混凝土保护层结构与渗透性现场检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土保护层指最外层钢筋到混凝土外表面之间的一层混凝土,是钢筋混凝土结构的一部分。与混凝土材料相比较,混凝土保护层的结构与渗透性具有特殊性。混凝土保护层是钢筋混凝土结构抵抗外界侵蚀的重要防线,对钢筋混凝土结构的耐久性具有重要意义。本文研究了混凝土保护层的结构与渗透性,以及混凝土保护层渗透性的现场检测方法。研究内容与取得的成果如下:
     (1)采用数字图像分析技术,以毫米为单位,在垂直混凝土保护层表面的一维方向上逐层分析粗骨料的体积含量等分布特征。由于边界效应,混凝土在垂直成型面方向上由外到内粗骨料体积含量逐渐增加,超过边界效应层后,骨料分布趋于均匀。边界效应层的厚度实际上在5mm左右。粗骨料最大粒径对边界效应层厚度的影响并不明显。对于级配良好的粗骨料,控制边界效应层厚度的是粗骨料最小粒径。采用自行设计的试验方法对钢筋的卡阻效应进行了初步研究。在满足规范要求的条件下,钢筋对粗骨料的通过有一定的阻挡作用。这主要表现为保护层混凝土中的粗骨料含量略少,浆体量略多;但是卡阻效应对保护层内的骨料粒径分布影响不大。
     (2)通过对PERMIT离子迁移试验与NEL试验进行对比试验,证明两种方法的实验结果有良好的相关性。PERMIT离子迁移试验方法设备简单,操作方便,试验时间短,可以正确反映保护层混凝土或结构表层混凝土的抗氯离子渗透性。
     (3)通过室内试验并结合青岛海湾大桥工程现场实测,改进了PERMIT试验结果的分析和数据处理方法,提出了用回路最大电流值来计算氯离子扩散系数,简化了PERMIT离子迁移试验方法。PERMIT离子迁移试验方法可以用于评价透水模板布对混凝土保护层抗渗性的改善效果。PERMIT离子迁移试验给出的氯离子扩散系数可以定性地评价混凝土的抗氯离子渗透性,用于混凝土工程的现场质量控制。
The cover concrete is defined as a layer of concrete between the most outside steel bar and the concrete surface. It is a part of the real reinforcement concrete structure. The structure and permeability of cover concrete aredifferent from the bulk concrete. Cover concrete is the most important defensive layer of reinforcement concrete structure to resist environmental deteriorations. The structure and permeability of cover concrete, as well as the in-situ test method for testing the permeability of cover concrete are researched. The main content and results are listed as follows:
     (1) Using digital image processing techonology, along the vertical direction of the concrete surface, the distribution characterics of coarse aggregate are studied millimeter by millimeter. The coarse aggregate volume amount increases from the surface to the inside caused by wall effect. Exceeding the wall effect layer, the distribution characteristics of coarse aggregate become uniform. In fact, the thickness of wall effect layer is about 5mm and the maximum diameter of coarse aggregate does not influence the thickness of wall effect layer obviously. When the grading design of coarse aggregate is reasonable, the thickness of wall effect layer is ones equaling almost to the minimum diameter of coarse aggregate. Using self designed method, the obstruction effect is studied elementarily. Although the neat distance of steel bars meets the request of code, the steel bars still obstruct some coarse aggregates. It behaves that there is more mortar and less aggregate in cover concrete. But the grading is not influenced by the obstruction effect.
     (2) Parallel experiments are carried out for PERMIT ion migration test and NEL test. The experimental results prove that there is a good correlation between them. The PERMIT ion migration test can be carried out quickly and effectively on site with minimum prior planning. It can reflect the permeability of cover concrete or surface concrete correctly.
     (3)Through the laboratory tests and in-situ test in the construction of Qingdao Bay, the analysis and calculation procedure of experimental data is modified and a new equation for calculating the chloride diffusivity using the peak current is given. It can simplified the test and reduce experimental error. The PERMIT ion migration test can be used to evaluate the improving effect of the resistance to the chloride ion penetration caused by CPF. The chloride diffusivity of the PERMIT ion migration test is capable to be used for evaluating the resistance to the chloride ion penetration of cover concrete and controlling the construction quality in-situ.
引文
[1]吴中伟.混凝土耐久性综合症及其防治.混凝土, 1991, (4):4-7.
    [2]中国土木工程学会. CCES 01-2004.混凝土耐久性设计施工指南.北京:中国建筑工业出版社, 2004:37-41.
    [3]廉慧珍,阎培渝.面对混凝土工业可持续发展的挑战.建筑技术, 2004, 35(1): 8-11.
    [4]祝永年.混凝土的结构,性能与材料.上海:同济大学出版社, 1991:72-116.
    [5]贡金鑫,赵国藩.钢筋混凝土结构耐久性研究的进展.工业建筑, 2000, 30(5):1-5.
    [6]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社, 1999:27-29.
    [7]廉慧珍,阎培渝.土木工程中的哲理和混凝土工程技术发展的关系.建筑技术, 2003, 34(1):10-14.
    [8] Rostam S. High performance concrete cover--why it is needed, and how to achieve it in practice. Construction and Building Materials, 1996, 10(5):407-421.
    [9] Kreijger P C. The skin of concrete-composition and properties. Materials and structures, 1984, 17(100):275-283.
    [10] Basheer P A, Long A E, Basheer L, et al. Autoclam permeability system for measuring absorption and permeability of concrete in the laboratory and on site. Proceedings of the International Workshop on Permeability and Durability of Structural Concrete, 2005, Beijing:17-19.
    [11]郑建军,周欣竹.二维圆形骨料分布的边界效应及简单应用.浙江工业大学学报, 2003, 31(1):8-15.
    [12] Zheng J J. Mesostructure of concrete-strereological analysis and some mechanical implications. Delft: Delft University Press, 2000.
    [13]赵良颖,郑建军,周欣竹,等.二维骨料分布边界效应的计算机模拟.建筑材料学报, 2003, 6(3): 301-307.
    [14]陆秀峰,刘西拉,覃维祖.从混凝土二维截面推测骨料粒径分布.岩石力学与工程学报, 2004, 24(17): 3107-3111.
    [15] Marinoni N, Pavese A, Foi M, et al. Characterisation of mortar morphology in thin sections by digital image processing. Cement and Concrete Research, 2005, 35(8):1613-1619.
    [16] Mertens G, Elsen J. Use of computer assisted image analysis for the determination of the grain-size distribution of sands used in mortars. Cement and Concrete Research, 2006, 36(8):1453-1459.
    [17] Tarek Uddin M, Hidenori H. Corrosion of horizontal bars in concrete and method to delay early corrosion. ACI Materials Journal, 2006, 103(5):303.
    [18] Djerbi A, Bonnet S, Khelidj A, et al. Influence of traversing crack on chloride diffusion into concrete. Cement and Concrete Research, 2008, 38(6):877-883.
    [19] Chtistensen R M. Mechanics of composite materials. New York: Wiley-Interscience, 1979.
    [20] Xi Y, Bazant Z P. Modeling Chloride Penetration in Saturated Concrete. Journal of Materials in Civil Engineering, 1999, 11(1):58-65.
    [21] Tang L. Electrically accelerated methods for determining chloride diffusivity in concrete-current development. Magazine of Concrete Research, 1996, 48(176):173-179.
    [22]赵铁军.混凝土渗透性.北京:科学出版社, 2005.
    [23]蒋林华, Zhang M H, Malhotra V M.水泥基材料氯离子渗透扩散性测试技术.建筑材料学报, 2002,5(2):147-154.
    [24]史才军,元强,邓德华,等.混凝土中氯离子迁移特征的表征.硅酸盐学报, 2007, 35(4):522-530.
    [25] American Association of State Highways and Transportation Officials. AASHTO T 277-83. Standard Method of Test for Rapid Determination for The Chloride Permeability of Concrete, 1992.
    [26] American Society for Testing and Materials. ASTM C 1202. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, 1997.
    [27] Nordtest Method. NT Build 443. Accelerated Chloride Penetration ion Hardened Concrete, 1995:54-94.
    [28] Page C L, Short N R , EL-Tarras A. Diffusion of chloride ions in hardened cement pastes. Cement and Concrete Research, 1981, 11(3):395-406.
    [29] Buenfeld N R, Zhang J Z. Chloride Diffusion through Surface-Treated Mortar Specimens. Cement and Concrete Research, 1998, 28(5):665-674.
    [30]杨进波, Wittmann F H,赵铁军,等.混凝土氯离子扩散系数试验研究.建筑材料学报, 2007, 10(2):223-229.
    [31] Andrade C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cement and Concrete Research, 1993, 23(3):724-742.
    [32] Zhang T, Gjorv O E. Effect of ionic interaction in migration testing of chloride diffusivity in concrete. Cement and Concrete Research, 1995, 25(7):1535-1542.
    [33] Zhang T, Gjorv O E. An electrochemical method for accelerated testing of chloride diffusivity in concrete. Cement and Concrete Research, 1994, 24(8):1534-1548.
    [34] Prince W, Gagne R. The effects of types of solutions used in accelerated chloride migration tests for concrete. Cement and Concrete Research, 2001, 31(5):775-780.
    [35] Castellote M, Andrade C, Alonso C. Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber: Comparison with natural diffusion tests. Cement and Concrete Research, 2001, 31(10):1411-1420.
    [36] Tong L, Gjorv O E. Chloride diffusivity based on migration testing. Cement and Concrete Research, 2001, 31(7):973-982.
    [37] Sugiyama T, Tsuji Y, Bremaer T W. Relationship between coulomb and migration coefficient of chloride ions for concrete in a steady-state chloride migration test. Magazine of Concrete Research, 2001, 53(1):13-24.
    [38] Nordtest Method. NT Build 355. Chloride diffusion coefficient from migration cell experiments, 1997.
    [39] Julio-Betancourt G A, Hooton R D. Study of the Joule effect on rapid chloride permeability values and evaluation of related electrical properties of concretes. Cement and Concrete Research, 2004, 34(6):1007-1015.
    [40] Tang L. Concentration dependence of diffusion and migration of chloride ions Part 1. Theoretical considerations. Cement and Concrete Research, 1999, 29(9):1463-1468.
    [41] Tang L. Concentration dependence of diffusion and migration of chloride ions Part 2: Experimental evaluations. Cement and Concrete Research, 1999, 29(9):1469-1474.
    [42] Tang L, Nilsson L. Rapid determination of the chloride diffusivity in concrete by applying an electrical field. ACI Materials Journal, 1992, 89(1):49-53.
    [43] Nordtest Method. NT Build 492. Migration Coefficient from Non-Steady-State Migration Cell Experiments, 1999.
    [44] Streicher P E, Alexander M G. A chloride conduction test for concrete. Cement and Concrete Research, 1995, 25(6):1284-1294.
    [45] Lu X. Application of the Nernst-Einstein equation to concrete. Cement and Concrete Research, 1997, 27(2):293-302.
    [46] Leng F, Feng N, Lu X. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 2000, 30(6):989-992.
    [47]孟振全,吴振琏.表面渗透性对混凝土耐久性的影响.防渗技术, 1997, 3(4):6-10.
    [48]朋改非,刘叶锋,郝挺宇.国内外混凝土表面层渗透性现场测试技术现状:综述.沿海地区混凝土结构耐久性及其设计方法科技论坛与全国第六届混凝土耐久性学术交流会论文集, 2004,深圳.
    [49] Bai Y, Basheer P A M, Hao T Y, et al. A Review of Methods for Measuring Absorption and Permeability of Concrete. Prceedings of International Workshop on Permeability and Durability of Structural Concrete, 2005, Beijing.
    [50] HALL C. Water sorptivity of motars and concrete: a review. Magazine of Concrete Research, 1989, 41:51-61.
    [51] Desouza S J, Hooton R D, Bickley J A. A field test for evaluating high performance concrete covercrete quality. Canadian Journal of Civil Engineering, 1998, 25(3):551-556.
    [52] Dhir R K, Chan Y, Hewlett P C. Near surface characteristics of concrete: assessment and development of in situ test methods. Magazine of Concrete Research, 1988, 145(40):234-243.
    [53] Blight G E, Lampacher B J. Applying covercrete absorption test to in-stu tests on structures. Journal of Materials in Civil Engineering, 1995, 7(1):1-8.
    [54] Claisse P A, Elsayad H I, Shaaban I G. Absorption and sorptivity of cover concrete. Journal of Materials in Civil Engineering, 1997, 9(3):105-110.
    [55] Bai Y, Basheer P A M, Hao T, YAN P, et al. A Review of Methods for Measuring Absorption and Permeability of Concrete. Proceedings of International Workshop on Permeability and Durability of Structural Concrete. 2005, Beijing.
    [56] Claisse P A, Elsayad H I, Shaaban I G. Test methods for measuring fluid transport in cover concrete. Journal of Materials in Civil Engineering, 1999, 11(2):138-143.
    [57] Whiting D. Rapid measurement of the chloride permeability of concrete. Federal Highway Adminstration, 1981, Washington D C.
    [58]王昌义,赵翠华,陈昌林.现场测定混凝土保护层的抗氯离子渗透性能.水运工程, 1991, (9):13-17.
    [59] Japan Society of Civil Engineers Standard. Test Method for Effective Diffusion Coefficient of Chloride Ion in Concrete by Migration, 2003.
    [60] Long A E, Sha'at A A, Basheer P A M. The influence of controlled permeability formwork on the durability and transport properties of nearsurface concrete.Second CEMENT/ACI Internatial Symposium. 1995. Las Vegas, Nevada, USA: Advances in Cncrete Technology.
    [61] Wittmann F H,战红燕,赵铁军.混凝土表面防水处理和氯离子隔离层的建立.建筑材料学报, 2005, 8(1):1-6.
    [62]佟声.国外透水型模板(CPF)的研究与应用.建筑技术开发, 1998, 25(2):51-52.
    [63]傅立容.透水模板在盐田港区三期工程中的应用研究.水运工程, 2004, 369(10):36-39.
    [64]伍军,付香才,于晖.福特斯透水模板布在墩身施工中的应用.桥梁建设, 2006, (3):71-73.
    [65]田正宏,白凯国,朱静.透水模板布改善混凝土表层质量试验研究.东南大学学报(自然科学版). 2008, 31(1):147-150.
    [66] Andrade C, Diez J M, Alonso C. Mathematical Modeling of a Concrete Surface "Skin Effect" on Diffusion in Chloride Contaminated Media. Advanced Cement Based Materials, 1997, 6(2):39-44.
    [67]黄士元. 21世纪初期我国混凝土技术发展中的几个重点问题.混凝土, 2002, (3): 3-7.
    [68]覃维祖.混凝土性能对结构耐久性与安全性的影响.混凝土, 2002, (6):3-5.
    [69]刘加平,唐明述,田倩.裂缝对于混凝土耐久性的影响.工业建筑, 2008, 38(增刊):845-849.
    [70] Khatib J M, Mangat P S. Absorption characteristics of concrete as a function of location relative to position. Cement and Concrete Research, 1995, 25(5):999-1010.
    [71]朱辉,袁迎曙,耿欧,等.不同位置的混凝土保护层氧气扩散系数规律的试验研究.混凝土. 2008, (225):7-10.
    [72]艾伦?威廉斯.钢筋混凝土结构设计(第二版).北京:中国水利出版社, 2002:4-5.
    [73] Metha P K, Mcnteiro P J. Concrete: Microstructure, properties and materials(Third edition). United States:McGraw-Hill Companies, 2006:270-277.
    [74]覃维祖,初龄期混凝土的泌水、沉降、塑性收缩与开裂.商品混凝土, 2006(1):1-4.
    [75]邢锋,冷发光,冯乃谦,等.高性能混凝土骨料数量效应研究.四川建筑科学研究, 2001, 27(2):43-45.
    [76]马一平,谈慕华,朱蓓蓉.涂意美水泥基体参数对砂浆塑性收缩开裂性能的影响.建筑材料学报, 2002, 5(2):171-175.
    [77] Sidney M J, Young F.混凝土.北京:中国建筑工业出版社, 1989:444-445.
    [78]梁萍.混凝土塑性收缩裂缝成因及防裂措施研究综述.商品混凝土, 2007, (5):25-29.
    [79] Aligizaki K K. Pore structure of cement-based materials : testing, interpretation and requirements. Modern concrete technology series. Abingdon [England], New York : Taylor & Francis, 2006.
    [80]覃维祖.结构工程材料.北京:清华大学出版社,1999:40-41.
    [81]李翠玲.混凝土中氯离子扩散系数快速测定方法研究,北京:清华大学土木工程系, 1999:23-25.
    [82]万惠文,杨淑雁,吕艳锋.引气混凝土抗氯离子渗透性与孔结构特性.建筑材料学报, 2008, 11(4):409-413.
    [83]刘文军,王军强.氯离子对钢筋混凝土结构的侵蚀分析.混凝土, 2007, 210(4):20-22.
    [84]陈雷,肖佳,赵金辉.粉煤灰高强混凝土氯离子扩散性能的试验研究.粉煤灰, 2008, (3):6-8.
    [85]曹文涛,余红发,胡蝶.等粉煤灰和矿渣对表观氯离子扩散系数的影响.武汉理工大学学报, 2008, 30(1):48-51.
    [86]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法,南京:东南大学, 2004:123-124.
    [87] Thomas M D A, Bamforth P B. Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cement and Concrete Research, 1999, 29(4):487-495.
    [88]叶建雄,李晓筝,廖佳庆.矿物掺合料对混凝土氯离子渗透扩散性研究.重庆建筑大学学报, 2005, 27(3):89-92.
    [89]杨钱荣.掺粉煤灰和引气剂混凝土渗透性与强度的关系.建筑材料学报, 2004, 7(4):457-461.
    [90]阎培渝.粉煤灰在复合胶凝材料水化过程中的作用机理.硅酸盐学报, 2007, 35(S1):167-171.
    [91]韩建国,阎培渝.多用途混凝土抗氯离子渗透性测定仪的研制及应用.实验技术与管理, 2007, 24(3):63-66.
    [92]韩建国,阎培渝.基于ASTM C1202规范的混凝土抗氯离子渗透性测定仪的研制及应.铁道科学与工程学报, 2006, 3(4):18-22.
    [93] McCarter W J. Influence of surface finish on sorptivity on concrete. Journal of Materials in Civil Engineering, 1993, 5(1):130-136.
    [94]管学茂,孙国文,王玲,等.高性能水泥基材料结合外渗氯离子能力的测试方法对比.混凝土, 2005, (11):36-39.
    [95]中华人民共和国国家标准. GB/T8077-2000.混凝土外加剂均匀性试验方法.
    [96] Svehla G (高立译). Automatic Potentiometric Titrations(自动电位滴定).北京:原子能出版社,1985.
    [97]杨绮琴,方北龙,童叶翔.应用电化学.广州:中山大学出版社. 2001:8-10.
    [98] Nanukuttan S V, Basheer P A M, Robinson D J. Determining the chloride diffusivity of concrete in situ using the Permit ion migration test. Proceedings of ConcretePlatform. UK: Queen’s University of Belfast, Northern Ireland, United Kingdom, 2007.
    [99] Basheer P A M, Andrews R J, Bai Y, Robinson D J, et al. PERMIT ion migration test for determining the chloride ion diffusivity of concrete in the laboratory and on Site. Proceedings of International Workshop on Permeability and Durability of Structural Concrete, Beijing:2005:17-19.
    [100] Basheer P A M, Andrews R J, Robinson D J, et al. 'PERMIT' ion migration test for measuring the chloride ion transport of concrete on site. NDT & E International, 38(3):219-229.
    [101] Crank J. Mathematics of Diffussion. Oxford University: 1975.
    [102] Castellote M, Andrade C, Alonso C. Modelling of the processes during steady-state migration tests: Quantification of transference numbers. Materials and Structures, 1999, 32(217):180-186.
    [103] Keith J L, Meiser J H. Physical Chemistry. California: The Benjamin/Cummings Publishing Company Inc. 1982:280-282.
    [104]吴辉煌.应用电化学基础.厦门:厦门大学出版社. 2006:200-202.
    [105] McCarthy M J, Giannakou A, Jones M R. Specifying concrete for chloride environments using controlled permeability formwork. Materials and Structures, 2001, 34(243):566-576.
    [106] Nolané, Basheer P A M, Long A E. Effects of three durability enhancing products on some physical properties of near surface concrete. Construction and Building Materials, 1995, 9(5):267-272.
    [107] McCarthy M J, Giannakou A. In-situ performance of CPF concrete in a coastal environment. Cement and Concrete Research, 2002, 32(3):451-457.
    [108] Sousa C J. The combined benefits of CPF and RHA in improving the durability of concrete structures. Cement and Concrete Composites, 2003, 25(1):51-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700