用户名: 密码: 验证码:
热泵热水机能效标准及CO_2跨临界水水热泵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在节能减排的背景下,本文以热泵热水机能效标准和CO2跨临界水水热泵循环为研究对象开展了研究。
     本文对热力学完善度进行理论研究。热力学完善度即热力学第二定律效率,它反映制冷热泵设备的效率偏离理想状态下效率的程度,其意义在于,它可用于评价同类制冷热泵设备变工况下的能效水平,还可用于比较不同类制冷热泵设备的能效水平。本文对我国市场上热泵热水机的能效现状进行调研,结果显示空气源普通型热泵热水机COPh值最低值为2.93;水源热泵热水机COPh值最低值为3.55。以样本调研数据为基础,结合热力学完善度理论分析,提出热泵热水机的3级能效标准的建议值,例如普通型空气源热泵热水机的COPh从3级、2级到1级分别3.7、4.0和4.3。最后提出空气源热泵热水机经济运行评价指标——全年综合性能系数(ACOP)的计算方法。
     在原有基础上设计并建立了配备更好换热效果的套管式气体冷却器和满液式蒸发器的CO2水水热泵实验台。在该实验台上对气体冷却器进行了可视化试验研究。当冷却水入口水温一定,试验高压逐渐升高时,对气体冷却器中后部B和后部C试验段的流动状态进行可视化观察,结果表明:试验段B、C的状态均依次经历了透明、暗白、亮白、暗白、透明这五个状态,其中三个状态中暗白、亮白、暗白的对比压力值范围为0.94~1.02,其流体状态在接近临界区的两相区或临界区。试验测量结果和对试验段B的可视化研究:存在一个最优高压压力使得试验段B至试验段C达到最大换热量。
     本文介绍了新研制的CO2满液式蒸发器,并对采用光管管束和强化管管束进行换热对比试验研究。试验结果表明,在相同热流密度下,光管管束中各管排的局部沸腾换热系数随管排高度的升高而增大;而在强化管管束中各管排的局部沸腾换热系数随管排高度的升高反而降低。根据换热试验数据,推导了采用强化管管束的CO2满液式蒸发器的各管排局部沸腾换热关联式,预测数据与试验数据对比有±15%以内的误差。
     采用高速摄影可视化手段对光管管束的CO2满液式蒸发器的沸腾现象进行试验观察,近似认为CO2汽泡的生长、脱离、上升和破灭的全过程的时间约172ms,其上升速度为0.3m/s~0.45m/s,汽泡脱离直径0.4mm~0.8mm。
On the background of energy saving and emission reduction, the research onenergy-efficiency standards for heat pump water heater and CO_2transcriticalwater-water heat pump cycle were carried out in this dissertation.
     Thermodynamic perfectibility was theoretically analyzed in this dissertation.Thermodynamic perfectibility is the Second Law Efficiency of Thermodynamics andit reflects the departure degree between the practical efficiency of refrigeration andheat pump products and the ideal efficiency. The significance of thermodynamicperfectibility is that it can evaluate not only the energy-efficiency of the same type ofthe refrigeration and heat pump products in variable condition but also theenergy-efficiency of the different types of the refrigeration and heat pumpproducts.The status of energy efficiency of heat hump water heaters in Chinesemarket was surveyed,and the statistical results showed that the lowest COPhof thecommon air-source heat pump water heater and water-source heat pump water heaterare2.93and3.55,respectively. On the basis of the statistical data and the theoreticalanalysis of thermodynamic perfectibility, the suggested values of energy efficiencygrades standard on heat pump water heater were put forward. For example, thesuggested COPhvalues of the common air-source heat pump water heater from3grade to1grade respectively are3.7,4.0and4.3.The annual coefficient ofperformance (ACOP) was brought forward as the evaluation index of economicoperation for air-source heat pump water heater,and the caculation method wasintruoduced.
     Based on the old test table, a CO_2water-water heat pump system using a betterdouble pipe gas cooler and flooded evaporator was established. The visualizationexperiment on the gas cooler was done on this system. By visual observation on theflow state of the postmedian experimental section B and rear experimental section Cof the gas cooler, the flow states of experimental sections B and C experiencedsuccessively five states: transparent,dark white,bright white,darkwhite,transparent,while the working high pressure increases gradually and the coolingwater inlet temperature keeps constant. In the cooling water temperature15℃~24℃,the reduced pressure of the experimental section B in the dark white,bright white,dark white states is0.94~1.02, and these states are under two phase region near criticalarea or critical area.The experimental results and the visual observation on theexperimental sections B showed that the heat transfer rate between experimentalsections B and C reached the maximum under the optimum high pressure.
     A newly developed CO_2flooded evaporator was introduced in this dissertation.The tube bundle of the flooded evaporator adopted smooth tubes or enhanced tubes.The comparison test on the flooded evaporator using smooth tubes or enhanced tubeswas carried out in this dissertation. The experimental results showed that the localboiling heat transfer coefficient of the smooth tube arrays increased with the increaseof the vertical height of tube arrays at the same heat flux. Whereas the local boilingheat transfer coefficient of the enhanced tube arrays increased with the decrease of thevertical height of tube arrays. In according to the experimental data, the local boilingheat transfer correlation equation of the enhanced tube arrays was deduced, and thepredicted data agreeed with the experimental data within about±15%.
     The boiling heat transfer of the flooded evaporator using smooth tube bundle wasobserved by the high speed photography. The visualization results showed that thetotal progress of growth, departure, rise and break of CO_2bubble lasts about172ms;the rise speed of bubble is0.3m/s~0.45m/s and the bubble departure diameter is0.4mm~0.8mm.
引文
[1]罗芳,刘继伟,未来经济增长对能源的需求,经济视角,2005,9:52~54
    [2]杨昆,中国能源发展评价研究:[硕士学位论文],北京;华北电力大学(北京),2008
    [3]杨鹏飞,环境约束下不同能源对经济影响的计量分析:[硕士学位论文],北京;首都经济贸易大学,2011
    [4]于孟林,我国将持续煤炭净进口国局面,中国能源报,2012-1-9
    [5]http://www.hsjgw.gov.cn/content/6542fc17d0f64ec986f387ca93b5d488.htm
    [6]中国标准化研究院,中国重点耗能产品节能潜力分析,http://www.efchina.org/csepupfiles/report/2006102695218336.40534364274606.pdf/Aanlysis_Fnl_CN.pdf
    [7]李爱仙,成建宏,陈海红,国内外能效标准的发展及我国能效标准新模式探讨,中国标准化,2002,7:11~13
    [8]Stenhen Wile, James E, McMahon.Energy Efficiency Labels and Standards: AGuidemanuscript for Appliances, Equipment and Lighting (2nd Edition),http://www.clasponline.org/files/Guidemanuscript_2ndEdition.pdf
    [9]Montreal Protocol on Substances that Deplete the Ozone Layer, UnitedNations(UN), New York, NY, USA,1987(1987with subsequent amendments)
    [10]马一太,王伟,制冷剂的替代与延续技术,制冷学报,2010,31(5):1~7
    [11]中华人民共和国国务院令,NO.573,消耗臭氧层物质管理条例,北京,2010
    [12] http://www.scemc.cn/structure/xcs/info?infid=18
    [13] Regulation (EC) No.2037/2000of the European Parliament and of the Council of29June2000on substances that deplete the ozone layer, Official Journal (2000),29thJune
    [14]马一太,袁秋霞,李晓凤,HCFCs制冷剂替代的策略与技术分析,第五届中国制冷空调行业信息大会暨推进HCFC加速淘汰国际论坛,北京,2010
    [15]卢苇,蒸气压缩式集中空调机组能源效率标准的研究:[博士学位论文],天津;天津大学,2004
    [16] www.energysaving.org.cn/Admin/XGYJUpFile/201071423948939.pdf
    [17]马一太,凌泓,制冷与热泵产品热力学完善度的原理与实例,流体机械,2011,39(3):71~75
    [18]王文革,我国能效标准和标识制度的现状、问题与对策,中国地质大学学报,社会科学版,2007,7(2):7~12
    [19]马一太,成建宏,王洪利等,我国制冷空调能效标准的现状与发展,2008,8(3):5~11
    [20]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,GB12021.2-2003《家用电冰箱耗电量限定值及能源效率等级》,北京:中国标准出版社,2003
    [21] Steimle.F.. CO2-drying heat pumps. IIR/IEA Workshop in CO2technology inrefrigeration, heat pumps and air conditioning systems,Trondheim, Norway,1997
    [22] Petter Neksa, et al.. CO2heat pump water heater, characteristics, system designand experimental results. Int.J. Refrig.,1998,21(3):172~179
    [23] Reza, G., Zakeri,Neks Petter et al..Results and experiences with the firstcommercial pilot plant CO2heat pump water heater.In:4th Gustav Lorentzenconference on natural working fluids,Purdue University,USA.2000:59~65
    [24] Kohler, J., Sonnekalb. M..A high-pressure transcritical refrigeration cycle withcarbon dioxide for vehicle airconditioning. In Proceeding of International Conferenceon Ozone Protection Technologies, Baltimore,1997,375~384
    [25] Kohler, J., Sonnekalb. M., Kocher.W.. Carbon dioxide as a refrigerant for vehicleair conditioning with application to bus air conditioning. International CFC and HalonAlternatives Conference, Conference Proceedings, Washinton,1995,376~385
    [26] Yin,J.M., Park,Y.C., Oewe,D.B., et al..Experimental and model comparsion oftranscritical CO2versus R134a and R410A system performance.Natural WorkingFluids, IIR-Gustav Lorentzen conference,Oslo,1998,331~340
    [27] Enaney,R.M., Boewe, D., Yin,J.M., et al.. Experimental comparison of mobileA/C systems when operated with transcritical CO2versus conventionalR134a.International Refrigeration Conference at, Purdue,1998,145~150
    [28] Saikawa,M., Hashimoto, K., Kusakari,K., etal.,Development of prototype of CO2on natural working fluids,Purdue University,USA,2000,51~57
    [29] Kusakari, K..The newest situation and the future view of the CO2refrigerant heatpump water heater “eco cute”in Japan.The9th international IEA heat pumpconference,Zuich,Switzerland,20~22,May,2008
    [30]王侃宏,CO2跨临界循环的理论分析与实验研究:[博士学位论文],天津;天津大学,2000
    [31]魏东,二氧化碳跨临界循环换热与膨胀机理的研究:[博士学位论文],天津;天津大学,2002
    [32]李敏霞,马一太,苏维诚,CO2跨临界循环水源热泵摆动转子膨胀机样机的研制开发,太阳能学报,2008,29(9):1051~1056
    [33]刘圣春,超临界CO2流体特性及跨临界循环系统的研究:[博士学位论文],天津;天津大学,2006
    [34]丁国良,黄冬平,张春路,跨临界二氧化碳汽车空调稳态仿真,中国工程热物理学会工程热力学与能源利用学术会议论文集,南京,2000
    [35]张波,彭学院,张芳玺等,一种新型自由活塞式膨胀机的研制及试验研究,西安交通大学学报,2006,40(7):776~780
    [36]马元,张波,彭学院等,跨临界CO2活塞压缩机阀片运动特性的实验研究,西安交通大学学报自然版,2011,03:25~29
    [37]崔晓龙,邢子文,水冷式跨临界CO2商用热泵热水机实验研究,制冷学报,2009,30(3):11~15
    [38]邓建强,姜培学,卢涛等,跨临界二氧化碳蒸气压缩/喷射制冷循环性能比较,工程热物理学报,2006,27(3):382~384
    [39]孙兆虎,王国梁,姜培学等,太阳能辅助CO2热泵与制冷系统实验研究,工程热物理学报,2008,29(03):381~384
    [40] Lorentzen G., Pettersen J.. New possibilities for non-CFC refrigeration. ⅡRInternational Symposium on Refrigeration, Energy and Environment, Trondheim,Norway.1992,147~163
    [41] Pettersen J, Hafner A, Skaugen G. Development of compact heat exchangers forCO2air~conditioning systems. Int J. Refrig,1998,21(3):180~193
    [42] Yin Jian Min, Bullard C.W., Hrnjak P.S.. R-744gas cooler development andvalidation. International Journal of Refrigeration,2001,24:692~701
    [43] Pietro Asinari, Luca Cecchinato, Ezio Fornasieri. Effects of thermal conduction inmicrochannel gas coolers for carbon dioxide. International Journal of Refrigeration,2004(27):577~586
    [44] Pega Hrnjak. Effect of heat conduction through the fins of a microchannelserpentine gas cooler of transcritical CO2system. International Journal ofRefrigeration,2007(30):389~397
    [45]张子坤,超临界CO2气体冷却器的研究设计及可视化实验,[硕士学位论文],天津;天津大学,2010
    [46]杨俊兰,CO2跨临界循环系统及换热理论分析与试验研究:[博士学位论文],天津;天津大学,2005
    [47]孙方田,含油超临界CO2冷却换热理论与实验研究:[博士学位论文],天津;天津大学,2007
    [48] Zhao Y,Ohadi MM.Radermacher R.Microchannel heat exchangers with carbondioxide,ARTI21-CR Research Project605-10020,http://www.osti.gov/bridge/purl.cover.jsp?purl=/795597-NNSXAw,2001
    [49]姜云涛,CO2跨临界水水热泵及两级滚动活塞膨胀机的研究:[博士学位论文],天津;天津大学,2009
    [50]马一太,姜云涛,张子坤等,CO2跨临界水-水热泵中新型蒸发器的实验研究,中国工程热物理学会学术会议,2009
    [51] Masafumi Katsuta, Hiromitu Kinpara, Shunta Yagi. The effect of oilcontamination on evaporative heat transfer characteristies of CO2refrigerationcycle.The2nd Asian Conference on Refrigeration and Air-conditioning ACRC, Beijng,Chinese Association of Refrigeration,2004,332~340
    [52] Man Hoe Kim, Clark W., Bullard. Development of a microchannel evaporatormodel for a CO2air-conditioning system. Energy,2001(26):931~948
    [53] Rin Yun, Yongchan Kim, Chasik Park. Numerical analysis on a microchannelevaporator designed for CO2air-conditioning systems.Applied Thermal Engineering,2007(27):1320~1326
    [54] Ortiz T.M., Groll E.A.. Simulation of a3~ton residential CO2airconditioner.Preliminary Proceedings of the5th IIR-Gustav Lorentzen Conference onNatural Working Fluids, Guangzhou, China,2002:39~46
    [55] Guoliang Ding, Zhiguang Wu, Huifang Long. Simulation system for fin-and-tubeheat exchanger based on graph theory, database and visualization technology.The3rdAsian Conference on Refrigeration and Air~conditioning, Gyeongju,2006:153~156
    [56]叶天震,自然工质CO2水平管外沸腾换热强化的研究:[博士学位论文],天津;天津大学,2007
    [57]李博,CO2单管池沸腾实验研究:[硕士学位论文],天津;天津大学,2007
    [58] S.Loebl,W.E.Kraus,H.Quack.Pool boiling heat transfer of carbon dioxide on ahorizontal tube.International Journal ofRefrigeration,2005,28:1196-1204
    [59] Dieter Gorenflo,Stephan Kotthoff. Review on pool boiling heat transfer ofcarbon dioxide. International Journal of Refrigeration,2005,28:1169~1185
    [60] K.Bier,M.A.Lambert.Heat transfer in nucleate boiling of different low boilingsubstances.Int J Refrigeration,1990,13,293-300
    [61] M.A.Lambert.Wa“rmen”bergang beim Blasensieden reiner Stoffe im Bereichtiefer Siedetemperaturen.PhD thesie Univ.Karlsruhe(TH),1991
    [62] D.Gorenflo.Beha“ltersieden”.Abschn.Ha,,4thed VDIWa“rmeatlas”,VDI-Verlag,Du“sseldorf”,1984
    [63]马一太,袁秋霞,李敏霞等,跨临界CO2带膨胀机和带喷射器逆循环的性能比较,低温与超导,2011,5(39):36~41
    [64]马一太,王侃宏,杨昭等,带膨胀机的CO2跨(超)临界逆循环的热力学分析,工程热物理学报,1999(6):661~665
    [65]查世彤,CO2跨临界循环膨胀机的研究与开发:[博士学位论文],天津;天津大学,2002
    [66]李敏霞,二氧化碳跨临界循环转子式膨胀机的分析与实验研究:[博士学位论文],天津;天津大学,2003
    [67]管海清,CO2跨临界循环膨胀机理与转子式膨胀-压缩机研究:[博士学位论文],天津;天津大学,2005
    [68] Elbel,S., Hrnjak, P.. Experimental validation and design study of a trans-criticalCO2prototype ejector system.The7th IIR Gustav Lorentzen Conference on NaturalWorking Fluids,2006
    [69] Da qing Li,Eckhard,A., Groll.Analysis of an ejector expansion device in atranscritical CO2air conditioning system.The7th IIR Gustav Lorentzen Conferenceon Natural Working Fluids,2006
    [70]马一太,袁秋霞,李敏霞等,异相添加剂对超临界CO2快速膨胀降压过程的影响分析,工程热物理学报,2011,6(32):913~916
    [71]王洪利,CO2跨临界双级循环理论分析与试验研究:[博士学位论文],天津;天津大学,2008
    [72] Triplett,K.A.. Gas-liquid two-phase flow in microchannels.Part1, Two-phaseflow patterns, International Journal of Multiphase Flow,1999,25(3):377~394
    [73] Wongsises, E., Wongchang, T., Kaewon, J.. A visual study of two-phase flowpatterns of HFC-134a and lubricant oil mixtures. Heat transfer Eng,2002,23(4):13~22
    [74] Poiate, J.E.,Gasche,J.L..Foam flow of oil-refrigerant R12mixture in a smalldiameter tube.J.Braz.Soc.Mech.Sci.Eng.2006,28(4),390~398
    [75] Makoto GOTO, Koji TANIFUJI, Masahiro FUJITA, et al.. Observation ofcirculation of immiscible mineral lubricant oil in an air-conditioning machine chargedwith HFC refrigerant. Journal of Enviroment and Engineering,2009,4(1):47~56
    [76] Bredesen,A.M., Hafner, A.. Heat transfer and pressure drop for intubeevaporation of CO2.Proc. of Int. Conference on Heat Transfer Issues in NaturalRefrigerants, University of Maryland,1997:1~15
    [77] H gaard Knudsen H.J., Jensen,P.H.. Heat transfer coefficient for boiling carbondioxide. Proc. of Int. R&D on Heat Pump, Air Conditioning and RefrigerationSystems, Gatlinburg, TN, USA,1997:113~122
    [78] Lixin Cheng, Gherhardt Ribatski.New prediction methods for CO2evaporationinside tubes: Part I: A two phase flow pattern map and a flow pattern basedphenomenological model for two phase flow frictional pressure drops.InternationalJournal of Heat Mass Transfer,2008,51:111~124
    [79] Zhao, Y., Ohadi, M.M..Flow boiling of CO2in microchannels. ASHRAE Trans.,2000:437~445
    [80] Chaobin Dang, Koji Iino.Study on two phase flow pattern of supercritical carbondioxide with entrained PAG type lubricating oil in a gas cooler.Int. Journal ofRefrigeration,2008:1~8
    [81] Klausner, J.F., Mei, R., Bernhard, D. M.. Vapor bubble departure in forcedconvection boiling. International Journal of Heat and Mass Transfer,1993,136(3):651~662
    [82] Heung June Chung, Hee Cheon No.Simultaneous visualization of dry spots andbubbles for pool boiling of R-113on a horizontal heater.International journal of heatand mass transfer,2003(46):2239~2251
    [83] Dieter Gorenflo, Elisabeth Danger, Andrea Luke, et al..Bubble formation withpool boiling on tubes with or without basic surface modifications for enhancement.International Journal of Heat and Fluid Flow,2004,25(2):288~297
    [84] Fu,X., Zhang, P., Huang,C.J., et al.,Bubble growth, departure and the followingflow pattern evolution during flow boiling in mini-tube, international journal of Heatand Mass Transfer,2010(53):4819~4831
    [85]王际辉,唐大伟,颜晓虹,矩形微槽内水的流动沸腾换热及可视化实验研究,中国科学院研究生院学报,2007,24(1):34~38
    [86]安青松,CO2滚动转子膨胀机内部相变膨胀过程机理分析与可视化试验研究:[博士学位论文],天津;天津大学,2008
    [87]田华,基于制冷剂减量及替代的制冷热泵系统关键技术理论和实验研究:[博士学位论文],天津;天津大学,2010
    [88]马一太,田华,刘春涛等,制冷与热泵产品的能效标准研究和循环热力学完善度的分析,北京:科学出版社,2012
    [89] QiuxiaYuan,Yitai Ma, Chuntao Liu, et al.. Thermodynamic Perfectibility BasedAnalysis of Energy-efficiency Standards for Air Conditioning Products in China.Energy and buildings,2011(43):3627~3634
    [90] H.Lorenz. Beitrage zur Beurteiiung von Kuhlaschinen,. Zeitschaft des fereluesdeutscher lagenleure,1894,4
    [91] Curzon. F. L, Ahlborn. B.. Effciency of a Carnot Engine at Maximum PowerOutput. Am. J. Phys.,1975,43(1):22~24
    [92] B. Andresen, R. S. Berry, A. Nitzan, et al..Thermodynamics in finite time I. Thestep-Carnot cycle, Phys. Rev. A,1977,15:2086~2093
    [93]严子浚, εR最大时卡诺制冷机的ε和R,自然杂志,1984,7(1):73~74
    [94]陈根林,倪宁,刘九七等,考虑传热效应的回热式空气热泵循环性能分析,应用科学学报,1998,16(4):463~468.
    [95] Arif Hepbasli,Yildiz Kalinci.A review of heat pump water heatingsystems.Renewable and Sustainable Energy Reviews,2009,13(6~7):1211~1229
    [96]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,GB/T21362-2008,商业或工业用及类似用途的热泵热水机,北京:中国标准出版社,2008
    [97] Washington State University Extension Energy Program. Residential heat pumpwaterheaters.http://www.energy.wsu.edu/documents/building/res/ht_pmp_water_htrs.pdf.September,2008./June,2009
    [98] American Society of Heating, Refrigerating and Air-Conditioning Engineers.Inc.(ASHRAE), ASHRAE137, Methods of Testing for Efficiency ofSpace-Conditioning/Water-Heating Appliances that Include a Desuperheater WaterHeater. New York: ASHRAE,2009
    [99] JRAIA.JRA4050~2001. The Standard of Heat Pump Water Heater Performance(in Japer) Tokyo,JRAIA,2001
    [100]Canadian Standards Association(CSA), CAN/CSA-C745-03(R2009).EnergyEfficiency of Electric Storage Tank Water Heaters and Heat Pump WaterHeaters.http://www.shopcsa.ca/onlinestore/GetCatalogItemDetails.asp?mat=2015074.Janury,2009/June,2009
    [101]Standards Australia/Standards New Zealand AS/NZS2712:2007. Solar and heatpump water heaters-Design and construction,http://infostore.saiglobal.com/store/Details.aspx?docn=AS0733783856AT. June,2009
    [102]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,GB19576-2004,单元式空调机能效限定值及能源效率等级,北京:中国标准出版社,2004
    [103]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,GB19577-2004,冷水机组能耗限定值及能耗效率等级,北京:中国标准出版社,2004
    [104]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,GB12021.3-2004,房间空气调节器能效限定值及能效等级,北京:中国标准出版社,2004
    [105]中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,GB12021.3-2010,房间空气调节器能效限定值及能效等级,北京:中国标准出版社,2010
    [106]马一太,袁秋霞,刘春涛等,我国热泵热水机能效水平分析,太阳能学报,2012,33(2):292~296
    [107]余建祖,换热器原理与设计,北京:北京航空航天大学出版社,2006
    [108] Cooper,M.G..Heat flow rates in saturated nucleate pool boiling:A wide rangingexamination using reduced properties.In Adavances in heat transfer, J.P.Hartnett andT.F.Irvine,eds.,Academic press,New York,1984,16,157~239
    [109] Gorenflo, D..Pool boiling. VDI Heat Atlas,(chapter Ha),1993
    [110]中华人民共和国国家质量监督检验检疫总局,JJF1059-1999,中华人民共和国国家计量技术规范:测量不确定度评定与表示,北京:中国计量出版社,1999
    [111]杨少华,高学农,王世平,R142b在水平管束外池沸腾实验研究,制冷学报,1999,3:1~4
    [112]朱长新,张鸣远,陈学俊,水在水平管束管外池沸腾传热的实验研究,西安交通大学学报,1997,33(7):46~49
    [113]K.Nakajima. Heat Transfer Janpanese Research.1978,7(2):1~24
    [114]K.Stephan, M.Abdelsalam. Heat transfer correlations for natural converctionboiling. Int.J.Heat Transfer,1980,23:73~87
    [115]M. M. Mench, S. Boslet, S. Thynell, et al.. Experimental study of a directmethanol fuel cell. In Proc of the Symposium on Direct Methanol Fuel Cells, the199th Electrochem Soc Proc Series. Princeton, NJ:2001
    [116]丁玉栋,朱恂,廖强等,DMFC阳极CO2气泡生长及脱离特性研究,工程热物理学报,2010,31(12):2047~2050
    [117] http://www.cenews.com.cn/xwzx/hjyw/201208/t20120829_728324.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700