dissolution rate. It studied the solution concentration, temperature and solution flow rate of three factors. The use of the gray correlation degree was to quantitatively determine the factors: it is found that solution temperature is the main factor, followed by the solution flow rate, followed by that concentration.
     Through the above research and related findings, it will provide a theoretical foundation for the further study of salt rock for the flow field and concentration field of distribution and it will provide basic theoretical and experimental basis for rapidly create cavity.
引文
[1] Durie R.W.Jessen F.W.The laminar boundary layer in the free convection dissolution of salt.paper in second symposium on salt[J].Cleveland.May 1962.
    [2] Durie R.W.Jessen F.W.Mechanism of dissolution of salt in the formation of underground salt cavities[J].SPE478,1964.6.
    [3] Durie R . W . Jessen F·W·The influence of surface features in the salt dissolution process[J].SPE1004,1964.9.
    [4] Jessen F.W.Salt dissolution under turbulent flow conditions.Solution mining Research Institute file 70-0004-SMRI[J].1970.
    [5] Saberian A.Study on mixing in water-brine systems.Solution mining Research Institute file 71-0002-SMRI[J].1971.
    [6] Saberian A.and Podio A.L.The horizontal penetration of buoyant jet stream in brine.Solution mining Research Institute file 76-0003-SMRI[J].1976.
    [7] Hans Ulrich Rohr.Rates of dissolution of salt minerals leaching caverns in salt-fundamentals and practical application.Fifth international symposium on salt-Northern Ohio geological society[J].1979.
    [8] Saberian A.Cavity development- in a three layer bedded salt model.Solution mining Research Institute file 77-0003-SMRI[J].1977.
    [9] Saberian A.Cavity development in a five layer bedded salt model.Solution mining Research Institute file 77-0006-SMRI[J].1977.
    [10] Marwan Alkattan.Experimental studies of halite dissolution kinetics:II.The effect of the presence of aqueous trace anions and K,Fe( CN) 6[J].Chemical Geology 143 (1997) 17-26
    [11] Saberian,A.Podio,A.L.A Numerical Model for Development of Solution Mined Cavities.SMRI Meeting Paper[J] 1976.4.
    [12] Brown K.E and Jessen F,W.Effect of pressure and temperature on cavities in salt[J].JPT.V.11.NO.12,1959:341-344.
    [13] Kazemi H.and Jessen F·W·Mechanism of flow and controlled dissolution of salt in solution mining[J].SPE1007,December 1964.
    [14] Ramson D.R.and Dommers O.B·and Jessen F·W·Techniques for developing predetermined shaped cavities in solution mining.Paper in second symposium on salt[J].Cleveland.OH,May 1964.
    [15] Sears G, F, and Jessen F·W.Controlled solution mining in massive salt.SPE1336[J],March 17.1966.
    [16] Snow R.H.and Nielsen H.Solution mining studies.Solution mining Research Institute file 66-0001-SMRI[J].1966.
    [17] Snow R.H.and Nielsen H.Solution mining studies.Solution mining Research Institute file 66-0002-SMRI,1966.
    [18] Snow R.H.and Nielsen H.Solution mining studies.Solution mining Research Institute file 66-0003-SMRI[J].1966.
    [19] Snow R.H.and Nielsen H.Solution mining studies.Solution mining Research Institute file 66-0004-SMRI[J].1966.
    [20] Snow R.H.and Nielsen H.Solution mining studies(Final report).Solution mining Research Institute file 68-0006-SMRI[J]. 1968.
    [21] Saberian A.and Von Schonfeldt. Convective mixing of water with brine around the periphery of vertical tube.Fourth symposium on salt[J].Houston.Texas,1973.
    [22] Medley.Alfred H.Storage of natural gas in salt caverns.SPE4427[J].1974.
    [23] Husband W.H.W.and Shook C.A.An experimental study offree convection mass transfer from high vertical surfaces to liquids.paper in third symposium on salt[J].·
    [24] Chang C.Vliet G.Cleveland.OH,April 22-24.1969.C.and Saberian A.Natural convection mass transfer at salt-brine interfaces.ASME paper[J]. 76-HT-33,1976.
    [25] Saberian A.The effoct of water ascent velocity on salt dissolution rate.Solution mining Research Institute file 76-0001-SMRI[J].1976.
    [26] Podio A.L.and Saberian A.Optimization of solution mining operations.Fifth international symposium on salt-Northern Ohio geological society[J].1979.
    [27] Daniel C.Reda and Anthony J.Russo.Experimental studies of oil withdrawal from salt cavities by fresh water injection.SPE13307[J].1986.
    [28] Daniel C.Reda and Anthony J.Russo.Experimental studies of salt cavity leaching via fresh water injection[J]. SPE13308, 1986.
    [29] Ratigan J·L·And Devries K·L.Spaced storage wells in salt dome.SPE19084[J].1989.
    [30] Wallner.Manfred.Sensitivity and uncertainty analysis applied to cavity design computation in rock salt.SPE28124[J],1994.
    [31] Langer,M.Geoengineering confidence building for the design and construction of salt caverns[J] SPE28116 1994.
    [32] Crossley N.G.Conversion of LPG salt caverns to natural gas storage“a transgas experience”petroleum society of CIM N0[J].94-131.
    [33] Berest P.etc.long-term evolution of sealed cavern. Solution mining Research Institute file98-4-SMRI[J].1998.
    [34]林元雄.盐类水溶采矿技术[M].四川人民出版社,1990.
    [35]陈扬辉.流体动力法是井矿盐工业开采岩盐矿的新方法[J].中国井矿盐.1992.
    [36]赵晓华,孙艳秋,吴诗中.深井水溶开采天然碱矿室内模拟实验[J].江西地质.1999,13(3).
    [37]殷国富等.基于模糊神经网络的岩盐卤水浓度的控制方法研究[J].自动化学报.2000.
    [38]肖长富,阳友奎等.岩盐溶解特性及其传质过程的研究[J].重庆大学学报,1993,16(2):41-47.
    [39]吴刚,肖长富,邱贤德.岩盐溶解速率的研究[J].化工矿山技术.1992, 21(1):19-24.
    [40]刘成伦,徐龙君,鲜学福等.电导法研究岩盐溶解的动力学[J].中国井矿盐,1998,(3):19-22.
    [41]刘成伦,徐龙君,鲜学福.长山岩盐动溶的动力学特征[J].重庆大学学报(自然科学版),2000,23(4):48-71.
    [42]杨骏六,杨进春,邹玉书.岩盐水溶特性的实验研究[J].四川联合大学学报(工程科学版),1997,1(2):74-80.
    [43]曾义金,陈勉.盐岩经验溶解速率的实验测定[J].石油钻探技术,2003,31(3):1-3.
    [44]张哲玮.岩盐矿石水溶性能实验若干问题探讨[J].中国井矿盐,2002,33(2):23-24.
    [45]汤艳春.考虑岩盐应力与溶解耦合效应的盐腔溶腔机理研究[D].中国科学院,2007.
    [46]梁卫国,赵阳升,李志萍.岩盐水压致裂连通溶解耦合数学模型与数值模拟[J].岩土工程学报,2003,24(4):427-430.
    [47]梁卫国,赵阳升.盐岩水压致裂连通溶解的数学模型[J].太原理工大学学报,2002,33(4):361-363.
    [48]梁卫国.盐类矿床水压致裂水溶开采的多场耦合理论及应用研究[D].太远理工大学.2004.
    [49]李志萍,赵阳升.芒硝溶解特性的实验研究[J].太原理工大学学报,2003,34(3):329-312.
    [50]梁卫国,赵阳升.盐类矿床水溶开采机理分析[J].太原理工大学学报,2002,33(3):234-237.
    [51]梁卫国,李志萍,赵阳升.盐矿水溶开采室内实验的研究[J].辽宁工程技术大学学报,2003,22(1):44-47.
    [52]徐素国,梁卫国,赵阳升.钙芒硝岩盐溶解特性实验研究[J].太原理工大学学报,2004,36(6):243-244.
    [53]徐素国,梁卫国,赵阳升.钙芒硝岩盐水溶特性实验研究[J].辽宁工程技术大学学报,2004,24(1):4-7.
    [54]班凡生,高树生,单文文.岩盐品位对岩盐储气库水溶建腔的影响[J].天然气工业,2004,26(4):114-118.
    [55]班凡生,高树生,单文文.夹层对岩盐储气库水溶建腔的影响分析[J].辽宁工程技术大学学报.24增刊:114-116.
    [56]赵志成.盐岩储气库水溶建腔流体输运理论及溶腔形态变化规律研究[D].中国科学院,2003.
    [57]万玉金.盐层储气库溶腔形态控制模拟技术研究[D].中国地质大学,2004.
    [58]魏东吼.金坛盐穴地下储气库造腔工程技术研究[D].中国石油大学,2008.
    [59]班凡生.岩盐储气库水溶建腔的基本原理及影响因素研[J].天然气工业,2004,17(2):261-266.
    [60]班凡生.岩盐储气库水溶建腔岩盐溶蚀模型研究[J].辽宁工程技术大学学报,2005,24(增刊):102-104
    [61]班凡生,高树生.岩盐储气库水溶建腔优化设计研究[J].天然气工业,2007,27(2):114-118.
    [62]丁国生.盐穴地下储气库建库技术[J].天然气工业,2007,23(2):106-109.
    [63]李晓颖.盐穴储气库造腔注水站设计要点[J].油气田地面工程,2008年,27(3):3-5.
    [64]袁光杰,田中兰.快速造腔技术的研究及现场应用[J].石油学报,2006,27(4):139-142.
    [65]田中兰,夏柏如.盐穴储气库造腔工艺技术研究[J].现代地质,2008,22(1):97-102.
    [66]杨清玉,庄清泉.盐穴储气库造腔地面工艺技术[J].油气田地面工程,2007年,26(10):25-26.
    [67]综合优化软件包1stOpt使用手册.
    [68]刘思峰,党耀国,方志耕等.灰色系统理论及其应用(第三版)[M].北京:科学出版社,2004:1-3.
    [69]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社.2002
    [70]邓聚龙.灰色系统理论[M].京港学术交流,1992(3):14-15.
    [71]邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002:6-7.
    [72]李付胜.城市隧道掘进爆破数值模拟及震动效应控制研究[D].重庆大学,2008
    [73]肖新平,黎德扬.灰色关联分析应用的最新进展[J].大自然探索.1996,15(4):50-56.
    [74]肖新平,宋中民,李峰著.灰技术甚而及其应用[M].北京:科学出版社,2005,8:3-9.
    [75]黄茂生.基于企业产业选择的产业关联度分析与评价研究[D].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700