在体构建组织工程软骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分利用一种新型的组织工程室在体构建组织工程软骨的实验研究
     实验一兔自体耳廓软骨细胞的分离培养与鉴定的实验研究
     目的:探讨兔耳廓软骨细胞分离、培养的方法及其传代过程中细胞形态、细胞外基质的变化。方法:取兔耳廓软骨采用胰蛋白酶结合Ⅱ型胶原酶消化的方法进行分离、培养及鉴定。结果:原代培养的软骨细胞呈多角形,第4代开始细胞表型发生改变。细胞培养3代以内,仍能保持表型及生物学特性的稳定。结论:采用二种或多种酶联合消化的方法可缩短消化时间,提高细胞纯度及培养效率;本实验培养的第2代新西兰大白兔耳廓软骨细胞,具备很强的增殖及分泌合成细胞外基质的能力,能提供实验所需的足量软骨细胞。适用于软骨组织工程的研究。
     实验二体外构建软骨细胞-支架复合物的实验研究
     观察比较胶原凝胶及PLGA胶原凝胶复合支架在体外对兔耳廓软骨细胞黏附、分化及增殖的效果。方法:构建软骨细胞/胶原凝胶和软骨细胞/PLGA胶原凝胶复合物,并进行体外培养观察。通过大体形态、组织学、扫描电镜观察两者在体外培养过程中形成软骨的能力。结果:术后14天,接种在不同支架上的软骨细胞复合物均形成了白色新生软骨样组织;扫描电镜可见软骨细胞呈圆形,在支架材料内均匀分布,黏附及生长良好,分泌大量的细胞外基质;HE切片见复合物中软骨细胞分布均匀,细胞外基质融合成片;甲苯胺蓝及番红“O”细胞外基质特异性染色呈阳性。结论:体外培养环境下,软骨细胞在胶原凝胶及PLGA凝胶支架材料上都能维持正常生长及合成细胞外基质的能力,但是其在体内及长期效果还有待于进一步实验研究。
     实验三利用在体组织工程室构建组织工程软骨的实验研究
     目的:初步探索我科自主研制的新型多孔硅胶组织工程室内渗液微环境是否能支撑软骨细胞-支架复合物的存活及生长,构建组织工程软骨的可行性。方法:将构建好的软骨细胞-支架复合物置入组织工程室内,再植入实验兔背部皮下,无需和血管沟通;对照组无组织工程室,直接将复合物植入同一实验兔背部皮下。术后8周进行大体形体观察、组织学及免疫组织化学染色、RT-PCR检测。结果:通过大体形体、组织学及免疫组织化学染色、RT-PCR检测结果,显示在实验兔背部皮下组织工程室内,构建的软骨细胞-支架复合物均形成了软骨样组织;而直接植入实验兔背部皮下的复合物最终消失或者形成一纤维化的结节。结论:本实验打破了目前大多数在体组织工程室需要血管化的思路,在具有免疫活性的动物体内无需和血管沟通,应用自主研制的新型多孔硅胶组织工程室内微环境成功构建了自体组织工程软骨,为软骨组织工程技术过渡到临床应用提供了理论依据。
     第二部分构建无外支架组织工程软骨修复肋软骨供区缺损的实验研究
     实验一兔骨髓间充质干细胞的分离培养和鉴定的实验研究
     目的:探讨兔骨髓间充质干细胞(bone marrow mesenchymal stemcells,BMSCs)分离、培养及其鉴定的方法。方法:应用密度梯度离心和贴壁筛选法分离、培养兔BMSCs,观察兔BMSCs的生长特点、形态学特征,体外经成软骨、成脂肪和成骨诱导液分别诱导BMSCs向软骨、脂肪和骨细胞分化。并进行甲苯胺蓝、油红“O”及茜素红染色。结果:采用密度梯度离心和贴壁筛选相结合的方法,可以简单有效地获取大量高纯度,增殖能力强的BMSCs,可以向软骨、骨、脂肪等细胞成功分化。结论:采用密度梯度离心和贴壁筛选相结合的方法是培养兔BMSCs简便有效的方法,可以满足进一步实验的要求。
     实验二BMSCs膜片的构建及其成软骨诱导的实验研究
     目的:探讨应用连续培养及简单的机械方法,培养获取BMSCs膜片,并在体外向软骨细胞定向诱导。方法:将兔BMSCs在成软骨诱导条件下,连续培养14天,用细胞刮刀沿培养皿底壁外周向中心仔细刮擦,获得完整的细胞膜片。经组织学、电镜等方法检测细胞膜片的理化特性。结果:应用连续培养及细胞刮刀可获得完整的BMSCs膜片。在成软骨诱导培养条件下,BMSCs仍快速增殖,形成的细胞膜片经HE染色显示其由6-8层细胞组成,甲苯胺蓝、番红“O”染色呈阳性;电镜下可见细胞分布均匀、紧密排列,分泌细胞外基质。结论:通过连续培养及简单的机械方法可以有效获取BMSCs膜片,BMSCs膜片具有体外成软骨分化的潜能,有望用来构建组织工程软骨。
     实验三成软骨诱导BMSCs膜片修复肋软骨供区缺损的实验研究
     目的:采用兔胸廓损伤动物模型,观察成软骨诱导的BMSCs膜片对肋软骨供区再生修复的影响。方法:16只实验兔随机分成4组(每组4只)。切取各实验组兔双侧4-6肋一段肋软骨,缺损部位采取3种不同方法处理,①不缝合软骨膜;②BMSCs膜片折叠数层成圆筒状填塞入肋软骨缺损处缝合;③成软骨诱导的BMSCs膜片同法折叠数层成圆筒状填塞入肋软骨缺损处,缝合封闭缺损,3种方法在各实验组兔两侧肋软骨中两两配对,健康对照组不做处理。术后16周后处死动物取材进行大体观察,常规HE染色,测量各实验组兔肋软骨的平均宽度,并行生物力学检测测定所有肋软骨的抗压强度及弯曲强度。结果:各实验组家兔的胸廓整体形态均较良好,各组及各处理方法之间并无明显差别。方法1处理的修复组织平均宽度显著大于健康对照组肋软骨的平均宽度(P <0.01),方法2、3处理的修复组织平均宽度与健康对照组肋软骨平均宽度相比无显著性差异(P>0.05);生物力学检测显示:3种处理方法之间均存在差异(P<0.01),方法3处理的修复组织的抗压、弯曲强度与健康对照组比较差异无统计学意义(P>0.05),方法1,2处理的修复组织的抗压、弯曲强度明显低于健康对照组(P<0.01),方法2处理的修复组织的抗压、弯曲强度优于方法1;组织切片HE染色病理观察,可见方法1、2处理的修复组织主要为纤维组织,方法3处理的修复组织内,可见新生的软骨细胞和大量的软骨细胞外基质。结论:成软骨诱导的BMSCs膜片可以促进肋软骨供区软骨细胞的再生,修复肋软骨供区缺损,维持胸廓的正常形态和稳定性,从而降低术后胸廓畸形的发生率。
Use of Autologous Chondrocytes and Bioinert PerforatedChambers to Tissue-Engineer Cartilage In Vivo
     1. The study of isolation,culture and identification of rabbit chondrocytes
     Objective: Auricular chondrocytes were isolated from the earscartilages of newzealand white rabbits with the methods of collagenase Ⅱandtrypsin enzymatic digestion. Methods: chondrocytes were harvested from rabbitears by enzymatic digestion. The morphological changes of cell and growthfeatures were observed through the phase-contrast microscope every day. Thechondrocytes were indentified with toluidine blue staining and chondrocytesgrowth curve was depicted. Results: Chondrocytes could be isolatedsuccessfully with collagenase Ⅱ and trypsindigestion.The primarily culturedchondrocytes were polygonal, and became dedifferentiated after3passages. Thechondrocytes maintained the morphology and histological staining patternwithin the first3passages. Conclusions: The study showed that the method of isolation and culture of chondrocytes was simple and feasible. The secondpassage chondrocytes grow well and are suitable for experiment.
     2. Design and fabrication of the chondrocytes/Collagen andchondrocytes/PLGA-Collagen In Vitro
     Objective: To compare the effect between the Collagen gel andPLGA/Collagen gel hybrid scaffolds as vehicles for chondrogenesis in vitro.Methods: P2rabbit auricular chondrocytes(RACS) were seeded into thescaffolds;(1) RACSwere seeded into Collagen gel scaffold;(2) RACSwereseeded into PLGA/Collagen gel scaffold.After culturing for14days in vitro,thesamples were evaluated by HE, toluidine blue, safranin-O staining, andelectronical microscope scanning. Results: RACS/Collagen gel andRACS/PLGA gel samples formed white cartilage-like tissue in vitro when theywere harvested14days later. HE,toluidine blue and safranin-O staining showedthe chondrocytes were surrounded by much ECM. It was observed thatchondrocytes attached, growed, and proliferated well on the scaffold by SEM.Conclusions: These results indicated that collagen gel and PLGA gel scaffoldswere suitable for use and the two kinds of scaffolds can be used fortissue-engineering cartilage construction.
     3. Using bioinert perforated chambers to tissue engineer cartilage in vivo
     Objective: To explore the potential applications of a chamber for invivo tissue engineering, and to establish a novel model for in vivotissue-engineered cartilage. Methods: Four experimental groups were includedin this study:(A) chambers+chondrocytes/collagen gel;(B) chambers+chondrocytes/PLGA gel;(C) chondrocytes/collagen gel alone; and (D) chondrocytes/PLGA gel alone. Groups C and D served as controls. The sampleswere implanted subcutaneously in the donor rabbit, and the contents wereharvested at8weeks after implantation. Results: Histological andimmunohistochemical staining and RT-PCR results revealed regeneratedcartilage-like tissue in group B and small, irregularly shaped islands ofopalescent tissue in group A. In contrast, the control groups displayed vascularinvasion and inflammatory reaction, which eventually led to fibrosis andabsorption. Conclusions: Reproduced cartilages were obtained in animmunocompetent animal model through the use of a bioinert perforatedchamber.
     Recreating Engineering-Cartilage Without Scaffolds OnCostal Cartilage Repair and Regeneration
     1. The study of isolation, culture and identification of rabbits bone marrowmesenchymal stem cells
     Objective: To culture and amplify rabbit bone marrow mesenchymalstem cells (BMSCs) by using density gradient centrifugation combiningadherent cultivation method, and to identify them. Methods: The growth andmorphology of BMSCs were observed by phase-contrast microscope. TheBMSCs growth curve was depicted by MTT; chondrogenic inductor, adiposeinductor and osteogenic inductor were used to induce the BMSCs intochondrocytes, adipocytes and osteoblast in vitro. The differentiated cells wereidentified by toluidine blue, oil red O and alizarin red staining respectively.Results: The BMSCs could be obtained by the density gradient centrifugationcombining adherent cultivation method and the BMSCs could be differentiated into chondrocytes, adipocytes and osteoblasts after induction treatment.Conclusions: The density gradient centrifugation combining adherentcultivation method was a relatively simple and feasible way which could isolateand culture BMSCs. The BMSCs could proliferate and multi-differentiate verywell.This suggested that BMSCs were superior seed cells for cartilage tissueengineering.
     2. Fabrication and chondrogenic differentiation of BMSCs Sheet
     Objective: To obtain BMSCs sheet using continuous culturecombining simple mechanical method and to assess the feasibility ofchondrogenic differentiation. Methods: BMSCs were cultured in the culturemedium supplemented with chondrogenic inductor for14days.The harvestedcell sheets were evaluated by histological and scanning electronical microscope.Results: The intact BMSCs sheet could be gained by continuous culture andsimple mechanical method. HE staining showed that the cell sheet was made of6to8layers of cells. The safranin-O, toluidine blue staining showed positiveresults and scanning electron microscope examination revealed that the cellsarranged closely and the matrix secreted abundantly. Conclusions: The studyindicated that the BMSCs sheet could be generated by using this simpletechnique, and the sheet could differentiate into chondrocytes..
     3. The Effects of chondrogenic BMSCs Sheet on Costal Cartilage Repairand Regeneration
     Objective: The purpose of the study was to investigate the effects ofchondrogenic BMSCs Sheet on costal cartilage repair and regeneration. Methods: Sections of the costal cartilage of16male rabbits were removed withthe costal perichondrium and the costal cartilage junction was intactly left. Therabbits were treated with three different methods: Method1: The costalperichondrium was left unsutured; Method2: The costal perichondrium wassutured to form a tubular structure after the implantation of alone BMSCs Sheet;Method3: The costal perichondrium was sutured to form a tubular structure afterthe implantation of chondrogenic BMSCs Sheet. The specimens were harvestedafter16weeks postoperatively. Results: The average width of the costal cartilagein the method1group was significantly wider than that of the control group(P<0.01). The biomechanical strength of the costal cartilage in themethod1,2groups were significantly weaker than that of the control group (P<0.01); No obvious differences in the average widths and the biomechanicalstrength were tested between the method3group and that of the control group(P>0.05).HE-stained results showed the repaired tissues in1、2methods weremainly fibrous cartilages, and new cartilage-like tissue regneneration could befound in the3method group, The chondrocyte-like cells were surrounded bythe abundant cartilaginous matrix in the regenerated cartilage. Conclusions: Ourstudy has indicated that chondrogenic BMSCs Sheet could promote theregneneration of new cartilage, which significantly enhanced the strength of therepaired tissue, strengthened the stability of the thorax, and thus, indirectlyreduced the incidence of thoracic deformities.
引文
[1] Cronin TD, Ascough BM. Silastic ear construction [J]. Clin Plast Surg,1978,5(3):367-378.
    [2] Ohmori S. Reconstruction of microtia using the Silastic frame[J].Clin PlastSurg1978,5(3):379-387.
    [3] Wellisz T. Reconstruction of the burned external ear using a Medporporous polyethylene pivoting helix framework[J].Plast Reconstr Surg1993,91(5):811-818.
    [4] Williams JD, Romo T III, Sclafani AP, Cho H. Porous high densitypolyethylene implants in auricular reconstruction[J].Arch Otolaryngol HeadNeck Surg1997,123(6)123:578-583.
    [5]赵守琴,戴海江,郭继周,郑雅丽.Medpor支架全耳郭再造术及支架外露原因分析[J].首都医科大学学报,2005,26(3):252-254.
    [6]李青峰,刘凯.耳再造术后Medpor支架外露的治疗[J].中华整形外科杂志,2004,(20)1:72-73.
    [7] Cherubino P,Grassi FA,Bulgheroni P,Ronga M. Autologous chondrocyteimplantation using a bilayer collagen membrane a preliminary report[J].J Orthop Surg,2003,11(1):10-15.
    [8]曹谊林,商庆新.软骨、骨组织工程的现状与趋势[J].中华创伤杂志,2001,17(1):7-9.
    [9] Eiselt P,Kim BS,Chack B. Development of technologies aiding large-tissueengineering[J]. Biotechnol Prog,1998,14(1):134-140.
    [10] Morritt AN, Bortolotto SK, Dilley RJ,Han X,Kompa AR,McCombe D,Wright CE,Itescu S,Angus JA,Morrison WA.Cardiac Tissue engineering inan in vivo vascularized chamber[J].Circulation,2007,115(3):353-360.
    [11] Hussey AJ,Winardi M,Wilson J,Forster N,Morrison WA,Penington,KnightKR,Feeney SJ.Pancreatic islet transplantation using vascularised chamberscontaining nerve growth factor amelio-rates hyperglycaemia in diabeticmice[J].Cells Tissues Organs,2010,191(5):382-393.
    [12] Hofer SO, Knight KM, Cooper-White JJ, O’Connor AJ,Perera JM, Romeo-Meeuw R, Penington AJ,Knight KR,Morrison WA,Messina A.Increasingthe volume of vascularized tissue formation in engineered constructs: anexperimental study in rats[J].Plast Reconstr Surg2003,111(3):1186-92,discussion1193-1194.
    [13] Lokmic Z, Stillaert F,Morrison WA,Thompson EW,Mitchell GM.Anarteriovenous loop in a protected space generates a permanent, highlyvascular, tissue engineered construction[J].FASEB J,2007,21(2):511-522.
    [14] Rophael JA,Craft RO,Palmer JA,Hussey AJ,Thomas GP,MorrisonWA,PeningtonAJ,Mitchell GM. Angiogenic growth factor synergism in amurine tissue engineering model of angiogenesis and adipogenesis[J].Am JPathol,171(6):2048-2057.
    [15] Okano T, Yamada N, Sakai H, Sakurai Y.A novel recovery system forcultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide)[J]. J Biomed Mater Res,1993,27(10):1243-1251.
    [16] Nishida K, Yamato M, Hayashida Y, Watanabe K,Yamamoto K,AdachiE,Nagai S,Kikuchi A,Maeda N,Watanabe H,Okano T,Tano Y. Cornealreconstruction with tissue-engineered cell sheets composed of autologousoral mucosal epithelium[J]. N Engl J Med,2004,351(12):1187-1196
    [17] Ohki T, Yamato M, Murakami D, Takagi R,Yang J,Namiki H,OkanoT,Takasaki K.Treatment of oesophageal ulcerations using endoscopictransplantation of tissue-engineered autologous oral mucosal epithelial cellsheets in a canine model[J].Gut,2006,55(12):1704-1710.
    [1]汪良能,高学书主编.整形外科学,第一版.北京:人民卫生出版社,1989,9:44-45.
    [2]禹克俊.自体游离骨膜移植修复关节软骨缺损的研究进展[J],光明中医,2009,24(7):1407-1408.
    [3]王永胜,雷庆良,申健亮,许佑杰,廖志华.骨膜移植在创伤性关节软骨缺损治疗中的应用[J].中国医师杂志,2006,增刊6(7):146-147.
    [4] Brittberg M, Nilsson A, Lindahl A, Ohisson C,Peterson L.Rabbit articularcartilage defects treated with autologous cultured chondrocytes[J].ClinOrthop1996,326:270-83.
    [5] Andreas H. Gomoll, Tom Minas. Indications and Technique of AutologousChondrocyte Transplantation[J]. Semin Arthro,2007,18(6):129-139.
    [6] Peterson L, Brittberg M, Kiviranta I, Akerlund EL,Lindahi A. Autologouschondrocyte transplantation. Biomechanics and long-term durability[J]. AmJ Sports Med,2002,30(1):2-12.
    [7] Minas T, Peterson L. Advanced techniques in autologouschondrocytetransplantation[J]. Clin Sports Med,1999,18(1):13-44,v-vi.
    [8] Egli RJ, Bastian JD, Ganz R, Hofstetter W,Leuing M. Hypoxic expansionpromotesthe chondrogenic potential of articular chondrocytes[J].J OrthopRes.2008,26(7):977-985.
    [9] Bruder SP, Jaiswal N, Ricalton NS,Mosca JD,Kraus KH,Kadiyala S.Mesenchymal stem cells in osteobiology and applied bone regeneration.Clin Orthop Relat Res,1998,(355Suppl):S247-256.
    [10]许鹏,郭雄.培养自体软骨细胞移植修复软骨缺损的分子生物学基础[J].中华创伤杂志,1999,15(4):104-106.
    [11] Marlovits S, Zeller P, Philipp S,Resinger C,Vecsei V. Cartilage repair:Generations of autologous chondrocyte transplantation. European Journalof Radiology,2006,57(1):24–31.
    [12] Tian Li, Fan Ni-na, Tian Xiao-ye. mesenchymal stem cells for repairingarticular cartilage. Journal of Clinical Rehabilitative Tissue EngineeringResearch,2009,13(46):9041-9043.
    [13]田力,范妮娜,田晓晔,梁晓鹏,汪卓,李娜.骨髓间充质干细胞定向诱导移植修复关节软骨[J].中国组织工程研究与临床康复,2009,13(46):9041-9044.
    [14]杨壮群,侯成群,常晓峰,王奕,许援朝.同种软骨移植后基质动态变化的实验研究[J].中国美容医学,1997,6(1):14-17.
    [15] Fred Langer, Allane Gross. Immunogenicity of Allograft Articular Cartilage[J]. J Bone Joint Surg,1974,56(2):297-304.
    [16] Maury AC,Safir O,Las HF,Pritzker KP,Gross AE.Twenty-five yearchondrocyte viability in fresh osteochondral allograft:a case report.J BoneJoint Surg Am,2007,89(1):159-165.
    [17] Jamali AA,Hatcher SL,You Z.Donor cell survival in a fresh osteochondralallograft at twenty-nine years:a case report.J Bone Joint Surg Am,2007,89(1):166-169.
    [18] Seth K,WilliamsA,David A. Prolonged storage effects on the articularcartilage of fresh human osteochondral allografts[J]. The Journal of Boneand Joint Surgery,2003,11:2111.
    [19] Scott T,David A, Seth K. The effects of storage on fresh humanosteochondral[J]. Allografts Clin Orthop,2004,418:246–252.
    [20]王洪,周游,李宝兴,马亮,袁文旗,李艳军,崔树北.冷冻同种异体骨软骨移植修复大面积关节软骨缺损的可行性研究[J].华中科技大学学报:医学版,2007,36(4):485-488.
    [21] Verwoerd CD,Adriaansen FC,vd Heul RO,Verwoerd-Verhoef HL.Poroushydroxyapatite perichondrium graft in cricoid reconstruction[J].ActaOtolaryngol,1987,103(5-6):496-502.
    [22] Kobayashi M, Chang YS, Oka M. A two year in vivo study of polyvinylalcohol-hydrogel (PVA-H) artificial meniscus[J].Biomaterials,2005,26(16):3243-3248.
    [23] Williams S. Mechanical testing of a new biomaterial for potential use as avascular graft and art icular cartilage replacement[J].Georgia:GeorgiaInstitute of Technology,2006,11(4):165-169.
    [24] Bavaresco VP, de Carvalho Zavaglia CA, de Carvalho Reis M, MalmongeSM. Devices for use as an artificial articular surface in joint prostheses orin the repair of osteochondral defects[J].Artif Organs,2000,24(3):202-205.
    [25]曹罡,陶凯,毛天球,曹军,郭婷,陆斌,席庆.生物降解性组织工程支架材料可吸收性珊瑚羟基磷石[J].医学研究生学报,2005,18(3):212-214.
    [1] Donahue HJ,Guijak F,Vander Molen MA,Mcleod KJ,Rubin CT,Grande DA,Brink PR. Chondrocytes isolated from mature articular cartilage retain thecapacity to form functional gap junetions[J].J Bone Miner Res,1995,10(9):1359-1364.
    [2]陈书军,计宁综等.软骨组织工程种子细胞研究进展[J].实用医学杂志,2006,22(6):724-726.
    [3] Saadeh P B, Brent B, Mehrara B J, Steinbrech DS,Ting V,GittesGK,Longaker MT. Human cartilage engineering: chondrocyte extraction,proliferation,and characterization for construct development[J].Ann PlastSurg,1999,42(5):509-513.
    [4]张晨,王玉彬,柏树令,高景恒.改良的软骨组织块培养法[J].实用美容整形外科杂志2000,11(2):63-65.
    [5] Guillot PV, Cui W, Fisk NM, Polak DJ. Stem cell differentiation andexpansion for clinical applications of tissue engineering[J].J Cell Mol Med,2007,11(5):935-44.
    [6] Wakitani S, Goto T, Prneda SJ,Young RG,Mansour JM,CaplanAL,Goldberg VM.Multipotent mesenchymal stem cells from adult rabbitssynovial membrane[J].J Bone Joint Surg(Am),2004,76(3):579-592.
    [7] Nawata M, Wakitani S, Nakaya H,Tanigami A,Seki T,Nakamura Y,SaitoN,Sano K,Hidaka E,Takaoka k.Use of bone morphogenetic protein2anddiffusion chambers to engineer cartilage tissue for the repair of defects inarticular cartilage[J].Arthritis Rheum,2005,52(1):155-163.
    [8] Fuchs JR,Hannouche D,Terada S,Zand S,Vacanti JP,Fauza DO.Cartilageengineering from ovine umbilical cord blood mesenchymal progen-itorcells[J]. Stem Cells,2005,23(7):958-964.
    [9] Hou Ke-dong, Xu Wen-jing, Zhang Li.To study chondrogenic induction ofmesenchymal stem cells derived from Wharton jelly of human umbilicalcord[J].Chinese Journal of Orthopaedics,2007,27(12):930-935.
    [10] Zhou Wi,Freed, Curt R. Adenoviral gene delivery can reprogram humanfibroblasts to induced pluripotent stem cells[J].Stem Cells,2009,27(11):2667–2674.
    [11] Baker M. iPS cells: potent stuff. Nat Methods.2010;7(1):17-9.
    [12]裴国献,魏宽海,金丹.组织工程学实验技术[M].北京:人民军医出版社,2006:139-142.
    [13] Nishida K,Yamato M,Hayashida Y,Watanabe K,Yamamoto K,AdachiE,Nagai S,Kikuchi A,Maeda N,Watanabe,Okano T,Tano Y.Cornealreconstruction with tissue–engineered cell sheets composed of autologousoral mucosal epithelium[J]. N Engl J Med,2004,351(12):1187-1196
    [14] Yang J,Yamato M, Shimizu T,Sekine H,Ohashi K,Kanzaki M,OhkiT,Nishida K, OkanoT.Reconstruction of functional tissues with cell sheetengineering[J]. Biomaterials,2007,28(34):5033–5043.
    [15] L’Heureux N, Dusserre N, Konig G, Victor B,Keire P,Wight TN,ChronosNA,Kyler AE,Gregory CR,Hoyt G,Robbins RC,McAllister TN. Humantissue-engineered blood vessels for adult arterial revascularization[J]. NatMed,2006,12(3):361–365.
    [16]刘方军,曹谊林,刘伟,崔磊,夏万尧,钟斌,刘德莉,吴娟娟.基因转染技术提高体内构建组织工程化软骨质量的实验研究[J].中国临床复,2003,7(6):918-919.
    [17]黄伟春,张其清.骨与软骨组织工程进展[J].中华整形外科杂志,2000,16(4):239-242.
    [18] Griffon DJ,Sedighi MR,Sendemir-Urkmez A,Stewart AA,JamisonREvaluation of vacuum and dynamic cell seeding of polyglycolic acid andchitosan scaffoids for cartilage engineering[J].Am J Vet Res,2005,66(4):599-605.
    [19]王跃,杨志明,解慧琪,李胜富.组织工程化软骨的应力—应变研究[J].生物医学工程学杂志,2001,18(2):181-184.
    [20] Eiselt P. Kim BS. Chack B Development of technologies aiding large-tissueengineering[J].Biotechnol Prog,1998,14(1):134-140.
    [21] Lokmic Z, Stillaert F, Wayne A,Thompson EW,Mitchell GM.Anarteriovenous loop in a protected space generates a permanent, highlyvascular, tissue engineered construction[J].FASEB J,2007,21(2):511-522.
    [22] Rophael JA, Craft RO, Palmer JA, Hussey AJ,Thomas GP,Morrison WA,Penington AJ,Mitchell GM. Angiogenic growth factor synergism in amurine tissue engineering model of angiogenesis and adipogenesis[J].Am JPathol,2007,171(6):2048-2057.
    [23] Morritt AN, Bortolotto SK, Dilley RJ, Han X,Kompa AR,McCombeD,Wright CE,Itescu S,Angus JA,Morrison WA. Cardiac Tissue engineeringin an in vivo vascularized chamber[J].Circulation,2007,115(3):353-360.
    [1] Rodriguez A, Cao YL, Ibarra C, Pap S,Vacanti M,Eavey RD,Vacanti CA,.Characteristics of cartilage engineered from human pediatric auricularcartilage[J].Plast Reconstr Surg,1999,103(4):1111-1119.
    [2] Britt JC, Park SS. Autogenous tissue-engineered cartilage[J].ArchOtolaryngol Head Neck Surg,1998,124(6):671-677.
    [3] Cao YL, Rodriguez A, Vacanti M, Ibarra C,Arevalo C,Vacanti CA.Comparative study of the use of polyglycolic polyglycolic acid, calciumalginate andpluronic in the engineering of autologous porcine cartilage[J].JBiomater Sci Polymer Ed,1998,9(5):475-487.
    [4] Hussey AJ,Winardi M,Wilson J,Forster N,Morrison WA,Penington AJ,Knight KR, Feeney SJ..Pancreatic islet transplantation using vascularisedchambers containing nerve growth factor amelio-rates hyperglycaemia indiabetic mice[J].Cells Tissues Organs,2010,191(5):382-393.
    [5] Morritt AN,Bortolotto SK,Dilley RI,Han X,Kompa AR,McCombe D,Wright CE, Itescu CE.Itescu S,Angus JA,Morrison WA.Cardiac tissueengineering in an in vivo vascularized chamber[J]. Circulation,2007,1l5(3):353-360.
    [6]刘瑾春,刘霞,曹谊林.软骨细胞培养中细胞去分化和再分化研究进展[J].中华整形外科杂志,2011,27(4):318-320.
    [7]李昊.不同年龄兔软骨细胞培养和形态学研究[J].山西职工医学院学,2008,18(1):15-17.
    [8] Park SS,Ward MJ.Tissue engineered cartilage for implantation and grafting[J]. Facial Plast Surg,1995,11:278-283.
    [9] Schulze-Tanzil G,de Souza P,Villegas Castrejon H,John T,Merker HJ,Scheid A, Shakibaei M. Redifferentiation of dedifferentiated humanchondrocytes in high-density cultures[J].Cell Tissue Res,2002,308(3):371-379.
    [10] Chung C,Mesa J,Miller GJ,Randolph MA,Gill TJ,Burdick JA.Effects ofauricular chondrocyte expansion on neocartilage formation inphotocrosslinked hyaluronic acid networks[J]. TissueEng,2006,l2(9):2665-2673.
    [1]裴国献,魏宽海,金丹.组织工程学实验技术[M].北京:人民军医出版社,2006:139-142.
    [2]鄂征,刘流.医学组织工程技术与临床运用[M].北京:北京出版社,2003:378-379
    [3] Rotter N, Ung F, Roy AK, Vacanti M,Eavey RD,Vacanti CA,Bonassar LJ.Role for interleukin1alpha in the inhibition of chondrogenesis inautologous implants using polyglycolic acid-polylactic acid scaffolds[J].Tissue Eng,2005,11(1-2):192-200.
    [4] Funayama A, Niki Y, Matsumoto H, Maeno S,Yatabe T,Morioka H,Yanagimoto S,Taquchi T,Tanaka J,Toyama Y. Repair of full-thicknessarticular cartilage defects using injectable typeII collagen gel embeddedwith cultured chondrocytes in a rabbit[J].Journal of Orthopaedic Science,2008,13(3):225-232.
    [5] Zhang D, Huang JX, Ha XQ. Comparative study on the main biologicalcharacteristics of marrow-derived stromal cells and chondrocytes in vitroculture in rabbits[J].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2004,18(1):53-57.
    [6]张文林,刘丹平.软骨组织工程载体材料的研究与进展[J].中华组织工程研究与临床康复,2009,13(12):2329-2332.
    [7]尹宝英,张涌,张浩,温叶飞.蚕丝及Ⅱ型胶原凝胶支架负载软骨细胞构建组织工程类软骨[J].上海交通大学学报,2008:26(4):286-289.
    [8] Shim IK,Lee SY,Park YJ,Lee MC,Lee SH,Lee JY,Lee SJ.Homogeneouschitosan-PLGA composite fibrous scaffolds for tissue regeneration [J].JBiomed Mater Res A,2008,84(1):247-255.
    [1] Mian R,Morrison WA,Hurley JV,Penington AJ,Romeo R,Tanaka Y,KnightKR.Formation of new tissue from an arteriovenous loop in the absence ofadded extracellular matrix[J].Tissue Eng,2000,6(6):595-603.
    [2] Xia WY, Liu W, Cui L,Zhong W, Liu D,Wu J,Chua K,Cao Y. Tissueengineering of cartilage with the use of chitosan-gelatin complexscaffolds[J]. Biomed Mater Res2004,71(2):373-380.
    [3] Gong YH, Zhou QL, Gao CY, Shen J. In vitro and in vivo degradabilityand cyto-compatibility of poly(L-lactic acid) scaffold fabricated by agelatin particle leaching method[J]. Acta Biomat2007,3(4):531-540.
    [4] Alvarez-Barreto JF, Sikavitsas VI. Improved mesenchymal stem cellseeding on RGD-modified poly(L-lactic acid) scaffolds using flowperfusion[J]. Macromol Biosci,2007,7(3):579.
    [5] Lee WK, Ichi T, Ooya T,Yamamoto T,Katoh M,Yui N. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane forcartilage tissue engineering[J]. Biomed Mater Res A,2003,67(4):1087-1092.
    [6] Sekiya I, Colter DC, Prockop DJ. BMP-6enhances chondrogenesis in asubpopulation of human marrow stromal cells[J].Biochem Biophys ResCommun,2001,284:411-416..
    [7] Hatakeyama Y, Nguyen J, Wang X,Nuckolls GH,Shum L. Smad signalingin mesenchymal and chondro-progenitor cells[J]. Bone Joint Surg Am2003,85-A(Suppl3):13-18.
    [8] Murphy JM, Dixon K, Beck S, Fabian D,Feldman A,Barry F.Reducedchondrogenic and adipogenic activity of mesenchymal stem cells frompatients with advanced osteoarthritis[J]. Arthritis Rheum,2002,46(3):704-713.
    [9] Marijnissen WJ, van Osch GJ, Aigner J,Van der Veen SW,Hollander AP,Verwoerd–Verhoef HL,Verhaar JA. Alginate as a chondrocyte-deliverysubstance in combination with a non-woven scaffold for cartilage tissueengineering[J]. Biomaterials.2002,23(6):1511-1517.
    [10] Paige KT, Cima LG, Yaremchuk MJ, Schloo BL,Vacanti JP, Vacanti CA.De novo cartilage generation using calcium alginate-chondrocyte constructs[J]. Plast ReconstrSurg,1996,97(1):168-179.
    [11] Shieh SJ, Terada S, Vacanti JP. Tissue engineering auricular reconstruction:In vitro and in vivo studies[J].Biomaterials,2004,25:1545.
    [1] Guillot PV, Cui W, Fisk NM, Polak DJ. Stem cell differentiation andexpansion for clinical applications of tissue engineering[J]. Cell Mol Med,2007,11(5):935-944.
    [2] Koide Y, Morikawa S, Mabuchi Y, Muguruma Y,Hiratsu E,HasegawaK,Kobayashi M,Ando K,Kinjo K,Okana H,Matsuzaki Y.Two distinct stemcell lineages in murine bone marrow[J].Stem Cells.2007,25(5):1213-1221.
    [3] Tocci A, Forte L. Mesenchymal stem cell: use and perspectives[J].HematolJ,2003,4(2):92-6.
    [4]潘华,王大伟,李红波,张志伟.密度梯度离心与贴壁法相结合体外分离培养兔骨髓基质干细胞:1-3代细胞生长特性[J].中国组织工程研究与临床康复,2007,11(42):8487-8490.
    [5] Senseb L, Krampera M, Schrezenmeier H, Bourin P, GiordanoR..Mesenchymal Stem cell for clinical application[J].Vox Sang,2010,98(2):93-107.
    [6] Robey PG, Kuznetsov SA.Riminucci M,et a1.Skeletal(mesenchymal) stemcells for tissue engineering[J].Methods Mol Med.2007,140(5):83-99
    [7] Lagasse E,Conners H,AL-Dhalimy M,Reitsma M,Dohse M,OsborneL,Wang X,Finegold M,Weissman IL,Grompe M.purifued hematopoieticstem cells can differentiate into hepatocytes in vivo[J].NatMed,2000,6(11):1229-1234.
    [8] Barry F,Boynton RE,Liu B,Murphy JM. Chondrogenic differentiation ofmesenchymal stem cells from bone marrow: differentiation dependent geneexpression of matrix components[J]. Exp Cell Res,2001,268(2):189-200.
    [9] Bruder SP,Fink DJ,Caplan AI.Mesenchymal stem cells in bonedevelopment bone repair,and skeletaI regeneration therapy[J].J CellBiochem,1994,56(3):283-294.
    [10] Friedenstein AJ, Latzinik NV, Gorskaya YuF, Luria EA,Moskvina IL.Bone marrow stromal colony formation requires stimulation byhaemopoietic cells[J].BoneMiner,1992,18(3):199-213.
    [11] Moutsatsos IK,Turgeman G,Zhou S,Kurkalli BG,Pelled G,Tzur L,KelleyP,Stumm N,Mi S,Muller R,Zilberman Y,Gazit D.Exogenously regulatedstem cell-mediated gene therapy for bone regeneration[J].Mol Ther,2001,3(4):449-461.
    [12] Bianco P, Riminucci M, Gronthos S,Robey PG.Bone marrow stromalstemcells:nature, biology, and potential applications[J].Stem Cells,2001,19(3):180-191.
    [13]郭璇,霍然,吕仁荣.兔骨髓间充质干细胞培养及向成软骨细胞的诱导分化[J].中国组织工程研究与临床康复,2011,15(6):963-966.
    [14] Pittenger MF, Mackay AM, Beck SC,Jaiswal RK,Douglas R,Mosca JD,Moorman MA,Simonetti DW.Multilineage potential of adult humanmesenchymal stem cellsScienceC,1999,284(5411):143-147.
    [1]李晓声,陈铁柱,杜尧,等.组织工程技术修复关节软骨的理论研究与进展[J].中国组织工程研究与临床康复,2009,13(37):7663-7668.
    [2] Pouliot R,Larouche D,Auger FA,Juhasz J,Xu W,Li H,GermainL.Reconstructed human skin produced in vitro and grafted on athymic mice[J]. Transplantation,2002,73(11):1751-1757.
    [3] Li Y, Ma T, Kniss DA,Lasky LC,Yang ST. Effects of filtration seeding oncell density, spatial distribution, and proliferation in nonwoven fibrousmatrices[J]. Biotechnol Prog,2001,17(5):935-944.
    [4] Altman GH, Horan RL, Lu HH,Moreau J,Richmond JC,Kaplan DJ. Silkmatrix for tissue engineered anterior cruciate ligaments[J]. Biomaterials,2002,23(20):4131-4141
    [5] Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system forcultured cells using plasma-treated polystyrene dishes grafted with Poly(N-isopropylacrylamide)[J]. Biomed1993;27(10):1243-1251.
    [6] Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T.Cell sheet engineering: recreating tissues without biodegradablescaffolds[J]. Biomaterials,2005,26(33):6415-6422.
    [7] Yang J, Yamato M, Shimizu T, Sekine H,Ohashi K,Kanzalki M,OhkiT,Nishida K,Okano T. Reconstruction of functional tissues with cell sheetengineering[J]. Biomaterials,2007,28(34):5033–5043.
    [8] Shimizu H, Ohashi K, Utoh R, Ise k,Gotoh M,Yamato M,Okano T.Bioengineering of a functional sheet of islet cells for the treatment ofdiabetes mellitus[J]. Biomaterials,2009,30(30):5943-5949.
    [9] Nishida K,Yamato M,Hayashida Y, Watanabe K,Yamamoto K,AdachiE,Nagai S,Kikuchi A,Maeda N,Watanabe H,Oknao T,Tano Y.Cornealreconstruction with tissue-engineered cell sheets composed of autologousoral mucosal epithelium[J]. N Engl J Med,2004,351(12):1187-1196.
    [10] L’Heureux N, Dusserre N, Konig G, Victor B,Wight TN,Chronos NA,Kyles AE,Gregory CR,Hoyt G,Robbins RC,McAllister TN. Humantissue-engineered blood vessels for adult arterial revascularization[J]. NatMed,2006,12(3):361–365.
    [11] Lee Hs,Huang GT,Chiang H,Chiou LL,Chen MH,Hsieh CH,Jiang CC.Multipotential mesenchymal stem cells from femoral bone marrow near thesite of osteonecrosis[J]. Stem Cells,2003,21(2):190-199.
    [12] Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications andbiological characterization[J]. Int J Biochem Cell Biol,2004;36(4):568-84.
    [13] Tocci A, Forte L. Mesenchymal stem cell: use and perspectives[J].Hematol J,2003,4(2):92-96.
    [14] Park K, Huang J, Azar F, Jin RL, Min BH, Han DK, Hasty K. Scaffold-free,engineered porcine cartilage construct for cartilage defect repair--in vitroand in vivo study[J]. Artif Organs,2006,30(8):586-96.
    [15] Wu W, Chen F, Feng X, Liu Y, Mao T. Engineering cartilage tissues withthe shape of human nasal alar by using chondrocyte macroaggregate-Experiment study in rabbit model[J]. J Biotechnol,2007,130(1):75-84.
    [16] Karoubi G, Ormiston ML, Stewart DJ, Courtman DW.Single-cell hydrogelencapsulation for enhanced survival of human marrow stromal cells[J].Biomaterials,2009,30[29]:5445-5455.
    [1] Miyahara Y,Nagaya N,Kataoka M,Yanagawa B,Tanaka K,Hao H,IshinoK,Ishino H,Shimizu T,Kangawa K,Sano S,Okano T,Kitamura S,MoriH..Monolayered mesenchymal stem cells repair scarred myocardium aftermyocardial infarction[J]. Nat Med,2006,12(4):459-465.
    [2] Ouyang HW, Toh SL, Goh J, Tay TE,Moe K..Assembly of bone marrowstromal cell sheets with knitted poly (L-lactide) scaffold for engineeringligament analogs [J]. J Biomed Mater Res B Appl Biomater,2005,75(2):264-271.
    [3] Zhou Y, Chen F, Ho ST, Woodruff MA,Lim TM,Hutmacher DW.Combinedmarrow stromal cell-sheet techniques and high-strength biodegradablecomposite scaffolds for engineered functional bone grafts[J]. Biomaterials,2007,28(5):814–824.
    [4] Watanabe K, Yamato M, Hayashida Y, Yang J,Kikuchi A,Okano T,Tano Y,Nishida K. Development of transplantable genetically modifiedcornealepithelial cell sheets for gene therapy[J]. Biomaterials,2007,28(4):745–749.
    [5] Zhang J, Liu L, Gao Z,Li L,Feng X,Wu W,Ma Q,Cheng X,Chen F,Mao T.Novel approach to engineer implantable nasal alar cartilage employingmarrow precursor cell sheet and biodegradable scaffold[J].JOral MaxillofacSurg,2009,67(2):257-264.
    [6]李先慧,简彩,李运明.自体软骨碎屑回植对肋软骨修复再生的影响[J].中华整形外科杂志,2010,26(3):199-202.
    [7] Silver FH,Glasgold AI.Cartilage wound healing[J]. Otolaryngologic ClinNorth (Am),1995,28(5):847-864.
    [8] Couts RD,Amiel D,Woo SL Y,Woo YK,Akeson WH.Technical aspects ofperichondrial grafting in the rabbit[J]. Eur Surg Res,1984,16(5):322-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700