人参不同层次化学物质组的绿色化学制备方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以中药化学物质组学为指导思想,对中药复杂体系进行层次化研究是目前中药方剂研究的一个重要的思路。通过中药化学物质组学与系统生物学的结合,将中药复方干预系统与生物机体应答系统联系起来,实现了针对中药复杂体系“系统-系统”的新的研究方法。中药化学物质组学将复杂的中药体系层次化,系统化,由繁至简,步步推进。通过对中药不同层次化学物质组的药理学、药效学、代谢组学以及基因组学等多维多角度研究,进而可以对中药有效物质基础及作用机制进行系统的阐述。本文以中药化学物质组的获取为切入点,以绿色化学为指导思想,运用扩张床吸附分离和高速逆流色谱精细分离技术,开展针对中药不同层次化学物质组的高效、绿色化学制备方法研究,为中药化学物质组学的研究提供物质基础,同时也为工业生产提供可供参考的方法和技术支持。
     1、建立适用于中药有效化学物质组吸附分离的大孔吸附树脂扩张床系统。并对其床体的扩张特性和流体动力学进行研究和表征。首先考察了流体粘度及流速对床体扩张的影响,并利用Richardson-Zaki公式对床体扩张特性进行描述。大孔吸附树脂的密度虽然较小,但其具有的较大体积,使得其在扩张床中的扩张能力与高密度、小体积的吸附基质相当。其次利用轴向扩散模型和全混釜串联模型,采用停留时间分布分析法,考察流体粘度、操作流速以及初始装填高度对扩张床流体动力学的影响。结果表明大孔吸附树脂扩张床床体返混较小,基本满足扩张床操作要求。
     2、以人参为例,首先考察人参皂苷在大孔吸附树脂上的吸附特性。通过静态吸附试验对其吸附动力学和热力学进行研究。吸附动力学研究表明在30min内,吸附达到了60%的平衡吸附能力;吸附热力学研究表明,不同类型的人参皂苷具有不同的吸附热力学性能,人参皂苷Rg1和Re在大孔吸附树脂上的吸附更符合Langmuir吸附等温线方程,而人参皂苷Rb1则更符合Freundlich吸附等温线方程;通过动态吸附试验比较了固定床操作模式及扩张床操作模式下树脂的动态吸附能力,结果表明,在相同的操作流速下,固定床操作模式下动态吸附能力比扩张床动操作模式下的动态吸附能力高出约12.5%。
     在此基础上,利用扩张床吸附分离技术对人参有效化学物质组的提取和分离进行集成化设计,建立了人参总皂苷的集成化制备方法。
     3、借鉴合成化学工业绿色化学评价方法,以绿色工程原则为指导,根据中药分离过程的特点,从分离过程质量流角度出发,结合过程制备效率,建立针对中药分离过程的绿色化学评价体系。以分离过程绿色度G为主要的评价指标对分离过程进行评价,为中药化学物质组制备工艺的设计和优选提供参考依据。以所建立的绿色化评价体系对人参皂苷的固定床模式及集成化模式制备结果进行了比较。
     4、利用高速逆流色谱技术对人参有效成分进行了精细分离制备。针对复杂中药体系,采用多步联合的分离策略。首先,利用两步高速逆流色谱法制备得到达玛烷型人参皂苷Rg1, Re, Rf, Rb1,Rb2, Rc和Rd,其质量分别为72.8mg、76.1mg、20.4mg、137.0mg、58.8mg、85.1mg及53.2mg,纯度分别为96.2%、97.5%、94.3%、94.4%、91.6%、92.2%及95.1%,回收率分别为49.7%,68.7%,42.3%,65.6%,40.1%,46.6%及54.6%。其次,联用正向中压制备色谱和高速逆流色谱制备获得齐墩果酸型人参皂苷Ro,质量为63.0mg,纯度为96.0%,回收率为79.2%。最后,利用所建立的中药分离过程绿色化学评价体系对方法进行了评价,并与不同的制备方法进行比较。
It is a very important way for understanding the TCM prescription through the studying of TCM from different level based on the chemomics approach. External intervention and internal response system of living organism were linked together by combination of chemomics with system biology to acchive a novel "system to system" investigation method for TCM.The investigations of TCM system may be conducted on three-level chemomes step by step, which was from complex to simple. According to the pharmacology, metabolomics and genomics researches on the different chemomes levels, the substance foundation and mechanism of action of TCM could be elaborated clearly. Chemomes obtaining was conducted as the entry point of the research in this theise. Guiding with the green chemistry principles, expanded bed adsorption (EBA) and high-speed counter-current chromatography (HSCCC) separation technology were applied here for preparation of chemomes in different level with high efficiency and greenness. The research here not noly provided the substance foundation for further study of TCM chemomics, but also furnish the industrial production with reference methods and technical support.
     First, a macroporous adsorption resin EBA system was established here for preparation of the effective chemome. The expansion characteristics and hydrodynamic of the EBA was evaluated and characterized. The effects of liquid phase with different viscosities and velocities on the expansion were thoroughly investigated here, and the results were characterized by the Richardson-Zaki equation. Although macroporous has lower density, the expansion ability was the same with the general EBA absorbents with a higher density due to the bigger size. Then, the residence time distribution (RTD) analysis was usded to study the effects of initial sedimented bed height and liquid phase with different viscosities and velocities on the hydrodynamic of EBA based on the tanks in series model and diffusion mode. The results had shown that the macroporous resin EBA system established here had low backmixing behavior, which was met the requirements of expanded bed operation.
     Second, taking ginseng as an example, the adsorption properties of gensenosides on macroporous resin was investigated. The adsorption kinetics and thermodynamics were thoroughly inverstigated by static adsorption experiments. The results had shown that more than 60% of the adsorption capacity was achieved within 30 min which suggested that it should be possible to achieve good degrees of adsoption under comparatively fast flow rate during expanded operation. The adsorption thermodynamics characteristics were different with the ginsenosides types. ginsenoside-Rg1 and Re fit the better with Langmuir model while ginsenoside-Rb1 fit the better with Freundlich model. The dynamic adsorption capacities of ginsenosides were carried out under packed bed adsorption and expanded bed adsorption modes. Under the same operation conditions, the dynamic adsorption capacity of packed bed mode was 12.5% higher than that of expanded bed mode.
     Based on the research abovel, an intergration system which fused extraction and adsorption into a continuous dynamic preparation system were estabilished for preparation of ginsenosides.
     Third, according to the TCM separation features and refering to the synthetic chemical industry, a greenness evaluation system for TCM chomomes preparation process was proposed, which was considered from the mass flow perspective, and combined with the preparation efficiency. A parameter G was used as the main evaluation index for evalution the process greenness. The greenness evaluation system was used to compare the intergration expanded bed preparation processes with packed bed process.
     Forth, high-speed counter-current chromatography was applied for preparation of effective compounds from the effective chemome of ginseng. As for the complex TCM system, mutil-step separation strategy was adopted here. A two-step counter-current chromatography method was developed here for the prepariton of ginsenosides of dammarane type. The preparation yielded 72.8 mg,76.1 mg,20.4 mg,137.0 mg,58.8mg,85.1 mg and 53.2 mg ginsenoside-Rg1, Re. Rf, Rb1, Rb2, Re and Rd with the purity of 96.2%,97.5%, 94.3%,94.4%,91.6%,92.2% and 95.1%, respectively. After that,63.0 mg of the oleanane-type ginsenoside-Ro with a puirity of 96.0% was obtained by combination of normal-phase medium-pressure liquid chromatography (NP-MPLC) and HSCCC. The preparation results were also evaluated with the greenness evaluation system, and compared with different preparation methods.
引文
[1]靳婷,刘媛,李玉衡,等.药物不良反应——危及生命安全的第一杀手.首都医药.2005,8(15):17-28
    [2]常静.“和合治疗仪”——引领“绿色治疗”未来发展的自主创新.中华医学信息导报.2005,20(22):18
    [3]罗国安,梁琼麟,刘清飞,等.整合化学物质组学的整体系统生物学——中药复方配伍和作用机理研究的整体方法论.世界科学技术-中医药现代化.2007,9(1):10-15
    [4]田佳,孙瑶.我国中药产业投资价值分析.经营管理者.2010,(3):187
    [5]中药产业潜力大“十二五”产值将达万亿元.中国药科大学学报.2009,40(6):526
    [6]罗国安,梁琼麟,张荣利,等.化学物质组学与中药方剂研究——兼析清开灵复方物质基础研究.世界科学技术.2006,8(1):6-15
    [7]薛燕,雷跻九.中药复方散弹理论.北京:中国环境科学出版社.1996,48
    [8]黄熙.方剂体内/血清成分谱与靶成分概念的提出及意义.第四军医大学学报.1999,20(4):5-7
    [9]罗国安,王义明,梁琼麟,等.中医药系统生物学.北京:科学出版社.2010,第一版,26-27
    [10]张延妮,岳宣峰.中药有效成分提取方法及其新进展.陕西农业科学.2006,(5):65-67
    [11]何雁,辛洪亮,黄恺,等.水提醇沉法中醇沉浓度对板蓝根泡腾片制备过程的影响.中国中药杂志.2010,35(3):288-292
    [12]李锋涛,潘金火.絮凝剂在中药制剂中的应用.时珍国医国药.2006,17(4):647-649
    [13]樊庆英,殷瑞华,洪毅.膜分离技术在现代中药制药中的应用.中国中医药现代远程教育.2008,6(5):496-497
    [14]孙德一,张秀荣.大孔吸附树脂在中药有效成分分离纯化中的应用.吉林医药学院学报.2010,31(6):356-359
    [15]宁德生,梁小燕,方宏,等.半制备高压液相色谱法制备罗汉果苷V标准品.食品科学.2010,31(12):137-140
    [16]邢艳平,林炳昌,周卫红,等.模拟移动床分离人参皂苷Rg1和Re的稳态、暂态过程.精细化工.2009,26(7):666-670
    [17]金灯萍,彭国平,陆晓峰.填充柱超临界流体色谱在中药中的分析与制备应用.中医药学刊.2006,24(3):541-542
    [18]王普善.用于制备规模的超临界流体色谱分离对映体受到青睐.精细与专用化学品. 2006,14(22):1-4
    [19]赵锁奇,石铁磐,王仁安,等.硅胶柱超临界流体制备色谱分离极性化合物.西北大学学报(自然科学版).2001,31(3):229-231
    [20]戴德舜,王义明,罗国安.高速逆流色谱研究进展.分析化学.2001,29(5):586-591
    [21]戴德舜,王义明,罗国安.高速逆流色谱溶剂体系软件在桂枝汤A部分研究中的应用.中成药.2001,23(9):3-6
    [22]伍方勇,王义明,罗国安等.高速逆流色谱与质谱联用在中药分析中的应用.高等学校化学学报.2002,23(9):1698-1700
    [23]林炳昌.模拟移动床技术在中药有效成分分离中的应用.精细化工.2005,22(2):110-112
    [24]沈绍传,姚克俭.绿色化学与绿色分离工程.林产化学与工业.2001,21(3):83-86
    [25]闵恩泽,傅军.绿色化学的进展.岩矿测试.1999,18(2):3-8
    [26]朱清时.绿色化学.化学进展.2000,12(4):410-414
    [27]Misono M. Green chemistry:Concept and practice. Journal of Synthetic Organic Chemistry Japan.2003,61(5):406-412
    [28]Mestres R. Green chemistry-Views and strategies. Environmental Science and Pollution Research.2005,12(3):128-132
    [29]王静康,龚俊波,鲍颖.21世纪中国绿色化学与化工发展的思考.化工学报.2004,55(12):1944-1949
    [30]谭井坤,韩雪冬,李钟模.中国绿色化学开发研究现状综述.化工矿产地质.2002,24(3):157-161
    [31]Anastas Pt W J. Green Chemistry:Theory and Practice. Oxford:Oxford University Press, 1998
    [32]Anastas P T, Zimmerman J B. Design through the 12 principles of green engineering. Environmental Science & Technology.2003,37(5):94A-101A
    [33]刘小平.中药分离工程.北京:化学工业出版社,2005,171-173
    [34]赵月红,王韶锋,温浩,等.过程集成研究进展.过程工程学报.2005,5(1):107-112
    [35]刘坐镇,陈士安,邬行彦.扩张床吸附技术.离子交换与吸附.1999,15(3):279-288
    [36]Chase H A. Purification of proteins by adsorption chromatography in expended beds. Trends In Biotechnology.1994,12(8):296-303
    [37]Hjorth R. Expanded-bed adsorption in industrial bioprocessing:Recent developments. Trends In Biotechnology.1997,15(6):230-235
    [38]Hubbuch J, Thommes J, Kula M R. Biochemical engineering aspects of expanded bed adsorption. Berlin:Springer-Verlag Berlin,2005:92,101-123
    [39]Thommes J, Bader A, Halfar M, et al. Isolation of monoclonal antibodies from cell containing hybridoma broth using a protein A coated adsorbent in expanded beds. Journal of Chromatography A.1996,752(1-2):111-122
    [40]Bai Y, Glatz C E. Bioprocess considerations for expanded-bed chromatography of crude canola extract:Sample preparation and adsorbent reuse. Biotechnology and Bioengineering.2003,81(7):775-782
    [41]De. Luca L, Hellenbroich N J, Hooker T Chase H A. A study of the expansion characteristics and transient behaviour of expanded beds of adsorbent particles suitable for bioseparation. Bioseparation.1994,4(5):311-318
    [42]Draeger N M, Chase H A. Liquid fludidized-bed adsorption of protein in the presence of cells. Bioseparation.1991,2(2):67-80
    [43]Finette G, Mao Q M, Hearn M. Studies on the expansion characteristics of fluidised beds with silica-based adsorbents used in protein purification. Journal of Chromatography A. 1996,743(1):57-73
    [44]Zhang M, Hu P, Luo GA, et al. Direct process integration of extraction and expanded bed adsorption in the recovery of crocetin derivatives from Fructus Gardenia. Journal of Chromatography B.2007,858(1-2):220-226
    [45]Thommes J, Bader A, Halfar M, et al. Isolation of monoclonal antibodies from cell containing hybridoma broth using a protein A coated adsorbent in expanded beds[J]. Journal of Chromatography A.1996,752(1-2):111-122
    [46]Feuser J S U W J. EBA processing of mammalian cell culture fluid-design studies on column hardware. Garmisch-Partenkirchen, Germany:2000
    [47]Bertrand O, Cochet S, Cartron J P. Expanded bed chromatography for one-step purification of mannose binding lectin from tulip bulbs using mannose immobilized on DEAE Streamline. Journal of Chromatography A.1998,822(1):19-28
    [48]Zafirakos E L A. Isolation of proteins from very crude raw materials. Cambridge, U.K: 1996
    [49]Hubbuch J J, Heeboll-Nielsen A, Hobley T J, et al. A new fluid distribution system for scale-flexible expanded bed adsorption. Biotechnology and Bioengineering.2002, 78(1):35-43
    [50]Xia H F, Lin D Q, Yao S J. Evaluation of new high-density ion exchange adsorbents for expanded bed adsorption chromatography. Journal of Chromatography A.2007, 1145(1-2):58-66
    [51]Hassan S, Titchener-Hooker N, Willoughby N. Determining particle density distribution of expanded bed adsorbents. Biotechnology and Bioengineering.2005,92(5):659-663
    [52]Li J, Chase H A. Use of expanded bed adsorption to purify flavonoids from Ginkgo biloba L. Journal of Chromatography A.2009,1216(50):8759-8770
    [53]Ebrahimpour M, Jahanshahi M, Hosenian A H. Adsorption Strategy of Plasmid DNA Nanoparticulate:Preparative Purification by a Simple Custom Expanded Bed Column. Chromatographia.2010,72(5-6):383-391
    [54]Wongchuphan R, Tey B T, Tan W S, et al. Application of dye-ligands affinity adsorbent in capturing of rabbit immunoglobulin G. Biochemical Engineering Journal.2009, 45(3):232-238
    [55]Billakanti J M, Fee C J. Characterization of Cryogel Monoliths for Extraction of Minor Proteins From Milk by Cation Exchange. Biotechnology and Bioengineering.2009, 103(6):1155-1163
    [56]Tsuno H, Kawamura M. Development of an expanded-bed GAC reactor for anaerobic treatment of terephthalate-containing wastewater. Water Research.2009,43(2):417-422
    [57]Chong F C, Tan W S, Biak D, et al. Direct recovery of recombinant nucleocapsid protein of Nipah virus from unclarified Escherichia coli homogenate using hydrophobic interaction expanded bed adsorption chromatography. Journal of Chromatography A. 2010,1217(8):1293-1297
    [58]Jahanshahi M, Najafpour G, Ebrahimpour M, et al. Evaluation of hydrodynamic parameters of fluidized bed adsorption on purification of nano-bioproducts. Weinheim: Wiley-V.C.H Verlag GMBH,2009,6:2199-2206
    [59]Jahanshahi M, Ebrahimpour M. Expanded Bed Chromatography as a Tool for Nanoparticulate Separation:Kinetic Study and Adsorption of Protein Nanoparticles. Chromatographia.2009,70(11-12):1553-1560
    [60]Padilha G D, Curvelo-Santana J C, Alegre R M, et al. Expanded bed adsorption of an alkaline lipase from Pseudomona cepacia. Journal of Chromatography B.2009, 877(5-6):521-526
    [61]Ramos A, Acien F G, Fernandez-Sevilla J M, et al. Large-scale isolation and purification of C-phycocyanin from the cyanobacteria Anabaena marina using expanded bed adsorption chromatography. Journal of Chemical Technology and Biotechnology.2010, 85(6):783-792
    [62]Song H B, Xiao Z F, Yuan Q P. Preparation and characterization of poly glycidyl methacrylete-zirconium dioxide-beta-cyclodextrin composite matrix for separation of isoflavones through expanded bed adsorption. Journal of chromatography A.2009, 1216(25):5001-5010
    [63]Campbell K A, Glatz C E. Protein Recovery from Enzyme-assisted Aqueous Extraction of Soybean. Biotechnology Progress.2010,26(2):488-495
    [64]Yap W B, Tey B T, Alitheen N, et al. Purification of His-tagged hepatitis B core antigen from unclarified bacterial homogenate using immobilized metal affinity-expanded bed adsorption chromatography. Journal of chromatography A.2010,1217(21):3473-3480
    [65]Niu J F, Chen Z F, Wang G C, et al. Purification of phycoerythrin from Porphyra yezoensis Ueda (Bangiales, Rhodophyta) using expanded bed absorption. Journal of Applied Phycology.2010,22(1):25-31
    [66]Pinotti L M, Fonseca L P, Prazeres D, et al. Recovery and partial purification of penicillin G acylase from E. coli homogenate and B. megaterium culture medium using an expanded bed adsorption column. Biochemical Engineering Journal.2009,44(2-3): 111-118
    [67]Dalal S, Raghava S, Gupta M N. Single-step purification of recombinant green fluorescent protein on expanded beds of immobilized metal affinity chromatography media. Biochemical Engineering Journal.2008,42(3):301-307
    [68]Ito Y. High-speed countercurrent chromatography. Critical Reviews In Analytical Chemistry.1986,17(1):65-143
    [69]Craig L C. Identification of smalll amounts of organic compounds by distribution studies.II. Separation by counter-current distribution, Journal of Biological Inorganic Chemistry,1944,155:519-534
    [70]Conway W D. Countercurrent chromatography:Apparatus, Theory and Application. New YorK:VCH,1990
    [71]Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. Journal of chromatography A.2005,1065(2):145-168
    [72]曹学丽.高速逆流色谱分离技术及应用.北京:化学工业出版社,2005:449
    [73]Berthod A, Friesen J B, Inui T, et al. Elution-extrusion countercurrent chromatography: Theory and concepts in metabolic analysis. Analytical Chemistry.2007,79(9): 3371-3382
    [74]Berthod A, Ruiz-Angel M J, Carda-Broch S. Elution-extrusion countercurrent chromatography. Use of the liquid nature of the stationary phase to extend the hydrophobicity window. Analytical Chemistry.2003,75(21):5886-5894
    [75]Berthod A, Hassoun M, Harris G. Using the liquid nature of the stationary phase:The elution-extrusion method. Journal of Liquid Chromatography & Related Technologies. 2005,28(12-13):1851-1866
    [76]Lu Y B, Pan Y J, Berthod A. Using the liquid nature of the stationary phase in counter-current chromatography-V. The back-extrusion method. Journal of Chromatography A.2008,1189(1-2):10-18
    [77]Ito Y, Goto T, Yamada S, et al. Rapid determination of carbamate pesticides in food using dual counter-current chromatography directly interfaced with mass spectrometry[J]. Journal of Chromatography A.2008,1187(1-2):53-57
    [78]Van den Heuvel R, Mathews B, Dubant S, et al. Continuous counter-current extraction on an industrial sample using dual-flow counter-current chromatography. Journal of Chromatography A.2009,1216(19):4147-4153
    [79]Berthod A, Hassoun M. Using the liquid nature of the stationary phase in countercurrent chromatography-Ⅳ. The cocurrent CCC method. Journal of Chromatography A.2006, 1116(1-2):143-148
    [80]Shi S Y, Huang K L, Zhang Y P, et al. Preparative isolation and purification of two flavonoid glycosides from Taraxacum mongolicum by high-speed counter-current chromatography. Separation and Purification Technology.2008,60(1):81-85
    [81]Han X, Zheng L L, Qiu Z W, et al. Efficient protocol for large-scale purification of naringin with high recovery from Fructus aurantii by macroporous resin column chromatography and HSCCC. Chromatographia.2008,68(5-6):319-326
    [82]Deng S G, Deng Z Y, Fan Y W, et al. Isolation and purification of three flavonoid glycosides from the leaves of Nelumbo nucifera (Lotus) by high-speed counter-current chromatography. Journal of Chromatography B-Analytical Technologies In The Biomedical And Life Sciences.2009,877(24):2487-2492
    [83]Hewitson P, Ignatova S, Ye H Y, et al. Intermittent counter-current extraction as an alternative approach to purification of Chinese herbal medicine. Journal of Chromatography A.2009,1216(19):4187-4192
    [84]皇甫泽坤,倪士峰,孙文基.高速逆流色谱法从秦艽地上部分制备分离龙胆苦苷.分析化学.2007,35(6):883-886
    [85]屈燚,杨悦武,郭治昕,等.高速逆流色谱分离制备丹参脂溶性成分.化学工业与工程.2007,24(1):48-51
    [86]Xiao X H, Guo Z N, Deng J C, et al. Separation and purification of isofraxidin from Sarcandra glabra by microwave-assisted extraction coupled with high-speed counter-current chromatography. Separation and Purification Technology.2009,68(2): 250-254
    [87]Liu R M, Feng L, Sun A L, et al. Preparative isolation and purification of coumarins from Peucedanum praeruptorum Dunn by high-speed counter-current chromatography. Journal of Chromatography A.2004,1057(1-2):89-94
    [88]Shi J M, Hu R L, Lu Y B, et al. Single-step purification of dracorhodin from dragon's blood resin of Daemonorops draco using high-speed counter-current chromatography combined with pH modulation. Journal of Separation Science.2009,32(23-24): 4040-4047
    [89]Li H B, Chen F, Zhang T Y, et al. Preparative isolation and purification of lutein from the microalga Chlorella vulgaris by high-speed counter-current chromatography. Journal of Chromatography A.2001,905(1-2):151-155
    [90]Zhang D L, Teng H L, Li G S, et al. Separation and purification of Z ligustilide and senkyunolide A from Ligusticum chuanxiong Hort. with supercritical fluid extraction and high-speed counter-current chromatography. Separation Science and Technology. 2006,41(15):3397-3408
    [91]Geng Y L, Liu J H, Lv R M, et al. An efficient method for extraction, separation and purification of eugenol from Eugenia caryophyllata by supercritical fluid extraction and high-speed counter-current chromatography. Separation And Purification Technology. 2007,57(2):237-241
    [92]Wang X A, Shi X A, Li F W, et al. Application of analytical and preparative high-speed counter-current chromatography for the separation of Z-Ligustilide from a crude extract of angelica sinensis. Phytochemical Analysis.2008,19(3):193-197
    [93]Zhang M, Ignatova S, Liang Q L, et al. Rapid and high-throughput purification of salvianolic acid B from Salvia miltiorrhiza Bunge by high-performance counter-current chromatography. Journal of Chromatography A.2009,1216(18):3869-3873
    [94]Lu H T, Jiang Y, Chen F. Application of preparative high-speed counter-current chromatography for separation of chlorogenic acid from Flos Lonicerae. Journal of Chromatography A.2004,1026(1-2):185-190
    [95]Li L, Tsao R, Liu Z Q, et al. Isolation and purification of acteoside and isoacteoside from Plantago psyllium L. by high-speed counter-current chromatography. Journal of Chromatography A.2005,1063(1-2):161-169
    [96]Du Q Z, Jiang Z G, Wang D J. Excellent combination of counter-current chromatography and preparative high-performance liquid chromatography to separate galactolipids from pumpkin. Journal of Chromatography A.2009,1216(19):4176-4180
    [97]Xu Y W, Han X, Dong D S, et al. Efficient protocol for purification of diosgenin and two fatty acids from Rhizoma dioscoreae by SFE coupled with high-speed counter-current chromatography and evaporative light scattering detection. Journal of Separation Science. 2008,31(20):3638-3646
    [98]Case R J, Wang Y H, Franzblau S G, et al. Advanced applications of counter-current chromatography in the isolation of anti-tuberculosis constituents from Dracaena angustifolia. Journal of Chromatography A.2007,1151(1-2):169-174
    [99]王磊,魏芸,袁其朋.高速逆流法分离纯化五味子中的五味子酚.北京化工大学学报(自然科学版).2009,36(2):77-80
    [100]Peng J Y, Fan G R, Wu Y T. Isolation and purification of clemastanin B and indigoticoside A from Radix Isatidis by high-speed counter-current chromatography. Journal of Chromatography A.2005,1091(1-2):89-93
    [101]蒋志国,杜琪珍,盛利燚.制备型高速逆流色谱分离纯化香菇多糖.分析化学.2009,37(3):412-416
    [102]Qi X C, Ignatova S, Luo G A, et al. Preparative isolation and purification of ginsenosides Rf, Re, Rd and Rbl from the roots of Panax ginseng with a salt/containing solvent system and flow step-gradient by high performance counter-current chromatography coupled with an evaporative light scattering detector. Journal of Chromatography A.2010,1217(13):1995-2001
    [103]安美花,安金花.人参研究进展.宁夏农林科技.2010,(6):79-80.
    [104]柴程芝,刘志刚,黄煌,等.《伤寒杂病论》人参药证研究.辽宁中医杂志.2009,36(10):1689-1691
    [105]甄连花,金丹.东北刺人参化学成分研究进展.延边大学医学学报.2002,25(4):331-333
    [106]李向高.人参化学成分研究的进展.特产科学实验.1974,(1):123-133
    [107]陈文真,欧阳学农.人参皂苷抗癌机制的研究进展.福建中医药.2005,36(2):52-53
    [108]张曼.人参和人参皂苷的抗过敏作用.国外医药(植物药分册).2004,19(2):76.
    [109]Hu P, Luo G A, Wang Q, et al. The Retention Behavior of Ginsenosides in HPLC and Its Application to Quality Assessment of Radix Ginseng. Archives of Pharmacal Research.2009,32(6):963
    [110]夏玮,张文清,罗国安,等.大孔吸附树脂脱色桑叶多糖的研究.食品与发酵工业.2007,33(2):141-144
    [111]闫磊,何再安,刘焱文.大孔吸附树脂在中药研究中的应用.时珍国医国药.2006,17(12):2585-2586
    [112]刘瑞源,钟平,戴开金.大孔吸附树脂提取中草药有效成分的研究进展.时珍国医 国药.2004,15(6):385-386
    [113]Han X, Zheng L L, Qiu Z W, et al. Efficient protocol for large-scale purification of naringin with high recovery from Fructus aurantii by macroporous resin column chromatography and HSCCC. Chromatographia.2008,68(5-6):319-326
    [114]Arpanaei A, Heeboll-Nielsen A, Hubbuch J J, et al. Critical evaluation and comparison of fluid distribution systems for industrial scale expanded bed adsorption chromatography columns. Journal of Chromatography A.2008,1198:131-139
    [115]Bruce L J, Chase H A. Hydrodynamics and adsorption behaviour within an expanded bed adsorption column studied using in-bed sampling. Chemical Engineering Science. 2001,56(10):3149-3162
    [116]Tong X D, Sun Y. Nd-Fe-B alloy-densified agarose gel for expanded bed adsorption of proteins. Journal of Chromatography A.2002,943(1):63-75
    [117]Anspach F B, Curbelo D, Hartmann R, et al. Expanded-bed chromatography in primary protein purification. Journal of Chromatography A.1999,865(1-2):129-144
    [118]Asif M. Generalized Richardson-Zaki correlation for liquid fluidization of binary solids. Chemical Engineering & Technology.1998,21(1):77-82
    [119]Richardson J F A Z. Sedimentation and fluidisation. Part Ⅰ.1954:32,35-53.
    [120]Di Felice R. Hydrodynamics of liquid fluidisation. Chemical Engineering Science,1995, 50(8):1213-1245
    [121]姚玉英,黄凤廉,陈常贵,柴诚敬.化工原理:新版.上册.天津:天津大学出版社.1999:366
    [122]Khan A R, Richardson J F. Pressure-gradient and friction factor for sedimentation and fluidization of uniform spheres in liquids. Chemical Engineering Science.1990,45(1): 255-265
    [123]Chang Y K, Chase H A. Development of operating conditions for protein purification using expanded bed techniques:The effect of the degree of bed expansion on adsorption performance. Biotechnology and Bioengineering.1996,49(5):512-526
    [124]张敏.面向不同层次中药化学物质组的集成化制备方法研究——中药有效组分和有效成分的制备.华东理工大学博士论文,2008
    [125]Chen W D, Wang Y D, Hu H H, et al. Hydrodynamics in an expanded bed of large size ion-exchange resin, and natural product adsorption. Journal of Chemical Technology and Biotechnology.2007,82(2):135-142
    [126]Bascoul A. Effects of liquid distribution on the axial-dispersion coefficient in solid-liquid fluidization.1988(38):69-79
    [127]Webster G H and Perona J J. The effect of taper angle on the hydrodynamics of a tapered liquid-solid fluidized bed.1990:104-113
    [128]Li J, Chase H A. Characterization and evaluation of a macro porous adsorbent for possible use in the expanded bed adsorption of flavonoids from Ginkgo biloba L. Journal of Chromatography A.2009,1216(50):8730-8740
    [129]桂双英,周亚球.比色法测定人参中人参总皂苷的含量.安徽中医学院学报.2003,22(4):51-52
    [130]王海南.人参皂苷药理研究进展.中国临床药理学与治疗学.2006,11(11):1201-1206
    [131]赵瑜,陈波,罗旭彪,等.大孔吸附树脂分离纯化人参二醇类和三醇类皂甙.天然产物研究与开发.2004,16(3):235-238
    [132]彭拓华,陈洁炜,黄湘兰,等.大孔树脂富集纯化人参总皂苷工艺条件优选.中药材.2006,29(4):392-394
    [133]谢丽玲,任理,赵闯营,等.红参水提物人参总皂苷的大孔吸附树脂纯化研究.时珍国医国药.2010,21(11):2848-2849
    [134]张敏,胡坪,罗国安,等.集成化扩张床技术及其在中药提取分离中的应用.中成药.2008,30(1):106-109
    [135]Fuzzati N, Gabetta B, Jayakar K, et al. Liquid chromatography-electrospray mass spectrometric identification of ginsenosides in Panax ginseng roots. Journal of Chromatography A.1999,854(1-2):69-79
    [136]Cui M, Song F R, Zhou Y, et al. Rapid identification of saponins in plant extracts by electrospray ionization multi-stage tandem mass spectrometry and liquid chromatography/tandem mass spectrometry. Rapid Communications In Mass Spectrometry.2000,14(14):1280-1286
    [137]Kim D S, Chang Y J, Zedk U, et al. Dammarane sponins from panax-ginseng. Phytochemistry,1995,40(5):1493-1497
    [138]Gao M, Huang W, Liu C Z. Separation of scutellarin from crude extracts of Erigeron breviscapus (vant.) Hand. Mazz. by macroporous resins. Journal Of Chromatography B. 2007,858(1-2):22-26
    [139]Zhang B, Yang R Y, Zhao Y, et al. Separation of chlorogenic acid from honeysuckle crude extracts by macroporous resins. Journal of Chromatography B.2008,867(2): 253-258
    [140]Wan J B, Zhang Q W, Ye W C, et al. Quantification and separation of protopanaxatriol and protopanaxadiol type saponins from Panax notoginseng with macroporous resins. Separation and Purification Technology.2008,60(2):198-205
    [141]Fu Y J, Zu Y G, Liu W, et al. Optimization of luteolin separation from pigeonpea leaves by macroporous resins. Journal of Chromatography A.2006,1137(2):145-152
    [142]Sheldon R A. Selective catalytic synthesis of fine chemicals:Opportunities and trends. Journal of Molecular Catalysis A-Chemical.1996,107(1-3):75-83
    [143]Sheldon R.A. Catalysis:The key to waste minimization. Journal of Chemical Technology and Biotechnology.1997,68(4):381-388
    [144]Curzons A.D, Constable D.J.C, Mortimer D.N, et al. So do you think your process is green, how do you know?-Using principles of sustainability to determine what is green-a corporate perspective. Green Chemistry.2001,3(1):1-6
    [145]Zhang M, Ignatova, S, Luo G.A, et al. Development of s strategy and process parameters for a green process in counter-current chromatography:Puificaiton of tanshinone IIA and cryptotanshinonne from salvia miltrorrhiza Bunge as a case study. Journal of Chromatography A, doi:10.1016/j.chroma.2010.12.118
    [146]曹学丽.高速逆流色谱技术在药物研究开发中的应用.世界科学技术-中医药现代化.2007,9(1):54-58
    [147]宫静静,谢静,沈平孃,等.高速逆流色谱技术在中药及天然产物领域中的应用.中国现代中药.2007,9(1):33-35
    [148]褚琳娜,杨辉华,罗国安,等.膨胀床技术在生物制品领域的应用及其在中药纯化分离中的应用前景展望.中成药.2010,32(10):1770-1775
    [149]Sutherland I A, Fisher D. Role of counter-current chromatography in the modernisation of Chinese herbal medicines. Journal of Chromatography A.2009,1216(4):740-753
    [150]Lu Y B, Ma W Y, Hu R L, et al. Rapid and preparative separation of traditional Chinese medicine Evodia rutaecarpa employing elution-extrusion and back-extrusion counter-current chromatography:Comparative study. Journal of Chromatography A. 2009,1216(19):4140-4146
    [151]Lu Y B, Liu R, Berthod A, et al. Rapid screening of bioactive components from Zingiber cassumunar using elution-extrusion counter-current chromatography. Journal of Chromatography A.2008,1181(1-2):33-44
    [152]Kim D S, Oh S R, Lee I S, et al. Anticomplementary activity of ginseng saponins and their degradation products. Phytochemistry.1998,47(3):397-399
    [153]Attele A S, Wu J A, Yuan C S. Ginseng pharmacology-Multiple constituents and multiple actions. Biochemical Pharmacology.1999,58(11):1685-1693
    [154]Gillis C N. Panax ginseng pharmacology:A nitric oxide link?. Biochemical Pharmacology.1997,54(1):1-8
    [155]Leung K W, Cheung L, Pon Y L, et al. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. British Journal of Pharmacology.2007,152(2):207-215
    [156]Leung K W, Pon Y L, Wong R, et al. Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and beta-catenin/T-cell factor-dependent pathway in human endothelial cells. Journal of Biological Chemistry.2006,281(47):36280-36288.
    [157]Sengupta S, Toh S A, Sellers L A, et al. Modulating angiogenesis-The yin and the yang in ginseng. Circulation.2004,110(10):1219-1225.
    [158]Du Q Z, Wu C J, Qian G J, et al. Relationship between the flow-rate of the mobile phase and retention of the stationary phase in counter-current chromatography. Journal of Chromatography A.1999,835(1-2):231-235
    [159]Sutherland I A. Relationship between retention, linear velocity and flow for counter-current chromatography. Journal of Chromatography A.2000,886(1-2): 283-287
    [160]Wood P L, Hawes D, Janaway L, et al. Stationary phase retention in CCC:Modelling the J-type centrifuge as a constant pressure drop pump. Journal of Liquid Chromatography & Related Technologies.2003,26(9-10):1373-1396
    [161]Sutherland I A, Du Q, Wood P. The relationship between retention, linear flow, and density difference in countercurrent chromatography. Journal of Liquid Chromatography & Related Technologies.2001,24(11-12):1669-1683
    [162]Sutherland I A. Recent progress on the industrial scale-up of counter-current chromatography. Journal of Chromatography A.2007,1151(1-2):6-13
    [163]Yuan Y, Wang B Q, Chen L J, et al. How to realize the linear scale-up process for rapid purification using high-performance counter-current chromatography. Journal of Chromatography A.2008,1194(2):192-198
    [164]Sutherland I, Hewitson P, Ignatova S. Scale-up of counter-current chromatography: Demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale. Journal of Chromatography A.2009,1216(50): 8787-8792
    [165]Ha Y W, Lim S S, Ha I J, et al. Preparative isolation of four ginsenosides from Korean red ginseng (steam-treated Panax ginseng C. A. Meyer), by high-speed counter-current chromatography coupled with evaporative light scattering detection. Journal of Chromatography A.2007,1151(1-2):37-44
    [166]Kanazawa H, Nagata Y, Matsushima Y, et al. Preparative high-performance liquid-chromatography on chemically modified porous-glass-isolation of acidic saponins from ginseng. Journal of Chromatography A.1991,537(1-2):469-474
    [167]于君丽,窦德强,陈晓红,等.人参皂苷-Ro促进小鼠脾细胞增殖及调节小鼠脾细胞Th1/Th2细胞因子的产生(英文).药学学报.2005,40(4):332-336
    [168]H. Matsuda K S M K. Anti-Inflammatory Activity of Ginsenoside Ro.1990,8(56): 19-23
    [169]Teng C M, Kuo S C, Ko F N, et al. Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochimica et Biophysica Acta.1989,990(3):315-320
    [170]刘宏群,刘继永,郑培和,等.人参皂苷Ro的制备及含量测定.特产研究.2010,(1):46-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700