水稻耐盐相关性状的发育动态QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上主要的粮食作物,也是我国种植面积最广的作物,然而,土地盐碱化的日益加剧严重影响了水稻的生产发展。实践证明,选育耐盐碱水稻品种是降低盐碱地对水稻产量的影响和发展盐碱地水稻种植的有效手段。利用分子标记技术对耐盐相关性状进行QTL定位分析,深入挖掘控制耐盐相关的QTL及其紧密连锁的分子标记,从分子水平上对水稻耐盐性进行调控,是改良水稻品种耐盐性的有效途径。
     本研究以优质高产水稻品种东农425和耐盐水稻品种长白10为亲本构建的F2:3和BC1F2:3群体为试验材料,构建两个遗传连锁图谱,以浓度为6ds/m的NaCl水溶液进行大田生育期灌溉,考察耐盐相关性状,包括株高、分蘖数、地上部鲜重和干重、Na~+含量、K~+含量和Na~+/K~+。株高和分蘖数从6月21日开始,每7天调查一次,共6次(T1~T6);从6月22日开始,每7天取一次样用于测定地上部鲜重、干重和离子含量,共5次(t1~t5)。以各性状处理和对照的相对值来衡量盐胁迫对水稻生长的影响,并进行上述性状的发育动态QTL定位,主要结果如下:
     1.亲本和群体的株高、分蘖数、茎鲜重、茎干重、叶鲜重和叶干重受盐胁迫的影响在各生长发育时期数值明显变小,增长缓慢。长白10的株高、分蘖数、茎鲜重、茎干重和叶鲜重在盐胁迫下的降低幅度小于东农425,受害相对较轻;而叶干重则无明显差别。
     2.盐胁迫后,水稻根系积累了大量的Na~+,长白10的积累量比东农425高,根Na~+/K~+也比东农425高。根系将多余的Na~+运输到茎和叶,从而造成地上部K~+含量下降。长白10的茎和叶在胁迫后仍可保持相对较高水平的K~+含量和较低水平的Na~+/K~+,其根系能将吸收的Na~+大量存储而限制其向地上部运输,从而减小对地上部的危害。
     3.盐胁迫下,株高、分蘖数、茎鲜重和干重、叶鲜重和干重互相呈极显著正相关,根Na~+/K~+与茎鲜重、茎干重、叶鲜重和叶干重呈极显著正相关,说明高水平的根Na~+/K~+有利于地上部鲜重和干重的积累。茎K~+含量与株高呈正相关,叶K~+含量与株高、分蘖数、茎鲜重、茎干重、叶鲜重和叶干重呈正相关,说明叶K~+含量的提高可促进株高和分蘖数的增加以及地上部鲜重和干重的积累。根Na~+含量与根K~+含量的相关关系不显著,茎Na~+含量与茎K~+含量、叶Na~+含量与叶K~+含量呈显著或极显著负相关,说明地上部Na~+吸收过多会抑制K~+的吸收。
     4.运用MapMaker/EXP3.0和Mapchart2.2作图软件,分别以F2群体(180个单株)和BC1F2群体(118个株系)为作图群体,构建了包含123个SSR标记,全长分别为1616.53和1728.05cM,平均图距为13.14cM和14.05cM的遗传连锁图谱。F2和BC1F2群体每条染色体的标记数均为6~17个,第3染色体标记密度最大。两个图谱的遗传距离分别为62.9~249.62cM和78.2~222cM,标记间平均距离为10.2~17.83cM和11.7~17.55cM。
     5.利用完备区间作图软件QTL ICImapping v2.2,以非条件和条件QTL定位方法,在F2:3和BC1F2:3群体的不同发育时期共检测到30个性状的186个非条件QTL和128个条件QTL,分布在水稻12条染色体上。贡献率超过20%的有qRPH11、qRPH3-1、qRPH8、qRTN5、qRSFW12、qLFW3-2、qRLFW10、qRNC8-3、qRNa/K4、qRRKC7、qSNC2-2、qRSNC7-1、qSKC2、qSNa/K12-1、qRSNa/K12-1、qRSNa/K3、qLNC1、qRLNa/K8-2。利用非条件QTL分析方法只能检测出具有从初始到检测时刻累积效应的QTL,而将非条件和条件QTL分析方法相结合则能检测出更多的QTL。
     6.多个QTL在不同时期同时被检测到,在两个时期同时出现的有43个,在3个时期同时出现的有6个。控制盐胁迫下分蘖数的qTN1-2在T2、T3、T4时期连续出现,控制相对分蘖数的qRTN8-1在T3、T4、T5时期连续出现,控制盐胁迫下茎鲜重的qSFW2在t1→t2、t2→t3、t4→t5时段出现,控制盐胁迫下根K~+含量的qRKC1在t1、t2、t4时期出现,控制根相对K~+含量的qRRKC8-1在t1、t3、t4时期出现,控制根相对Na~+/K~+的qRRNa/K1-1在t1、t2、t3时期连续出现。2个QTL在4个时期被同时检测到,控制相对株高的qRPH7在T3、T4、T5、T6时期连续出现,控制相对分蘖数的qRTN8-2在T1、T2、T3、T5时期同时出现。1个QTL(qRTN5)在T1、T2、T3、T5、T6时期被连续检测到。没有任何一个QTL在所有发育时期被同时检测到。
     7.共有33个QTL同时用非条件和条件的方法检测出,包括qPH1、qRPH7、qRPH11、qTN1-2、qSFW5、qSDW1、qLFW3-2、qLDW1、qLDW8、qLDW12、qRNC8-2、qRRNC8-1、qRRNC8-2、qRRKC8-1、qRRKC10-2、qRNa/K1-1、qRRNa/K1-1、qRRNa/K1-3、qRRNa/K8、qRRNa/K4、qSKC3、qRSKC10、qSNa/K12-1、qSNa/K8、qSNa/K7-2、qRSNa/K7-3、qRSNa/K8、qRLNa/K8-2、qRLNa/K11、qRLNa/K2和qRLNa/K7。这些QTL同时具有初始→t时刻的累积效应和t-1→t时刻的净效应,非条件QTL和条件QTL的相互作用揭示了数量性状基因在不同发育时期的表达机理。
     8.本研究检测到的不同性状的QTL在染色体不同区段有成簇分布的现象,集中了一些耐盐相关QTL位点,可能是因为“一因多效”或控制不同性状的不同基因连锁造成的。在这些QTL簇中还发现前人检测出的多个耐盐相关QTL位点,证明了这些QTL的集中区存在调控水稻耐盐性的关键基因。
     9.检测到8个在F2:3和BC1F2:3群体的同一时期同时出现的QTL。BC1F2:3群体检测的QTL数目较少,可能与群体量小有关,但其检测主效QTL的效率要优于F2:3群体。
     以上在不同时期、不同群体同时出现或与前人检测区间相同的QTL,能在水稻生长发育的不同时期、不同环境以及不同遗传背景下稳定表达,可能在水稻耐盐分子标记辅助选择中具有良好的应用价值。
Rice is not the staple crop in the world, but also has the most widely planting area in China.However, the increasing soil salinization effects on rice production and development in severity.The practice proves that salt tolerance rice breeding is the effective method to reduce the effect ofsaline-alkali land on rice yield and develop rice cultivation in saline-alkali land. QTL mappingusing molecular marker technology for salt tolerance-related traits, excavation the salttolerance-related QTLs and their closely linked molecular markers, regulation salt tolerance atmolecular level are effective ways to improve the salt tolerance of rice varieties.
     In this study, F2:3and BC1F2:3populations derived from the parents of good quailty and highyield variety Dongnong425and salt tolerance variety Changbai10were used as experimentalmaterials, and two genetic linkage maps were constructed. NaCl solution (6ds/m) was used toirrigate in field child-bearing period, and investigated the salt tolerance-related traits includingplant height, trilling number, fresh and dry weight of shoot, Na~+, K~+content and Na~+/K~+. Plantheight and trilling number were investigated every seven day from June21, total six times(T1~T6). Sample was collected every seven day from June22to determine the fresh weight, dryweight in aerial part and the ion content, total five times (t1~t5). The relative trait value oftreatment and control was used to measure the effect of salt stress on rice growth, anddevelopmental dynamic QTL mapping for the above traits was performed. The main results wereas follows:
     1. Plant height, trilling number, stem fresh and dry weight, leaf fresh and dry weight of parentand populations decreased obviously and growed slowly affectting by salt stress in each of thegrowth and development period. Plant height, tillers number, stem fresh and dry weight, leaf dryweight of Changbai10decreased less than those of Dongnong425under salt stress, and thedamages were relatively mild, but the leaf dry weight had no significant difference
     2. Profuse Na~+was accumulated in root after salt stress. The Na~+and Na~+/K~+accumulation ofChangbai10was higher than that of Dongnong425in root. The excessive Na~+was transportedfrom root to stem and leaf, and cut down the K~+content in aerial part. K~+content in relatively highlevel and Na~+/K~+in low level were maintained by the stem and leaf of Changbai10after salt stress.Considerable Na~+absorbed by Changbai10was storaged in root and limited its transport to shoot,thereby reduced the harm of aerial part.
     3. Plant height, trilling number, stem fresh and dry weight, leaf fresh and dry weight werehighly significant positive correlated with each other under salt stress. Root Na~+/K~+was highlysignificant positive correlated with stem fresh weight, stem dry weight, leaf fresh weight and leafdry weight, indicating that the high Na~+/K~+level was profited to the accumulation of fresh weightand dry weight in aerial part. Stem K~+content was positive correlated with plant height, and leafK~+content was positive correlated with plant height, trilling number, stem fresh weight, stem dryweight, leaf fresh weight and leaf dry weight, indicating that the elevation of leaf K~+content wasprofited to the increase of plant height and trilling number, and also the accumulation of fresh weight and dry weight in aerial part. The correlation between root Na~+content and root K~+contentwas not significant, but stem Na~+content was significant or highly significant negative correlatedwith stem K~+content, the same as leaf Na~+content and leaf K~+content, indicating that the hyperabsorption of Na~+in aerial part could suppress the absorption of K~+.
     4. Genetic linkage maps were constructed using MapMaker/EXP3.0and Mapchart2.2mappingsoftware, and F2(180single plant) and BC1F2(118lines) as the mapping populations. The mapscontained123SSR markers, and the full-length is1616.53and1728.05cM, the average distanceis13.14and14.05cM, respectively. Marker numbers on each chromosome of F2and BC1F2population were6to17, and the marker density on the chromosome3was max. The geneticdistances of the two maps were62.9~249.62and78.2~222cM, and the average distances betweenmarkers were10.2~17.83and11.7~17.55cM.
     5. Complete interval mapping software QTL IciMapping v2.2and unconditional andconditional QTL mapping methods were employed to detect the QTL. A total of186unconditionalQTLs and128conditional QTLs of30traits were detected distributing on the12ricechromosomes in F2:3and BC1F2:3groups during different developmental stages. QTLs whichcontribution rate exceeded20%were qRPH11、qRPH3-1、qRPH8、qRTN5、qRSFW12、qLFW3-2、qRLFW10、qRNC8-3、qRNa/K4、qRRKC7、qSNC2-2、qRSNC7-1、qSKC2、qSNa/K12-1、qRSNa/K12-1、qRSNa/K3、qLNC1、qRLNa/K8-2. The unconditional QTL method could onlydetects a cumulative effect QTL from initial time to detection time, while the combination ofunconditional and conditional QTL analysis methods could detects more QTLs.
     6. Multiple QTLs were detected at the same time at different stages.43QTLs appearedsimultaneously in two stages,6QTLs appeared simultaneously in three stages. qTN1-2whichcontrols tillers number under salt stress appeared continuously in T2、T3and T4stages; qRTN8-1which controls relative tillers number appeared continuously in T3、T4and T5stages; qSFW2which controls stem fresh weight under salt stress appeared in1→t2、t2→t3and t4→t5stages;qRKC1which controls root K~+content appeared in t1、t2and t4stages; qRRKC8-1which controlsroot relative K~+content appeared in t1、t3and t4stages; qRRNa/K1-1which controls root relativeNa~+/K~+appeared in t1、t2and t3stages. Two QTLs were detected in four stages: qRPH7whichcontrols relative plant height appeared in T3, T4, T5and T6stages; qRTN8-2which controlsrelative tiller number appeared in T1, T2, T3and T5stages. The QTL qRTN5was continuouslydetected in T1, T2, T3, T5and T6stages. There was no any QTL detected in all developmentalstages.
     7. A total of33QTLs were detected using unconditional and conditional methodssimultaneously, including qPH1, qRPH7, qRPH11, qTN1-2, qSFW5, qSDW1, qLFW3-2, qLDW1,qLDW8, qLDW12, qRNC8-2, qRRNC8-1, qRRNC8-2, qRRKC8-1, qRRKC10-2, qRNa/K1-1,qRRNa/K1-1, qRRNa/K1-3, qRRNa/K8, qRRNa/K4, qSKC3, qRSKC10, qSNa/K12-1, qSNa/K8,qSNa/K7-2, qRSNa/K7-3, qRSNa/K8, qRLNa/K8-2, qRLNa/K11, qRLNa/K2and qRLNa/K7.These QTLs had not only the cumulative effect of the initial→t moment but also the net effect oft-1→t moment. The interaction of unconditional and conditional QTLs revealed the expressionmechanism of quantitative trait genes at different developmental stages.
     8. Phenomenon of QTLs distribution in cluster on different chromosome segments was detectedin different traits, and concentrated some salt tolerance QTL sites. It might be caused of“pleiotropic QTL” or genetic linkage of different traits controlled by different genes. Some salttolerance-related QTL sites detected by predecessors were found among these QTL clusters, it proved that the key salt tolerance-related genes of rice exsisted in these QTL concentrated regions.
     9. Eight QTLs in F2:3and BC1F2:3populations were detected simultaneously during the samestages. Few QTLs were detected by BC1F2:3population for the potential reason of its smallpopulation, but its efficiency of major QTL detection is better than that of F2:3population.
     The above QTLs appeared simultaneously at different stages, different populations or had thesame detection interval with predecessors, could express stably during the different stages,different environments in rice growth and development, and also in the different geneticbackgrounds. They may have the favourable value in marker-assisted selection of rice salttolerance.
引文
[1]高继平,林鸿宣.水稻耐盐机理研究的重要进展一耐盐数量性状基因SKC1的研究[J].生命科学,2005,17(6):563-565.
    [2]胡时开,陶红剑,钱前,等.水稻耐盐性的遗传和分子育种的研究进展[J].分子植物育种,2010,8(4):629-640.
    [3]李彬,王志春,孙志高,等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):152-158.
    [4]Flowers T J, Yeo A R.Breeding for salinity tolerance in crop plants[J].Aust J Plant Physiol,1995,22:875-884.
    [5]俞仁培.我国盐渍土资源及其开发利用[J].土壤通报,1999,30(4):l58-159.
    [6]Lauchli A,Lüttge U.Salinity: Environment-Plants-Molecules[M].Boston:Boston KluwerAcademic Publishers,2002,21-23.
    [7]Tanji K K.Agricultural salinity assessment and management[M].New York:American Societyof Civil Engineers,1990,1-112.
    [8]杨春武.虎尾草和水稻抗碱机制研究[D].长春:东北师范大学,2010.
    [9]Hasegawa P M,Bressan R A,Zhu J K,et al.Plant cellular and molecular responses to Highsalinity[J].Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499.
    [10]Tester M,Davenport R J.Na+tolerance and Na+transport in higher plants[J].Annals ofBotany,2003,91:503-527.
    [11]Moran J F,Becana M.Drought induces oxidative stress in pea plants[J].Planta,1994,94:346-352.
    [12]Prasad S R,Bagali P Q,Hittalmani S,et al.Molecular mapping of quantitative trait lociassoeiated with seedling tolerance to salt stress in rice (Oryza sativa L)[J].Curr Sci,2000,78:162-164.
    [13]任艳萍,古松,江莎.温度、光照和盐分对外来植物黄顶菊种子萌发的影响[J].云南植物研究,2008,30(4):477-484.
    [14]Salman G,Ajmal K M.Seed germination of a halophytic grass Aeluropzrs lagopoides[J].Annals of Botany,2001,87(3):319-324.
    [15]Rehman S.The effect of sodium chloride on the Ca2+、K+and Na+concentrations of the seedcoat and embryo of Acacia tortillas[J].Annuals of Applied Biology,1998,133:269-279.
    [16]苏永全,吕迎春.盐分胁迫对植物的影响研究简述[J].甘肃农业科技,2007,5(3):23-27.
    [17]李彦,张英鹏,孙明,等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报,2008,24(1):258-265.
    [18]郑光华.蔬菜大棚蔬菜栽培生理障碍[M].上海:上海科学出版社.1984.
    [19]孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报,1998,10(3):118-124.
    [20]梁正伟,杨富,王志春,等.盐碱胁迫对水稻主要生育性状的影响[J].生态环境,2004,13(1):43-46.
    [21]许兴,李树华,惠红霞,等.NaCI胁迫对小麦幼苗生长、叶绿素含量及Na+、K+吸收的影响[J].西北植物学报,2002,22(2):278-284.
    [22]苗济文,马云瑞,罗代雄,等.土壤盐分对宁夏春小麦的影响[J].西北农业学报,1995,4(3):81-84.
    [23]Grieve C M,Francois I E,Maas E V.Salinity affects the tinting of phasic development inspring wheat[J].Crop Sci,1994,34:1544-1549.
    [24]Ramaly A L,Stroehlein J L,Pessarakli M.Effect of salt stress on dry matter production andnitrogen uptack by tomatoes[J].Joural of Plant Nutrition,1990,13(5):573-577.
    [25]王新伟.同盐浓度对马铃薯试管苗的胁迫效应[J].马铃薯杂志,1998,12(4):203-207.
    [26]董晓霞,赵树慧,孔令安,等.苇状羊茅盐胁迫下生理效应的研究[J].草业科学,1998,15(5):10-13.
    [27]郭洪海,董晓霞,孔令安,等.盐胁迫下饲料酸模植株生长及其与Na+、K+、Cl-的关系[J].山东农业科学,1998,6:26-29.
    [28]杨少辉,季静,王是宋,等.盐胁迫对植物影响的研究进展[J].分子植物育种,2006,4(3):139-142.
    [29]刁西成,刁西文.保护地黄瓜形态诊断技术[J].北方园艺,1995(4):6-10.
    [30]潘瑞炽.植物生理学[M].第五版,北京:高等教育出版社,2004.
    [31]华春,王仁雷.盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响[J].山东农业大学学报(自然科学版),2004,35(1):27-31.
    [32]张兆英,于秀俊.植物抗盐性评价生理指标的分析[J].沧州师范专科学校学报,2006,22(4):51-53.
    [33]刘国花.植物抗盐机理研究进展[J].安徽农业科学,2006,34(23):6111-6112.
    [34]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点[D].2006,4-10.
    [35]Roger R L.Pressure regulation of the electrical properties of growing Arabidopsis thalianaroot hairs[J].Plant Physiol,1996,112:1089-1100.
    [36]Chen W,Zou D,Guo W et al.Effects of salt stress on growth, photosynthesis and soluteaccumulation in three poplar cultivars [J].Photosynthetica,2009,47(3):415-421.
    [37]秦毓茜.分析抗盐机理,探求植物抗盐途径[J].长春理工大学学报,2010,5(8):103-104.
    [38]Munns R.Comparative physiology of salt and water stress[J].Plant cell Environ,2002,25:239-250.
    [39]冯峰,王育鹏,张震.水杨酸通过一氧化氮信号诱导抗氧化防护来提高小麦幼苗根部耐盐性[J].2008,24(9):248-252.
    [40]Sreenivasulu N,Ramanjulu S,Ramachandra-Kini K,et al.Total peroxidase activity andperoxidase isoforms as modified by salt stress in two cultivars of fox-tail millet withdifferential salt tolerance[J].Plant Sci,1999,141:1-9.
    [41]Drolet G.Radical scavenging properties of polyamine in tomato ovaries[J].Plant Physiol,1986,25:367-371.
    [42]孙兰菊,岳国峰,王金霞,等.植物耐盐机制的研究进展[J].海洋科学,2001,25(4):28-31.
    [43]Yoshida K.Plant Biotechnology-Genetie Engineering to Enhance Plant Salt Tolerance[J].Journal of bioscience and bioengineering,2002,94(6):585-590.
    [44]Schachtman D P,Schroeder J I.Structure and transport mechanism of a high-affinitypotassium uptake transporter from higher plants[J].Nature,1994,370:655-658.
    [45]Amtmann A,Fischer M,et al.The wheat cDNA LCT1generates hypersensitivity to sodiumin a salt sensitive yeast strain[J].Plant Physiol,2001,126:1061-1071.
    [46]Liu Q,Zhang Y,Chen S,et al.Plant protein kinase genes induced by drought,high salt andcold stresses[J].Chinese Science Bulletin,2000,45(13):1153-1157.
    [47]Rubio F,Gassmann W,Sehroeder J I.Sodium-driven potassium uptake by the plantpotassium transporter HKT1and mutations conferring salt tolerance[J].Science,1995,270:1660-1663.
    [48]Gassmann W,Rubio F,et al.Alkali cation selectivity of the wheat root high-affinityPotassium transporter HKT1[J].Plant,1996,10:869-882.
    [49]Fairbairn D J, Liu W H, Schachtman D P,et al.Characterisation of two distinct HKT1likepotassium transporters from Eucalyptus camaldulensis[J].Plant Mol Biol,2000,(43):515-525.
    [50]邵群,丁同楼,韩宁,等.高亲和K+转运载体(HKT)与植物抗盐性[J].植物生理学通讯,2006,6(42):l-7.
    [51]Davenport R J,et al.A weakly voltage-dependent,nonselective cation channel mediates toxicsodium influx in wheat[J].Plant Physiol,2000,122:823-834.
    [52]Nakamura I, Agarie S, Tobita S, et al. Salt tolerance of the chloroplast thylakoid membrane inwildoryzaspecies latifolia Desv[J].Japanese J Crop Sci,2004,73(1):84-92.
    [53]祁栋灵,郭桂珍,李明哲,等.水稻耐盐碱性生理和遗传研究进展[J].植物遗传资源学报2007,8(4):486-493.
    [54]程艳松,杨会,侯丽宏,等.三个拟南芥抗盐基因在玉米基因组中整合、表达及抗盐性能的研究[J].中国农学通报,2008,24(2):211-218.
    [55]Nakamura I,Agarie S,Tobita S,et al.Salt tolerance of the chloroplast thylakoid membranein wildoryzaspecies latifolia Desv[J].Japanese J Crop Sci,2004,73(1):84-92.
    [56]Wu S J,Zhu J K,et al.SOS1,a genetic locus essential for salt tolerance and potassiumacquisition[J].Plant Cell,1996,8:617-627.
    [57]吴平,印莉萍,张立平,等.植物营养分子生理学[M].北京:科学出版社,2001:163-181.
    [58]Ren Z H,Gao J P,Li L G,et al.A rice quantitative trait locus for salt tolerance encodes asodium transporter[J].Nature Generics.2005,37(10):1141-1146.
    [59]Hajibagheri M A,Yeo A R,et al.Salinity resistance in Zea mays,fluxes of potassium,sodium and chloride,cytoplasmic concentrations and microsomal membrane lipids[J].PlantCell and Environment,1989,12:753-757.
    [60]Abdellatif B, Aniento F, Cornejo M J.Uptake of an endocytic marker by rice cells: variationsrelated to osmotic and saline stress[J].Plant and Cell Physiol,2003,44(10):1100-1111.
    [61]马建华,郑海雷.植物耐盐的分子生物学基础[J].生物学杂志,2007,7(l):5-8.
    [62]张慧,周骏马,郭岩,等.水稻突变体M-20的耐盐生理特性[J].植物生理学报,1997,23(2):181-186.
    [63]谢国生,朱伯华,彭旭辉,等.水稻苗期对不同pH值下NaCl和NaHCO3胁迫响应的比较[J].华中农业大学学报,2005,25(2):121-124.
    [64]Nguyen T T H,Ie S S,Kobayashi K,et al.Accumulation of some nitrogen compounds inresponse to saltstress and their relationshipswith salt tolerance in rice (oryza satival. L)[J].Seedling. Plant Growth Regulation,2003,41(2):159-164.
    [65]Munns R,Tester M.Mechanisms of salinity tolerance[J].Annu Rev Plant Biol,2008,59,651-681.
    [66]Wang Y M,Meng Y L.Changes in glycine betaine and related enzyme contents inAmaranthus tricolor under salt stress[J].J Plant Physiol Mol Biol,2004,30(5):496-502.
    [67]陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报,2001,18(5):587-596.
    [68]孙伟泽,韩博,胡晓宁,等.不同浓度盐胁迫下苜蓿丙二醛含量变化[J].安徽农业科,2009,37(5):1905-1911.
    [69]Mei H W,Li Z K,Shu Q Y,et al.Gene actions of QTLs affecting several agronomic traitsresolved in a recombinant inbred rice population and two backcross populations[J].TheorAppl Genet.2005Feb,110(4):649-658.
    [70]蒋洪蔚,刘春燕,高运来,等.作物QTL定位常用作图群体[J].生物技术通报,2008增刊:12-17.
    [71]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].2001,北京:科学出版社.
    [72]郑菲菲.小麦“糯麦1号×藁城8901”RIL群体遗传图谱构建和主要农艺及品质性状的QTL定位[D].泰安:山东农业大学,2012.
    [73]Wan Y,et al.Efficient production of doubled haploid plants through colchicine treatment ofanther-derived maize callus[J].Theor Appl Genet,1989,77:889-892.
    [74]雷武逵.植物遗传多样性的利用及其检测方法[J],广西农学报,2008,23(4):55-58.
    [75]贾小丽.化感水稻的遗传图谱构建及其QTL定位[D].福建农林大学硕士学位论文,2006.
    [76]王霖.小麦遗传连锁图谱构建及主要农艺和品质性状QTL定位[D].泰安:山东农业大学,2012.
    [77]巩鹏涛.基于SSR标记锚定策略的大豆分子连锁图的整合[D].广西大学硕士学位论文,2006.
    [78]刘纪麟.玉米育种学(第二版)[M].北京:中国农业出版社,2000.
    [79]丁秀兰,江玲.利用重组自交系群体检测水稻条纹叶枯病抗性基因及QTL分析[J].遗传学报,2004,31(3):287-292.
    [80]Yano M,Sasaki T.Genetic and molecular dissection of quantitative traits in rice[J].PlantMolecular Bio,1997,35:145-153.
    [81]Thomson M J,Edwards J D,Septiningsih E M,et al.Substitution mapping of QTL, aflowering time QTL associated with transgressive variation in rice, reveals multiplesub–QTLs[J].Genetics,2006,172:2501-2514.
    [82]Wan X Y,Wan J M,Jiang L,et al.QTL analysis for rice grain length and fine mapping of anidentified QTL with stable and major effects[J].Theor Appl Genet,2006,112:58-70.
    [83]刘学军,童继平,李素敏,等.DNA标记的种类、特点及其研究进展[J].生物技术通报,2010,7:35-40.
    [84]Beckmann J S,Soller M.Restricition fragment length polymorphisms in plant geneticimprovement[J].Oxford Surveys of Plant Molecular and Cell Biology,1986,118(3):196-250.
    [85]Grodzicker T,Williams J,Sharp P,et al.Physical mapping of temperature sensitive mutationsof adenoviruses[J].Cold Spring Harbor Symp Quant Biol,1974,39:439-446.
    [86]贾继增,张正斌,Devos K,等.小麦21条染色体RFLP作图位点遗传多样性研究[J].中国科学(C辑),2001,31(1):13-21.
    [87]Wang G L,Mackill D J,et al.RFLP mapping to genes conferring complete and pattialresistance to blast in a durably resistant rice cultivar[J].Genetics.1994Apr,136(4):1421-1434.
    [88]Sun C Q,Wang X K,Li Z C,et al.Comparison of the genetic diversity of common wild rice(Oryza Rufipoqon Griff.) and cultivated rice (O.sativa L.) using RFLP markers[J].TheorAppl Genet,2001,102:157-162.
    [89]朱作峰,孙传清,付永彩,等.用SSR标记比较亚洲栽培稻与普通野生稻的遗传多样性[J].中国农业科学,2002,35(12):1437-1441.
    [90]Bernardo R,Romero-Severson J,et al.Parental contribution and coefficient of coancestryamong maize inbreedings:pedigree,RFLP,and SSR[J].Thero Appl Genet,2000,100:552-556.
    [91]Bryan G.T,Wu K,Farrall L,et al.A single amino acid difference distinguishes resistantand susceptible alleles of the rice blast resistance gene Pi-ta[J].Plant Cell,2000,12:2033-2045.
    [92]Williams J G K,Kubclik A R,Livak K J.DNA polymorphisms amplified by arbitrary primersare useful as genetic marker[J].Nucleic Acids Res,1990,18:6231-6235.
    [93]Ballinger C,Black I V,Miller B,et al.Use of genetic polymorphisms detected by RAPD-PCRfor differentiation and identification of Aedes aegypti subsepecies and population[J].TropMed.Hyg,1992,47(6):893-901.
    [94]Zabeau M,Vos P.Selective restriction fragment amplification,a general method for DNAfingerprints[P].Eurpean Patent Application,1993,0534855.
    [95]Vos P,Hoger R,Sleeker M.AFLP:a new technique for DNA fingerprinting[J].Nucleic AcidsRes,1995,23(21):4407-4414.
    [96]Dong N V,Subudhi P K,Luong P N,et al.Moleculer mapping of a rice gene conditioningthermosensitive genic male sterility using AFLP,RFLP and SSR technique[J].Theor ApplGenet,2000,100:724-734.
    [97]Tautz D.Hypervariability if simple sequences as a general source for polymorphic DNAmarkers[J].Nucleic Acids Re,1989,17:6463-6471.
    [98]李莉,杨剑波, Mackill D J,等.水稻SSR不同检测和分析方法的比较[J].中国水稻科学,2000,14(3):185-188.
    [99]Morgante M,Olivieri A M.PCR amplified microsatellites as markers in plant genetics[J].Plant J.1993,3(1):175-182.
    [100]Sun D S,Li W B,Zhang Z C,et al.Quantitative trait loci analysis for the developmentalbehavior of soybean (Glycine maxL Merr)[J].Theor Appl Genet,2006,112:665-673.
    [101]Neelu J,Sunita J,Navinder S,et al.SSR Analysis of Chromosome8Regions Associatedwith Aroma and Cooked Kernel Elongation in Basmati rice[J].Euphytica,2006,15:20-25.
    [102]Sun D S,Li W B,Zhang Z C,et al,Quantitative trait loci analysis for the developmentalbehavior of soybean (Glycine maxL Merr)[J].Theor Appl Genet,2006,112:665-673.
    [103]Zhao X,Kochert G.Phylogenetic distribution and genetic mapping of an (GGC) microsatellite from Rice (Oryza Sati cal L)[J].Plant Mot Biol,1993,21:607-614.
    [104]唐荣华,张君诚,吴为人.SSR分子标记的开发技术研究进展[J].西南农业学报,2002,15(4):106-109.
    [105]Schlotterer C,Amos B,Tautz D.Conservation of polymorphic simple sequence loci incetacean species[J].Nature,1991,354(6348):63-65.
    [106]Can Li,Yu Zhang,Kai Ying,et al.Sequence variations of sequence repeats onchromosome-4in two subspecies of Asian cultivated rice[J].Theor Appl Genet,2004,108:392-400.
    [107]Temnykh S,Park W D,Ayres N,et al.Mapping and Genome Organization of MicrosatelliteSequences in Rice (Oryza Sativa L)[J].Theor App1Genet,2000.100:697-712.
    [108]Russell J R,Fuller J D,Macaulay M,et a1.Direct Comparison of Levels of GeneticVariation among Barley Accessions Detected by RFLPs,AFLPs,SSRs and RAPDs[J].TheorAppl Genet,1997.93:714-722.
    [109]Zietkiewicz E,Rafalski A,Labuda D.Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification[J].Genomics,1994,20:176-183.
    [110]Reddy M P,Sarla N,Siddiq E A.Inter simple sequence repeat (ISSR) polymorphism and itsapplication in plant breeding[J].Euphytica,2002,128:9-17.
    [111]Danin Poleg Y,Tzri G,Reis N.Report Cucurbit Genetics Cooperative[J].1998,(21):25-28.
    [112]Mochida K,Yamazaki Y,Ogihara Y.Discrimination of homoeologous gene expression inhexaploid wheat by SNP analysis of contigs grouped from a large number of expressedsequence tags[J].Mol Gen Genomics,2003,270:371-377.
    [113]Chee M,Yang R,Hubbell E,et al.Accessing genetic information with high density DNAarrays[J].Science,1996,274(2287):610-614.
    [114]Sax K.The Association of Size Differences With Seed-coat Pattern and Pigmentation inPhaseolus Vulgaris[J].Genetics.1923,8:552-560.
    [115]Thoday J M.Location of Polygenes[J].Nature,1961,191:368-370.
    [116]Paterson A H,Lander E S,Hewitt J D et al.Resolution of Quantitative Traits into MendelianFactors by using a Complete Linkage Map of Restriction Fragment LengthPolymorphism[J].Nature,1988,335:721-726.
    [117]Kearsey M J.The principles of QTL analysis (a minimal mathematics approach)[J].J.Exp.Bot.1998,49:1619-1623.
    [118]Stuber C W,Edwards M D,Wendel J F.Molecular-facilitated Investigations ofQuantitative-trait Loci in Maize. II Factors Influencing Yield and its ComponentTraits[J].Crop Sci.1987,27:639-648.
    [119]徐云碧等.分子数量遗传学[M].北京:中国农业出版社.2001.
    [120]利用三个重叠重组自交系精细定位棉花染色体24部分区段的纤维品质及产量性状QTL[D].南京:南京农业大学,2009.
    [121]Lander E S,Green P,Abrahamson J,et al.Mapmaker:An interactive Computer Packagefor Constructing Genetic Linkage Maps of Experimental and NaturalPopulation[J].Genomics.1987.(1):174-181.
    [122]Jansen R C.Interval mapping of multiple quantitative trait loci[J].Genet,1993,135:205-211.
    [123]Zeng Z B.Precision Mapping of Quantitative Trait Loci[J].Genetics.1994,136(4):43-48.
    [124]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(自然科学版),1999,33(3):327-344.
    [125]高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179.
    [126]王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245.
    [127]Li H H,Ye G Y,Wang J K.A modified algorithm for the improvement of composite intervalmapping[J].Genetics Society of America,2007,175:361-374.
    [128]Zhu J.Analysis of conditional genetic effects and variance components in developmentalgenetics[J].Geneties,1995,141:1633-1639.
    [129]吴为人,李维明,卢浩然.数量性状基因座的动态定位策略[J].生物数学学报,1997,12(5):490-498.
    [130]Atchley W R,Zhu J.Developmental quantitative genetics, conditional epigenetic variabilityand growth in mice[J].Genetics,1997,147:765-776.
    [131]Ye Z H,Lu Z Z,Zhu J.Genetic analysis for developmental behavior of some seed qualitytraits in upland cotton(Gossypum hirsutum L.)[J].Euphytica,2003,129:183-191.
    [132]严建兵,汤华,黄益勤,等.不同发育时期玉米株高QTL的动态分析[J].科学通报,2003,48(18):1959-1964.
    [133]Shi C H,Wu J G,et al.Developmental genetic analysis of brown rice weight under differentenvironmental conditions in indica rice[J].Acta Botanica Sinica,2001,43:603–609.
    [134]Guo L B,Xing Y Z,Mei H W,et al.Dissection of component QTL expression in yieldformation in rice[J].Plant Breed,2005,124:127-132.
    [135]Yan J Q,Zhu J,He C X,et al.Molecular dissection of development behavior of plant heightin rice(Oryza sativa L)[J].Genetics,1998a,150:1257-1265.
    [136]Yan J Q,Zhu J,He C X,et al.Quantitative trait loci analysis for the developmental behaviorof tiller number in rie (Oryza sativa L.)[J].Theor Appl Genet,1998b,97:267-274.
    [137]周蓉,陈海峰,王贤智,等.不同发育阶段大豆株高和茎粗QTL的动态分析[J].植物遗传资源学报,2010,11(3):349-359.
    [138]刘宗华,汤继华,王春丽,等.氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位[J].作物学报,2007,33(5):752-759.
    [139]刘宾.小麦主要农艺性状的条件和非条件QTL定位[D].泰安:山东农业大学,2011.
    [140]Yeo A R,Yeo M E,Flowers S A,et al.Screening of rice genotypes for Physiologicalcharacters contributing to salinity resistance and their relation ship to over allperformance[J].Theor Appl Genet,1990,79:377-384.
    [141]Akbar M,et al.Breeding for saline resistant varieties of rice.Inheritance of delayed-typepanicle sterility induced by salinity[J].Jap J Breed,1977,27:237-240.
    [142]Gregorio G B,Senadhira D,Mendoza R D.Sereening rice for salinity tolerance.IRRIdiscussion Paper series No.22.International Rice Research Institute.1997,Manila1099,Philippines.
    [143]秦忠彬,赵守仁,张月平.耐盐水稻不同生育期耐盐性的研究[J].作物抗逆性鉴定的原理与方法.北京:北京农业大学出版社,1989,279-288.
    [144]方先文,汤陵华,王艳平.耐盐水稻种质资源的筛选[J].植物遗传资源学报.2004,5(3):295-298.
    [145]林鸿宣,柳原城司,庄杰云,等.应用分子标记检测水稻耐盐性的QTL[J].中国水稻科学,1998,12(2):72-78.
    [146]龚继明,何平,钱前,等.水稻耐盐性QTL的定位[J].科学通报,1998,43(17):1847-1850.
    [147]龚继明,郑先武,杜保兴,等.控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究[J].中国科学C辑,2000,30(6):561-569.
    [148]顾兴友,梅曼彤,严小龙,等.水稻耐盐性数量性状位点的初步检测[J].中国水稻科学,2000,14(2):65-70.
    [149]Takehisa H,Shimodate T,Fukuta Y,et al.Identification of quantitative trait loci for plantgrowth of rice in Paddy field flooded with salt water[J].Field Crops Research,2004,89:85-95.
    [150]孙勇,藏金萍,王韵,等.利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL[J].作物学报,2007,33(10):1611-1617.
    [151]汪斌,兰涛,吴为人.盐胁迫下水稻苗期Na+含量的QTL定位[J].中国水稻科学,2007,21(6):585-590.
    [152]藏金萍,孙勇,王韵,等.利用回交导入系剖析水稻苗期和分蘖期耐盐性的遗传重叠[J].中国科学C辑:生命科学,2008,38(9):84-850.
    [153]蒋靓,於卫东,庄杰云,等.水稻盐胁迫下农艺和生理性状的遗传分析(简报)[J].分子细胞生物学报,2008,41(4):317-322.
    [154]杨静,孙勇,程立锐,等.利用双向导入系群体检测遗传背景对耐盐QTL定位的影响[J].作物学报,2009,35(6):974-982.
    [155]钱益亮,王辉,陈满元,等.利用BC2F3产量选择导入系定位水稻耐盐QTL[J].分子植物育种,2009,7(2):224-232.
    [156]Kim D M,Ju H G,Kwon,et al.Mapping QTLs for salt tolerance in an introgression linepopulation between Japonica cultivars in rice[J].J. Crop Sci. Biotech,2009,12(3):121-128.
    [157]Sabouri H,Rezai A M,Moumeni A,et al.QTLs mapping of physiological traits related tosalt tolerance in young rice seedlings[J].Biologia Plantarum,2009,53(4):657-662.
    [158]Thomson M J,Ocampo M,Egdane J,et al.Characterizing the Saltol quantitative trait locusfor salinity tolerance in rice[J].Rice,2010,3:148-160.
    [159]Pandit A,Rai V,Bal S,et al.Combining QTL mapping and transcriptome profiling ofbulked RILs for identification of functional polymorphism for salt tolerance genes in rice(Oryza sativa L.)[J].Mol Genet Genomics,2010,284:121-136.
    [160]Wang Z F,Cheng J,Chen Z W,et al.Identification of QTLs with main, epistatic and QTL×environment interaction effects for salt tolerance in rice seedlings under diifferent salinityconditions[J].Theor Appl Genet,2012,125:807-815.
    [161]Lin H X,Zhu M Z,Yano M,et al.QTLs for Na+and K+up-take of the shoots and rootscontrolling rice salt tolerance.Theor Appl Genet,2004,108:253-260.
    [162]Ren Z H,Gao J P,Li L G,et al.A rice quantitative trait locus for salt tolerance encodes asodium transporter[J].Nat Genet,2005,37:1141-1146.
    [163]Prasad S R,Bagali P G,Hittalmani S,et al.Molecular mapping of quantitative trait lociassociated with seedling salt tolerance stress in riee(OryzasativaL)[J].Curr Sci,2000,78:162-164.
    [164]Koyama M L,Levesley A,Koebner R M D,et al.Quantitative trait loci for componentphysiological traits determining salt tolerance in rice[J].Plantphysiol,2001,125:406-422.
    [165]Yao M Z,Vang J F,et al.Inheritance and QTL mapping of salt tolerance in rice[J].RiceScience,2005,12(l):25-32.
    [166]周红菊,穆俊祥,赵胜杰,等.水稻高世代回交导入系耐盐性的遗传研究[J].分子植物育种,2005,3(5):716-720.
    [167]Lee S Y,Ann J H,Cha Y S,et al.Mapping QTL related to salinity tolerance of rice at theyoung seedling stage[J].Plant Breeding,2007,126:43-46.
    [168]Wang Z F,Wang J F,BaoY G,et al.Quantitative trait loci controlling rice seed germinationunder salt stress[J].Euphytica,2011,178:297-307.
    [169]何慈信,朱军,严菊强,等.水稻穗干物质重发育动态QTL定位[J].中国农业科学,2000,33(1):24-32.
    [170]何慈信,朱军,严菊强,等.水稻叶挺长发育动态的QTL分析[J].中国水稻科学,2000,14(4):193-198.
    [171]杨永霞,Pathak P K,朱军.水稻苗重的耐冷性动态QTLs定[J].浙江大学学报(农业与生命科学版),2005,31(2):131-138.
    [172]杨权海,王春明,胡茂龙,等.水稻剑叶全氮含量及其变化的遗传分析[J].中国水稻科学,2005,19(l):7-12.
    [173]程桂平,冯九焕,刘向东,等.利用栽培稻和普通野生稻BC2F2群体对分蘖数QTL的动态分析[J].华南农业大学学报,2008,29(4):1-5.
    [174]赵芳明,刘桂富,朱海涛,等.用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位[J].中国农业科学2008,41(2):322-330.
    [175]Ye Z H,Wang J,Liu Q,et al.Genetic relationships among panicle characteristics of rice(Oryza sativa L.) using unconditional and conditional QTL analyses [J].J.Plant Biol,2009,52:259-267.
    [176]江建华,赵其兵,刘强明,等.利用条件QTL定位发掘粳稻生育期和株高及单株有效穗数适用有利等位变异[J].中国水稻科学,2011,25(3):277-283.
    [177]Zheng L N,Zhang W W,Chen X G,et al.Dynamic QTL analysis of rice protein content andprotein index using recombinant inbred lines[J].J.Plant Biol,2011,54:321-328.
    [178]刘健,牛付安,江建华,等.多环境下粳稻产量及其相关性状的条件和非条件QTL定位[J].中国水稻科学,2012,26(2):144-154.
    [179]刘进,王嘉宇,姜树坤,等.水稻叶绿素含量动态QTL分析[J].植物生理学报,2012,48(6):577-583.
    [180]Munns R. Genes and salt tolerance: bringing them together [J].New Phytologist,2005,167:645-663.
    [181]龚继明,郑先武,杜保兴,等.控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究[J].中国科学C辑,2000,30(6):561-569.
    [182]Gregorio G B,Senadhira D,Mendoza R D,et al.Progress in breeding for salinity toleranceand associated abiotie stress in rice[J].Field Crops Research,2002,76:91-101.
    [183]Zaidem M L,Mendoza R D,Trmimbang E B,et al.Genetic variability of salinity toleranceat different growth stages of rice//PBGB2003Annual Report. Las Banos,Philippines:IRRI,2004:19-20.
    [184]潘晓飚,黄善军,陈凯,等.大田全生育期盐水灌溉胁迫筛选水稻耐盐恢复系[J].中国水稻科学,2012,26(1):49-54.
    [185]Bradshaw H D,Stettler R F.Molecular genetics of growth and development in Populus:IV.Mapping QTLs with large effects on growth, form, and phenology traits in a foresttree[J].Genetics,1995,139:963-973.
    [186]王宝山,赵可夫.小麦叶片中Na、K提取方法的比较[J].植物生理学通讯,1995,31(1):50-52.
    [187]McCouch S R,Cho Y G,Yano M,et al.Report on QTL Nomenclature[J].Rice GenetNewsl,1997,14:11-13.
    [188]Tester M,Davenport R J.Na+tolerance and Na+transport in higher plants[J].Annals ofBotany,2003,91:503-527.
    [189]Munns R,Termaat A.Whole plant responses to salinity[J].Australian Journal of PlantPhysiology,1986,13:143-160.
    [190]Sayed A,Gadalla A.Effects of shoot and ronaldot application of thiamin on salt-stressedsunflower plants[J].Plant Growth Regulation,2001,33:1-5.
    [191]Sahi C,Singh A,Kumar K,et al.Salt stress response in rice:genetics, molecular biology,and comparative genomics[J].Funct Integr Genomics,2006,,6:263-284.
    [192]Singh A K,Ansari M W,Pareek A,et al.Raising salinity tolerant rice: recent progress andfuture perspectives[J].Physiol. Mol. Biol. Plants,2008,14:137-154.
    [193]陈惠哲,朱德峰,林贤青,等.盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究[J].植物生态学报,2007,31(5):937-945.
    [194]Hussan N,Ali A,Sarwar G,et al.Mechanism ofsalt tolerance in rice[J].Pedosphere,2003,13(3):233-238.
    [195]王仁雷,华春,罗庆云,等.盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降[J].植物生理与分子生物学学报,2002,28(5):385-390.
    [196]郑少玲,严小龙.盐胁迫下不同水稻基因型根内Na+和Cl-的分布情况比较[J].华南农业大学学报,1996,17(4):24-28.
    [197]王宝山,邹琦,赵可夫.NaCl胁迫对高粱不同器官离子含量的影响[J].作物学报,作物学报,2000,26(6):845-850
    [198]王学征,李秋红,吴凤芝.NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性[J].中国农业科学,2010,43(7):1423-1432.
    [199]王晓冬,王成,马智宏,等.短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响[J].生态学报,2011,31(10):2822-2830.
    [200]於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响[J].作物学报,2001,27(6):776-780.
    [201]赵芳明,刘桂富,朱海涛,等.用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位[J].中国农业科学2008,41(2):322-330.
    [202]刘丽,李卫华,刘伟,等.小麦谷蛋白膨胀指数发育动态的QTL分析[J].中国农业科学,2008,41(11):3838-3844.
    [203]孙德生,李文滨,张忠臣,等.大豆株高发育动态QTL分析[J].作物学报,2006,32(4):509-514.
    [204]Atehley W R,Zhu J.Developmental quantitative genetic,conditional epigenetic variabilityand growth in rice[J].Genetics,1997,147:765-776.
    [205]严建兵,汤华,黄益勤,等.同发育时期玉米株高QTL的动态分析[J].科学通报,2003,48(18):1959-1964.
    [206]Haq T U,Akhtar J,Gorham J,et al.Genetic mapping of QTLs, controlling shoot fresh anddry weight under salt stress in rice (Oryza sativa L.) cross between Co39×Moroberekan[J].2008,Pak. J. Bot,40(6):2369-2381.
    [207]任永哲,徐艳花,贵祥卫,等.盐胁迫下调控小麦苗期性状的QTL分析[J].中国农业科学,2012,45(14):2793-2800.
    [208]覃鸿妮,晏萌,王召辉,等.玉米籽粒中花色苷和黑色素含量的QTL分析[J].作物学报,2012,38(2):275-284.
    [209]王琳,刘方,黎绍惠,等.鲁棉研15号纤维品质性状QTL定位研究[J].棉花学报,2012,24(2):97-105.
    [210]周丽慧,赵春芳,赵凌,等.利用染色体片段置换系群体检测水稻叶片形态QTL[J].中国水稻科学,2013(27):26-34.
    [211]谢学文,许美容,藏金萍,等.水稻抗纹枯病QTL表达的遗传背景及环境效应[J].作物学报,2008,34(11):1885-1893.
    [212]王韵,程立锐,孙勇,等.利用双向导入系解析水稻抽穗期和株高QTL及其与环境互作表达的遗传背景效应[J].作物学报,2009,35(8):1386-1394.
    [213]井赵斌,潘大建,曲延英,等.AB-QTL分析法及在水稻优异基因资源发掘和利用中的应用[J],分子植物育种,2008,6(4):637-644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700