基于机器视觉的钢管直线度实时测量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管在工业生产中扮演着极其重要的角色,其广泛应用于化工、冶金、机械等行业。直线度是衡量钢管质量指标的主要参数之一,国内外针对轴类、导轨等工件在给定平面内的直线度测量研究较多,但是针对钢管在轴向方向直线度的测量研究较少。研究钢管直线度的准确测量有着重要的科学意义及工业价值。
     针对钢管直线度的测量,常用的方法有位移传感器法、拉线法等,这些方法都是通过测量钢管表面母线直线度来估算其轴线方向直线度,所以测量准确度较低,且无法实现非接触测量,只适合于钢管直线度的抽样检测。机器视觉技术可以实现非接触实时测量,在直线度测量中也得到应用,其在测量方法上取得很大突破,但是在光学成像系统,边缘检测算法、直线度实时测量硬件电路设计等模块尚未展开深入研究。本文在前人研究基础之上,采用机器视觉方法测量钢管直线度,首先设计了应用于钢管直线度测量的光学成像系统;然后结合钢管形状,提出了新的边缘检测算法;同时设计了钢管直线度的计算算法,并将本系统测量方法和传统测量方法进行了实验比较;最后采用FPGA、DSP组合设计了直线度实时测量系统的硬件电路。本文主要研究内容如下:
     第一章对钢管直线度测量的国内外现状进行了分析,阐述了本文的研究目的和意义,并介绍了本文的主要研究工作。
     第二章设计了钢管直线度测量的光学成像系统。首先设计了成像系统的技术指标,并采用双高斯结构设计了光学成像系统基本结构,然后通过ZEMAX光学模拟及像质分析,对成像镜头的结构参数进行了优化,最后对设计结果进行了评估,该光学成像系统能够用于钢管直线度测量。
     第三章主要完成了钢管边缘检测算法设计。分析了传统边缘检测算子和数学方法边缘检测的原理及应用现状,在此基础之上,结合照明方式、钢管特殊形状,提出了一种新的边缘检测方法——相邻行灰度差异判定法,对钢管图像进行边缘检测。最后从运算量和检测效果两方面对本算法进行了评估。
     第四章完成了钢管直线度计算算法设计及实验。首先设计了中心轴线像素坐标计算算法,然后采用最小二乘法对直线度误差进行评定,并对测量系统进行标定。最后采用百分表测量钢管直线度的方法和本文采用的测量方法进行了实验比较,并对系统测量误差进行了分析。
     第五章设计了钢管直线度实时测量系统的硬件电路。首先给出了直线度测量系统的硬件整体方案设计,然后采用FPGA实现了“相邻行灰度差异判定法”算法,并给出了算法实现原理、进行了相关实验论证。最后采用DSP设计了钢管轴心线像素坐标计算算法和直线度误差评定算法,并进行了相关实验论证。
     第六章对本文的研究工作做了总结,指出了钢管直线度测量系统有待进一步解决的问题,并提出发展建议。
Steel pipe does play a imprortant role in industry, it’s applied extensively to chemical industry, metallurgy, mechanics and so on. Straightness is one of the most important technology index for steel pipe. Lots of research is made on the straightness of axis and guidway in given plane between national and foreign, but there’s little research on steel pipe’s 3-D straightness. It has industry value and science significance to do research into straightness measurment with high precision.
     The displacement sensor and guy wire are often used to measure steel pipe’s straightness, which are used to evaluate steel pipe’s 3-D straightness by surface busbar. So it has low accuracy and could’t be realized non-contact measurement of steel pipe’s straightness, only can be applied for sampling the steel pipe’s straightness detection. Machine version is applied to realize non-contact measurment of the steel pipe’s straightness. It has made a breakthrough in measurment method. There’s no deep research on optical imaging sytem, edge detection algorithm or design of hardware circuit which are the modules of straightness real-time measurment. Based on others’research, machine version is adopted to measure steel pipe’s 3-D straightness in this paper. Firstly, optical imaging system is designed for steel pipe’s 3-D straightness measurment. Then, a new method of image edge detection is adopted to detect the steel pipe’s edge, which is associated with steel pipe’s special shape and illumination manner. Algorithm of the steel pipe’s 3-D straightness calculation is also designed, which is compared with traditional method by experiment. Finally,FPGA and DSP are adopted to design the hardware circuit of straightness measurment. The main contents of this paper are as follws.
     In the first chapter, the research status of steel pipe’s straightness measurment between national and foreign is analysed. The intention and significaion of this disseration are expatiated, and the main research work in this dissertation is introduced.
     In the second chapter, the optical imaging system which is applied to steel pipe’s straigtness measurment is designed. Firstly, technology index of the imaging system is designed. A structure of double-Gauss lens is adopted to design the basic structure of the optical imaging system. Then, ZEMAX is used to analyze image quality and also be used to simulate the optical system. The structure parameters of imaging lens are optimally designed. It is assured that the designed system can be applied to measure steel pipe’s straightness.
     In the third chapter, edge detection algorithm which is used for steel pipe’s straightness measurment have been designed. Principles of the traditional method edge detection operato and mathematical method are analysed, and also the status of them is analysed. A new method of image edge detection named judgment of different adjacent row’s gray is adopted to detect the steel pipe’s edge, which is associated with steel pipe’s sspecial shape and illumination manner. Finally, algorithm of edge detection is evaluated by quality and computation power.
     In the fourth chapter, algorithm of steel pipe’s straightness measurment has been designed with experiment. Firstly, algorithm of steel pipe’s pixel axis coordinate is designed. Then, Least-squares is adopted to evaluate straigtness error, and also the measurment system is calibrated. Finally, the method adopted in this paper is compared with the traditional method which is used dial indicator to measure steel pipe’s straightness. And also the measurment system’s error is analysed.
     In the fifth chapter, hardware circuit of steel pipe’s straightness real-time measurment is designed. Firstly, the overall design of the measurment system has been done. Then, FPGA is adopted to realize the algorithm named judgment of different adjacent row’s gray, and also the principle of the algorithm’s realization is analysed with experiment. Finally, algorithms of steel pipe’s pixel axis coordinate and straightness error evaluation are designed based on DSP, and also some experiments have been done.
     In the sixth chapter, the whole research work in this dissertation is summarized, and the issues of steel pipe’s straightness measurment for further research are pointed out and the suggestions are put forward .
引文
[1]崔屹,白艳瑞.钢管系列产品参数测量[J].计控系统, 2002, (4): 27.
    [2]李岩,花国梁.精密测量技术[M].北京:中国计量出版社, 2001.
    [3]廖念钊,古莹菴,莫雨松等.互换性与技术测量[M].北京:中国计量出版社, 2000.
    [4]庞振基,黄其圣.精密机械设计基础[M].北京:机械工业出版社, 2004.
    [5]程石,黄平.火炮身管直线度检测方法及测量元件选择[J].国防技术基, 2007,(2): 53-55.
    [6]郑群英,游陶,刘淑春等.潜油电机定子直线度检测校直装置[J].微电机, 2009, 4(7): 76-78.
    [7]高志军,王文娟.塔体直线度和塔盘水平度控制方法[J].石油化工设备, 2000, (5): 41-42.
    [8]王宁侠.深孔直线度检测装置的设计及应用[J].机械设计与制造, 2007, (2): 12-13.
    [9]胡长德,陆加海,幸祺等.基于激光干涉的长导轨直线度误差测量[J].光学仪器, 2008, 30(6): 10-15.
    [10]卢强,冯少波,贾华明等.塔里木油田钻杆技术的探索与实践[J].钻采工艺, 2008, 31(1): 87-89.
    [11]韩世卓.铁路无缝钢轨直线度测量装置[J].仪器仪表学报(增刊), 2004, 25(4): 190-192.
    [12]沙吉乐,邾继贵,杨学友等.大直径钢管直线度在线测量研究[J].仪器仪表学报, 2001, 22(3): 55-56.
    [13] Christine Conolly. Machine vision advancesand applications[J]. Assembly Automation, 2009, 29(2): 106~111.
    [14] Te-Hsiu Sun, Chun-Chieh Tseng, Min-Sheng Chen. Electric contacts inspection using machine vision[J]. Image and Vision Computing, 2010, 28: 890~901.
    [15]袁江涛,杨立,王小川等.基于机器视觉的细水雾液滴尺寸测量与分析[J].光学学报, 2009, 29(10): 2842-2847.
    [16]孟祥龙.精密冷轧无缝钢管直线度快速检测装置[J].诊断与检测, 2006, (2): 122-123.
    [17]王宏,陈庆峰.基于虚拟仪器的大直径焊管的形位误差检测系统[J].仪表技术与传感器, 2008, (12): 101-103.
    [18] C.FK uang, .Hong,Q.B.Feng. A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement[J]. Measurement Science and Technology , 2007, (18): 3795-3800.
    [19] Eiki Okuyama. Multi-probe method for straightness profile measurement based on least uncertainty propagation(1st report) [J]. Precision Engineering, 2010, (34): 49-54.
    [20] H.J. Pahk,J.S.Park,I.Yeo.Development of straightness measurement technique using theprofile matching method[J]. International Journal of Machine Tools and Manufacture, 1997, (31): 135-147.
    [21] W.Knapp, B.Bringmann. Straightness measurement for long movements[J]. Nanotechnology and Precision Engineering,,2005, (3): 249-256.
    [22] T.O.Ekinci,J.R.R.Mayer. Relationships between straightness and angular kinematic errors in machines[J]. Interational Journal of Machine Tools& Manufaacture, 2007, (47): 1997-2004.
    [23] Y.P.Cao, M.J.Liu, X.L. Liu. Development of an instrument for measuring large range 2-D straightness[J]. Optical Technique, 2005,(31): 282-285.
    [24] P.B.Dhanish,Jose Mathew. A fast and simple algorithm for evaluation of minimum zone straightness error from coordinate data[J]. The international Journal of Advanced Manufacturing Technology, 2007,(32): 92-98.
    [25] Yin Zi-qiang, Li Sheng-yi. Exact straightness reconstruction for on-machine measuring precision workpiece[J]. Precision Engineering , 2005, (29): 456-466.
    [26] S.L.Srimani, A.C.Pankaj, J.Basu. Analysis of end straightness of rail during manufacturing[J]. International journal of mechanical sciences , 2005, (47): 1874-1884.
    [27] Xiulan Wen, Aiguo Song. An improved genetic algorithm for planar and spatial straightness error evaluation[J]. Interational Journal of Machine Tools&Manufacture, 2003, (43): 1157-1162.
    [28] Qing Zhang, K.C. Fan,Zhu Li. Evaluation method for spatial straightness errors based on minimum zone condition[J]. Preision Engineering, 1999, (23): 265-272.
    [29] Johan Lofberg. Comment on“A unified approach for circularity and spatial straightness evaluation using semi-definite programming”by Ye Ding, LiMin Zhu, Han Ding[international journal of Machine TOOLS&Manufacture47(2007)1646-1650 [J]. International journal of Machine TOOLS&Manufacture, 2008, (48): 1523-1524.
    [30] Guangjun, Zhang, Junji, He, XiuzhiLi. 3D vision inspection for internal surface based on circle structured light[J]. Sensors and Actuators, 2005, (122): 68-75.
    [31] Jooho Hwang,C.H.Parka, Wei Gao, Seung-Woo Kim. A three–probe system for measuring the parallelism and straightness of a pair of rails for ultra-precision guideways[J]. International journal of Machine Tools and Manufacture, 2006, (47): 1053-1058.
    [32] Ling-jian zhu, Lin Li, Jun-Hua Liu, Zhong-Hua. A method for measuring the guideway straightness error based on polarized interference principle[J]. International Journal Of Machine Tools& Manufacture, 2009, (49): 285-290.
    [33]郁道银,谈恒英.工程光学[M].北京:机械工业出版社, 1998.
    [34]萧泽新.工程光学设计[M].北京:电子工业出版社, 2008.
    [35]黄一帆,李林.光学设计教程[M].北京:北京理工大学出版社, 2009.
    [36]李晓彤.几何光学和光学设计[M].杭州:浙江大学出版社, 1997.
    [37]曹俊卿.工程光学基础[M].北京:中国计量出版社, 2003.
    [38]袁祥辉.固体图象传感器及其应用[M].重庆:重庆大学出版社, 1996.
    [39]陈骏.测量误差与非远心光路的采用[J].上海机械学院学报, 1980, (4): 60~64.
    [40]徐善财.测量镜头MTF的系统设计及软件开发[D].杭州:浙江大学, 2007.
    [41]夏良正,李久贤.数字图像处理[M].南京:东南大学出版社, 2005.
    [42]阮秋琦.数字图像处理学[M].北京:电子工业出版社, 2001.
    [43]王爱玲,叶明生,邓秋香.图像处理技术与应用MATLABR2007[M].北京:电子工业出版社, 2007.
    [44] Kenneth R.Castleman著,朱志刚,林学誾,石定机译.数字图像处理[M].电子工业出版社,北京: 2002.
    [45]周宁宁,赵正旭,翁素文.图像的中介边缘检测方法[J].中国图像图形学报, 2010 , 15(3): 397-402.
    [46]赵德春,彭承琳,陈园园等.用形态学改进医学图像边缘检测算法[J].重庆大学学报, 2010, 33(2): 123-126.
    [47]陈功,易红,倪中华.基于LOG算法的DSA图像边缘检测[J].仪器仪表学报, 2006, 27(12): 1641-1646.
    [48]高丽,令晓明.基于数学形态学的HIS空间彩色边缘检测方法[J].光电工程, 2010, 37(4): 125-129.
    [49]吴捷,陈德智,郭成志. Sobel边缘检测算法的变异实现图像增强[J].激光与红外, 2008, 38(6): 612-614.
    [50]邓仕超,刘铁根,萧泽新.应用canny算法和灰度等高线的金相组织封闭边缘提取[J].光学精密工程, 2010, 18(10): 2314-2322.
    [51]曾理,郭海燕,马睿.基于小波定位及Facet模型的三维工业CT图像边缘检测[J].光学精密工程, 2010, 18(2): 443-450.
    [52]王海虹,曾妮,陆威等.基于小波变换和数学形态学的激光成像雷达图像边缘检测[J].中国激光, 2008, 35(6): 903-906.
    [53]李晓峰,徐军,张胜修等.激光主动成像图像边缘检测方法[J].中国激光, 2010, 37(6): 1599-1601.
    [54]雒涛,郑喜凤,丁铁夫.改进的自适应阈值Canny边缘检测[J].光电工程, 2009, 36(11): 106-117.
    [55]王爱民,赵忠旭,沈兰荪.基于矢量Prewitt算子的多尺度彩色图象边缘检测方法[J].中国图像图形学报, 1999, 4(12): 1024-1028.
    [56]边肇祺,张学工.模式识别[M].北京:清华大学出版社, 2000.
    [57]董霖. MATLAB使用详解[M].北京:电子工业出版社,2009.
    [58]张云辉,谭庆昌,田原嫄等.基于数字图像处理测量直线度的方法研究[J].微计算机信息, 2008, 24(3): 274-276.
    [59]李芳婷.轴类零件直线度误差的图像测量研究[D].长春:吉林大学, 2007.
    [60]王诚,吴继华,范丽珍等. Altera FPGA/CPLD设计(基础篇)[M].北京:人民邮电出版社, 2005.
    [61]张志刚. FPGA与SOPC设计教程——DE2实践[M].西安:西安电子科技大学出版社, 2007.
    [62]尹自强,李圣怡,王卓.直线度的高精度测量[J].计算机测量与控制, 2004, 12(2): 110-114.
    [63]方华刚,叶琅等. DSP原理与应用[M].北京:机械工业出版社, 2005.
    [64]江思敏,刘畅. TMS320C6000 DSP应用开发教程[M].北京:机械工业出版社, 2005.
    [65] Texas instruments incorporated著,卞红雨,纪详春,乔钢等编译. TMS320C6000系列DSP的CPU与外设[M].北京:清华大学出版社, 2007.
    [66]冬雷. DSP原理及开发技术[M].北京:清华大学出版社, 2007.
    [67]刘宝琴,张放兰,田立生. Altera可编程逻辑器件及其应用[M].北京:清华大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700