二连盆地白音查干凹陷成烃机理及其对成藏控制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二连盆地白音查干凹陷为陆相砂砾岩沉积湖盆,钻探发现三套烃源岩和多种成因类型的原油,已建成两个新的油田。但是该凹陷的成烃机理不清,导致对凹陷的油气资源潜力认识不清,制约了该凹陷下一步勘探方向的选择。
     论文应用成盆成烃成藏理论新思维,本着实验模拟与数值计算模拟相结合、样品实测分析与反演相结合的原则,将成盆成烃成藏作为一个统一体来研究凹陷的成烃机理,特别通过有限空间生排烃模拟实验和凹陷升降过程的物理场特征分析,研究凹陷的成烃过程,定量计算生排烃量,再认识凹陷的油气资源潜力,明确了成烃特征对油藏分布的控制作用,进一步指出有利的勘探方向。
     针对资源量和成藏研究中存在的主要问题,首先利用地层孔隙热压生排烃模拟仪,系统地开展模拟白音查干凹陷烃源岩在地质条件下的生烃与初次排烃实验,研究烃源岩在有限空间加水条件下的生排烃特征。结合盆地模拟技术,建立烃源岩在盆地尺度上的动态生烃量计算模版和生排烃效率的定量评价模式,建立了成熟度与孔隙度、油产率、孔隙空间含油饱和度的关系模版,首次确定了白音查干凹陷有限空间烃源岩生排烃量定量计算模型。
     凹陷存在多期不整合,剥蚀量计算一直是沉积盆地研究的难点和关键。为了探讨地层剥蚀对成烃成藏的影响作用,首次在该地区应用天文地层年龄研究方法计算了地层的剥蚀量。采用测井和地层分层数据标定凹陷约40万年的时间和年龄,并与沉积速率、剥蚀量计算方法结合起来,确定凹陷整体上升时期的剥蚀时间、剥蚀速率与剥蚀量,以赛汉塔拉组沉积末的剥蚀时间最长,约5.89Ma,南北两带剥蚀量一般为220-310m。
     并利用砂岩回弹模拟实验与理论计算,确定砂岩回弹定量计算模型,通过不同深度段砂岩的回弹体积增加量与有效上覆压力降低量之间的定量关系图版研究,恢复凹陷整体抬升期前后的古压力状态。赛汉塔拉剥蚀期卸载所产生的砂岩回弹量为0.5-12m,其前后古压力差在0.2-3.5MPa之间。
     应用有限空间烃源岩生排烃量定量计算模型,计算三套烃源岩的总生油量为61.505×10~8t、排油量为10.315×10~8t,提高了凹陷的油气资源潜力。凹陷赛汉塔拉组沉积期剥蚀前后的古压力差是油气运聚的源动力,目前已发现的油藏均处在古压力差相对高值带。
     本文的研究,可为类似盆地(凹陷)的成盆成烃成藏的定量研究提供借鉴,以加深盆地(凹陷)的基础地质研究,为勘探决策和部署提供依据。
Baiyinchagan depression in Erlian basin is a lacustrine sedimentary basin, andthree sets of hydrocarbon source rock and various genetic types of crude oil had beenfound, two new oilfields had already been built in it. But it’s hydrocarbon generationmechanism is not clear, and the potential of hydrocarbon resource is not clear too.This restricted to select it’s next exploration directions severely.
     The paper adopted the new thinking on basin evolution and hydrocarbongeneration and accumulation. According to the principle of combining experimentalsimulation with numerical simulation, combining sample testing with inversion, itstudied hydrocarbon generation mechanism of Baiyinchagan depression regarding asa unified body of basin evolution and hydrocarbon generation and accumulation.Especially through the hydrocarbon generation and expulsion simulation experimentin limited space and the analysis of physical field characteristic in basin liftingprocess, the paper studied the hydrocarbon generation and accumulation process andcalculated the quantities of hydrocarbon generation and expulsion, and re-recognitedthe potential of hydrocarbon resource, and analysised the control action ofhydrocarbon generation characteristics on the distribution of reservoir, and furtherpointed out favorable exploration directions.
     According to the main problems of the study of hydrocarbon resource andaccumulation, first of all, using the formation-pore and hot-pressing hydrocarbongeneration and expulsion simulation instruments, carrying out hydrocarbon generationand first expulsion experiments of source rock samples in simulated geologicalconditions systematically, and studying on hydrocarbon generation and expulsion ofhydrocarbon source rock in the condition of limited space with water. Combining withbasin modeling technology, the paper determined the calculating modules ofhydrocarbon generation and expulsion and the quantitative evaluating mode ofhydrocarbon generation and expulsion efficiency in the basin scale dynamically, anddetermined the models of maturity-porosity, maturity-oil yield, maturity-oil saturationof pore space, and firstly established the quantitatively calculating model ofhydrocarbon generation and expulsion in limited space on the depression.
     There are many unconformities in Baiyinchagan depression. Calculating ondenudation thickness is always a difficulty and key problem in sedimentary basin research. In order to investigate the effect of denudation to hydrocarbon generationand accumulation in the area, it calculated the denudation thickness of the depressfirstly adopting the method of astronomical geologic age. Using logging andstratigraphic data to calibrate the date and age of Baiyinchagan depression in about0.4million years, and combining with the calculation methods of deposition rate anddenudation thickness, it determined the erosion time, rate and thickness during thelifting time overall. The erosion time is the longest in the later period of Saihantalaage about5.89million years, and the denudation thickness is between220to310meters in the north and south belts of Baiyinchagan depression.
     Using sandstone rebound simulation experiment and theoretical calculation, itdetermined the calculating model of sandstone rebound quantity, and restored state ofthe ancient pressure between before and after denudating during basin lifting overallthrough studying on quantitative relation between the increased amount of sandstonerebound and the reduced amount of effective overburden pressure in different depthon the chart. The sandstone rebound thickness is between0.5and12meters, and theancient pressure difference is between0.2and3.5MPa between before and afterSaihantala denudation period.
     Finally applicating the quantitatively calculating model of hydrocarbongeneration and expulsion in finited space, it calculated the total quantity ofhydrocarbon generation of the three sets of hydrocarbon source rock about61.505×10~8t, the total quantity of hydrocarbon expulsion about10.315×10~8t, and thepotential of hydrocarbon resource is increased in Baiyinchagan depression. Theancient pressure difference between before and after the denudation in the later periodof Saihantala age is the power source of hydrocarbon migration and accumulation,and the oil fields having been found locate on the relatively high value zone of ancientpressure difference.
     The paper can provide a reference of quantitatively studying on hydrocarbongeneration and accumulation for the similar basins to deepen the petroleum geologicalresearch, and providing a basis for exploration decision-making and deployment.
引文
[1] Baskin D. K. Atomic H/C ratio of kerogen as an estimate of thermal maturity and organicmatter conversion. AAPG Bulletin,1997,81(9):1437~1450.
    [2] Braun R L and Burnham A K.Mathematical model of oil generation degradation andexpulsion.Energy Fuels,1990,4(1):132~146.
    [3] Cooles G. P., Mackenzie A, S. and Quigley T. M. Calculation of petroleum massesgenerated and expelled from source rocks. Organic Geochemistry,1986,10:235~245.
    [4] Evans R J,Felbeck G.High temperature simulation of petroleum formation–(Ⅱ) Effect ofinorganic sedimentary constituents on hydrocarbon formation.Org Geochem,1983,4:145~152.
    [5] Landais P,Michels R,Elie M.Are time and temperature the only constraints to thesimulation of organic matter maturation? Org Geochem,1994,22:617~630.
    [6] Lewan M.D. Evaluation of petroleum generation by hydrous pyrolysis experimentation.Philosophical Transactions of the Royal Society,1985,A315:123~134.
    [7] Magoon L. B. The petroleum system status of research and method. USGS Bulletin,1990,88:1912~1989.
    [8] Magoon L. B Identified petroleum systems within the United States.USGS Bulletin,1992,11:1992.
    [9] Magoon L. B and Sanchez R. M O.Beyond the petroleum system.AAPG Bulletin,1995,79(12):1731~1736.
    [10] Pepper A S and Corvit P J. Simple kinetics models of petroleum formation.Marine andPtroleum Geology,1995,12(30):291~319.
    [11] Price L C,Wenger L M.The influence of pressure on petroleum generation and maturationas suggested by aqueous pyrolysis.Org Geochem,1992,19:141~159.
    [12] Tissot B. and Welte D. H. Petroleum formation and occurrence. New York, Springer-Verlag,1984,699.
    [13] Demaison G.The generative basin concept.Petroleum geochemistry and basin evaluation.AAPG Memoir35,1984:1~14
    [14] Levorsen A I. Geology of petroleum.2nd edition. San Fran-cisco: W H Freeman,1967.
    [15] Chapman R E. Petroleum geology. Armsterdam: ElsevierScience,1983.
    [16] North F K. Petroleum geology. Boston: Allen Linwin,1985.
    [17] Magoon L B, Dow W G. The Petroleum system from source to trap, AAPG memoir60[M].Tulsa: AAPG,1994.
    [18] M oldowan J M,SeLfertW K,GallegosE. Relations between petroleum composition anddepositional environment of petroleum sourcerocks,AAPG Bu1letin,1985,69:1255~1268.
    [19] Rubinsteni I.Sieskind O,A lbrechtP. Rearranged sterenes In a shale: Occurrence andsimulated formation. Journal of the ChemicalSociety,Perkin Transaction,I,1975,1833~1836.
    [20] Fu Jiamo,Sheng Guoying,Xu Jiayou,et.Application of biological markers in theassessment of paleoenvironment of Chinese non-marnie sediments.Organic Geochemistry,1990,16:769~779.
    [21] U ngererP,BessisF,ChenetP Y,ela1.Geology and geochemical models oilexploration:principles and practical examples.In:Demaison G and M urris R J,eds.Petroleumgeochemistry and basin evaluation.AAPG Memoir,1984.35:53~77.
    [22] MackenzieA S,QuigleyT M.Principles of geochemical prospect appraisa1.AAPGBulletin,1988,72(4):399~415.
    [23] Zhang Houfu,Fang Chaoliang,Gao Xianzhi,Zhang Zhihuan and JiangYoulu.1999.PetroleumGeology. Beijing:PetroleumIndustry.Press.189~191.
    [24] Burnham AK and Sweeney J J.1989.A chemical kinetic model of vitrinite maturation andreflectance. Geochim. Cosmochim. Acta,53(10):2649~2657.
    [25] Eadington P J, Hamilton P J and Bai G P.1991. Fluid history analysis.A new concept forprospect evaluation. Australian Petroleum Exploration Association Journal,31(1):282~292.
    [26] Karlsen D A,NedkvitneT,LarterS R and B rlykke K.1993.Hydrocarbon composition ofauthigenic inclusions:application to elucidation of petroleum reservoir filling history.Geochim. Cosmochim. Acta,57:3641~3659..
    [27] Waples D W.1980.Time and temperature in petroleum formation:Application ofLopatin.smethod to petroleum exploration. AAPG Bull,64(6):916~926.
    [28] Carr,A.D.,Snape,C.E.,Meredith,W.,et al..The effect of water pressure on hydrocarbongeneration re-actions: some inferences from laboratory experiments. PetroleumGeoscience,2009,l5:17~26. doi:10.1144/1354-079309-797.
    [29] Chen,J. Y.,Liu,G. Y.,Jin,L.J.. Water in the earth's interior and abiotic formation ofhydrocarbon. Earth Science Frontiers,2009,16(1):33~40(in Chinese with Englishabstract).
    [30] Chen, J. Y.,Zhang, H.,Zheng, H. F.,et al. Insitu visualization of pyrolysis of organic matterin high-temperature and high-pressure water taking kerogen and asphalt as an example.Petroleum Geology&Experiment,2006,28(1):73~77(in Chinese with English abstract).
    [31] Chen, X. D.,Wang, X.B. Pressure effect on organic matter maturation and petroleumgeneration. Advance in Earth Sciences,1999,14(1):31~36(in Chinese with Englishabstract).
    [32] Cheng,K.M.,Wang,Z.Y.,Zhong,N.N.,et al.Theory and practice of oil and gas's generationin carbonate rock. Petroleum Industry Press,Beijing,1996,139~175(in Chinese withEnglish abstract).
    [33] Evans,R. J.,Felbeck,G. T. High temperature simulation of petroleum formation-(I)thepyrolysis of Green River Shale. Orb. Geochem,1983a,4:13:135~144.doi:10.1016/0146-6380(83)90034-7.
    [34] Evans,R.J.,Felbeck,G.T..High temperature simulation of petroleum formation-(I)effect ofinorganic sedimentary constituents on hydrocarbon formation. Orb. Geochem,1983b,4:145~152, doi:10.1016/0146-6380(83)90034-7.
    [35] Gao,F.,Lü, X. Y.. Kinetics of pinacol rearrangement in high temperature liquid water.Journal of Chemical Industry and Engineering,2006,57(1):57~60(in Chinese with Englishabstract).
    [36] Gao,G..Method of petroleum-generating simulation and its petroleum geologicalsignificance. Natural Gas Geoscience,2000,11(2):25~29(in Chinese with Englishabstract).
    [37] Guan,D.F,Wang,G.L.,Zhang,J.G.,et al. New idea about hydrocarbon generation and poolformation. Petroleum Geology&Experiment,2005,27(5):425~432(in Chinese withEnglish abstract).
    [38] He,S.,He,Z.L.,Yang,Z.,et al..Characteristics,well-log responses and mechanisms ofoverpressures within the Jurassic formation in the central part of Junggar basin. EarthScience Journal of China University Of Geosciences,2009,34(3):457~470(in Chinesewith English abstract).
    [39] Helgeson, H.C,Knox,A.M.,Owens, C. E.,et al. Petroleum,oil field waters and authigenicmineral assemblages are they in metastable equilibrium in hydrocarbonreservoirs.Geochimica et Cosmochimica Acta,1993,57(14):3295~3339, doi:10.1016/0016-7037(93)90541-4.
    [40] Hu,B. Q.,Lu,G. X.,Wang,F.Z.,et al. The critical singularities of water and its significancein the hydrothermal mineralization of uranium. Uranium Geology,2008,24(3):129~136(inChinese with English abstract).
    [41] Huang,Z.L.,Zhang,S. H.,Zhong,N. N. Simulation experiment of gas generation incarbonate rocks. Chinese Journal of Geology,2003,38(4):455~459(in Chinese withEnglish abstract).
    [42] Jiang,F.,Zhang,Y.L.,Du,J. G. Advance of pyrolysis experimentation on hydrocarbongenesis. Advance in Earth Sciences,1996,11(5):453~459(in Chinese with Englishabstract).
    [43] Kuhlmann,B.,Amett,E.M.,Siskin,M.Classical organte reactions in pure superheatedwater.J. Org.Chem.,1994,59(11):3098~3101.
    [44] Lewan,M.D.Experiments on the role of water in petroleum formation.Geochimica etCosmochimica Acta,1997,61(17):3691~3723.doi:10.1016/S0016-7037(97)00176-2.
    [45] Lewan,M.D.Sulphur-radical control on petroleum formation rates.Nature,1998,391:164~166.
    [46] Lewan,M.D.,Winters,J.C.,Mcdonald,J.H. Generation of oil-like pyrolyzates fromorganic-rich shales.Science,1979,203(4383):897~899, doi:10.1126/science.203.4383.897.
    [47] Seewald, J.S. Organirinorganic interactions in petroleum producing sedimentary basins.Nature,2003,426(20):327~333,doi:10.1038/nature02132.
    [48] Tissot,B.P.,Welte,D.H. Petroleum formation and occurrence-a new approach to oil and gasexploration.Springer-Verlag,Berlag,Berlin Heidelgerg,New York.1978.
    [49] H.N.Hall,Compressibility of Reservoir Rocks.Trans,AIMS,1953,P.309~311.
    [50] J.Hagoort,Fundamentals of Gas Reservoir Engineering Developments in PetroleumScience.1988.
    [51] O.Serra,Fundamentals of Well Log Interpretation,Developments in Petroleum Science15B,1986.
    [52] D.Teeuw,Prediction of Formation Compaction Form Laboratory Compressibility Data.SPEJ,Sept.,1971,P.263~271.
    [53] CoreLAB, A Course in the Fundamentals of Core Analysis,1973.
    [54] H.B.Bradley,Petroleum Engineering Handbook. Society of Petroleum Engineers,Richandson, TX,.S.A.1987.
    [55] I.Fatt,Pore Volume Compressibilities of Sandstone Reservoir Rocks.JPT,March,1958,P.64~66.
    [56] G.H.Newman,Pore-Volume Compressibility of Consolidated.Friable,and UnconsolidatedReservoir Rocks Under Hydrostatic Loading.JPT,February.1973.P.129~134.
    [57] R.P.Monicard,Properties of Reservoir Rocks,Core Analysis.1980.
    [58] D.K.Kellan,A Critical Review of Core Analysis Techniques,JCPT,April-June,1972,P.42~55.
    [59] J.Geertsma,Land Subsidence Above Compacting Oil and Gas Reservoirs.JPT,June.1973,P.734~744.
    [60] Agoon LB著,杨瑞召等译.含油气系统研究现状和方法.北京:石油工业出版社,1992.
    [61] Fikri F K,高立新,等.确定地层压力的新途径.断块油气藏,2001,4~9.
    [62]关德范,王国力,张金功,等.成盆成烃成藏理论思维-从盆地到油气藏.北京:石油工业出版社,2004,24~80.
    [63]关德范,王国力,张金功,等.成烃成藏理论新思维.石油实验地质,2005,27(5):425~432.
    [64]关德范,徐旭辉,李志明,等.成盆成烃成藏理论思维与有限空间生烃模式.石油与天然气地质,2008,29(6):709~715.
    [65]关德范.试论石油地质基础研究与理论创新.中外能源,2009,14(12):47~53.
    [66]关德范,徐旭辉,李志明,等.东营凹陷成烃成藏定量研究.中国石化石油勘探开发研究院,中国石化胜利油田分公司,2007.
    [67]姜峰,杜建国,王万春,等.高温超高压模拟实验研究I.温压条件对有机质成熟作用的影响.沉积学报,1998,16(3):153~160.
    [68]李贤庆,潘继平,等.含油气系统概念与研究方法.断块油气田,2000,7(1):1~5.
    [69]吴冲龙,等.含油气系统概念与研究方法.地质科技情报,1997,16(2):43~50.
    [70]姚爱华,陈元千.压实与弹性膨胀对孔隙度和饱和度影响的研究.石油勘探与开发,1993,20(1):91~99.
    [71]陈中红,查明,王克,等.烃源岩生排烃研究方法进展.地学前缘,2003,10(3):3~5.
    [72]尹伟,吴胜和,王子煜.油气差异泵吸作用机理探讨-以泌阳凹陷为例.地学前缘,2003,10(4):619~628.
    [73]张庆春,石广仁,田在艺,等.盆地模拟技术的发展现状与未来展望.石油实验地质,2001,23(3):312~317
    [74]张文正,等.烃源岩排烃生成与演化的热压模拟实验研究.石油勘探与开发,1991:18(3):7~15.
    [75]赵政璋,等.青藏高原海相烃源层的油气生成.北京:科学出版社,2000,101~173.
    [76]邹艳荣等.油气生成过程实验研究的思考与展望.石油实验地质,2004,26(4):375~381.
    [77]常俊合,张同周,许书堂,等.白音查干凹陷稠油特征及其成因.西安石油学院学报,1998,13(4):21~24.
    [78]邓已寻,张放东,库国政,等.白因查干凹陷达尔其地区油藏地质特征研究.油气地质与采收率,2004,11(1):23~25.
    [79]高鸿斌,王河清,户建忠.含油气系统在白音查干凹陷中的原因.西安工程学院学报,1999,21(增刊):24~26.
    [80]邓已寻,杨丽英,张梅,等.白音查干凹陷达尔其油田油藏特征与勘探潜力.大庆石油地质与开发,2004,23(4):7~10.
    [81]何生,何治亮,杨智,等.准噶尔盆地腹部侏罗系超压特征和测井响应以及成因.地球科学-中国地质大学学报,2009,34(3):457~470.
    [82]车晓峰,邓已寻,马建民,等.白音查干凹陷达尔其地区稠油地化特征识别.特种油气藏,2001,8(4):23~25
    [82]蒋飞虎,刘晓丽,杨静.白音查干凹陷早白垩世介形类组合特征与沉积环境.石油勘探与开发,1996,23(2):38~42.
    [83]库国正,张放东,邓已寻,等.白音查干凹陷变换构造与油气关系.石油与天然气地质,2005,26(2):257~262.
    [84]库国正,靳广兴,许书堂,等.白音查干凹陷石油地质综合研究.中国石化中原油田分公司,2002.
    [85]李莉,徐国盛,王威,等.白音查干凹陷达尔其油田油气成藏规律.成都理工大学学报(自然科学版),2007,34(3):277~284.
    [86]李健,张亚敏,王保才,等.白音查干凹陷油气富集规律.江汉石油学院学报,2000,22(4):1~5.
    [87]李金良,樊太亮,张岳桥.二连盆地白音查干凹陷层序地层及其油气勘探意义.地质力学学报,2007,31(1):60~69.
    [88]林春明,张志萍,李艳丽,等.二连盆地音查干凹陷早白垩世腾格尔组沉积特征及物源探讨.高校地质学报,2009,15(2):226~239.
    [89]林春明,岳信东,李艳丽,等.白音查干凹陷沉积特征研究.南京大学,2006.
    [90]李寿军.白音查干凹陷古生态及古气候探讨.断块油气田,2009,16(3):21~23.
    [91]梁志刚,曲志浩,王峻,等.白音查干凹陷油藏烃类非均质性及充注史分析.西安石油学院学报,1998,13(4):10~13.
    [92]刘振东,孙宜朴.白音查干凹陷巴彦花群沉积期岩相古地理.石油天然气学报(江汉石油学院学报),2010,32(2):161~165.
    [93]罗彩珍,田世澄,刘绍光.二连盆地白音查干凹陷构造的重新认识与勘探潜力分析.石油天然气学报(江汉石油学院学报),2009,31(5):200~204.
    [94]孙德有,高福红,付长亮,等.白音查干凹陷腾格尔组和阿二段储层微观特征研究.吉林大学,2008.
    [95]孙宜朴,林壬子.二连盆地白音查干凹陷达尔其油藏成藏历史分析.石油实验地质,2006,28(5):476~479.
    [96]谈玉明,冯建辉,张云献,等.白音查干凹陷达尔其油田原油的分类与生物降解作用.石油与天然气地质,2004,25(4):437~443.
    [97]谈玉明,冯建辉,靳广兴,等.白音查干凹陷达尔其油田原油地球化学与物性特征.地球化学,2003,32(3):271~281.
    [98]吴明荣,姜在兴,邱隆伟,等.白音查干凹陷南部斜坡带白垩系层序地层及油气藏的关系.石油大学学报(自然科学版),2001,25(5):1~5.
    [99]谢利华,周彤,杨建成.白音查干凹陷油气成藏条件及油气分布规律.石油地质与工程,2008,22(3):16~20.
    [100]许书堂,张洪波,张同周,等.白音查干凹陷储层成岩作用及其纵向分带特征.大庆石油地质与开发,2005,24(4):4~7.
    [101]许书堂,马维民,王德仁,等.二连盆地白音查干凹陷下白垩统层序地层研究.沉积学报,2004,22(4):644~650.
    [102]杨丽英,张放东,邓已寻,等.白音查干凹陷桑合地区油气富集因素分析.国外油田工程,2004,20(6):39~40.
    [103]岳信东,林春明,李艳丽,等.二连盆地音查干凹陷下白垩统腾格尔组沉积相.沉积学报,2008,26(4):593~601.
    [104]翟中军,王瑞庭,肖利平,等.白音查干凹陷烃源岩评价.石油天然气学报(江汉石油学院学报),2010,32(3):170~172.
    [105]张放东,邓已寻,等.白音查干凹陷隐蔽油藏勘探目标评价.中国石化中原油田分公司,2010.
    [106]张家政,赵广珍,刘喜顺,等.白音查干凹陷西部洼陷下白垩统储层特征及影响因素.江汉石油学院学报,2000,22(4):6~9.
    [107]张福顺,樊太亮,王生朗,等.白音查干凹陷层序地层格架及充填样式.地球学报,2003,24(2):137~142.
    [108]张福顺,王生朗,孙宜朴,等.白音查干凹陷层序地层研究.石油勘探与开发,2003,30(4):32~33.
    [109]张富顺.白音查干凹陷扇三角洲与辫状河三角洲沉积.地球学报,2005,26(6):553~556.
    [110]张志萍,林春明,徐深谋,等.二连盆地白音查干凹陷下白垩统都红木组沉积特征及演化.地层学杂志,2010,34(3):303~311.
    [111]张亚敏,靳广兴.二连盆地白音查干凹陷成藏动力学系统与油气勘探.新疆石油地质,2010,31(3):225~229.
    [112]张新建,方建明,唐文忠,等.白音查干油气成藏特征分析.石油与天然气地质,2000,21(1):61~64.
    [113]张振亮.白音查干凹陷油气成藏机制研究.中国石油勘探开发研究院,中国石化中原油田分公司,2009.
    [114]邹艳荣,帅燕华,孔枫,等.油气生成过程实验研究的思考与展望.石油实验地质,2004,26(4):375~381.
    [115]郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究.石油实验地质,2009,31(3):296~302,306.
    [116]郑伦举,何生,秦建中,等.近临界特性的地层水及其对烃源岩生排烃过程的影响.地球科学,2011,36(1):83~92.
    [117]陈晋阳,刘桂洋,金鹿江.地球内部水与无机成烃.地学前缘,2009,16(1):33~40.
    [118]陈晋阳,张红,郑海飞,等.高温高压下水中有机质降解过程的原位观测以干酪根和沥青质为例.石油实验地质,2006,28(1):73~77.
    [119]陈晓东,王先彬.压力对有机质成熟和油气生成的影响.地球科学进展,1999,14(1):31~36.
    [120]程克明,王兆云,钟宁宁,等.碳酸盐岩油气生成理论与实践.北京:石油工业出版社,1996,139~175.
    [121]高飞,吕秀阳.高温液态水中的频那醇重排反应动力学.化工学报,2006,57(1):57~60.
    [122]高岗.油气生成模拟方法及其石油地质意义.天然气地球科学,2000,11(2):25~29.
    [123]何生,何治亮,杨智,等.准噶尔盆地腹部侏罗系超压特征和测井响应以及成因.地球科学一中国地质大学学报,2009,34(3):457~470.
    [124]胡宝群,吕古贤,王方正,等.水的临界奇异性及其对热液铀成矿作用的意义.铀矿地质,2008,24(3):129~136.
    [125]黄志龙,张四海,钟宁宁.碳酸盐岩生气的热模拟实验.地质科学,2003,38(4):455~459.
    [126]姜峰,张友联,杜建国.油气生成热模拟实验研究进展.地球科学进展,1996,11(5):453~459.
    [127]刘宝泉,蔡冰,方杰.上元古界下马岭组页岩干酪根的油气生成模拟实验.石油实验地质,1990,12(2):147~161.
    [128]刘文汇,王万春.烃类的有机(生物)与无机(非生物)来源一油气成因理论思考之二.矿物岩石地球化学通报,2000,19(3):179~186.
    [129]吕秀阳,何龙,郑赞胜,等.近临界水中的绿色化工过程.化工进展,2003,22(4):477~481.
    [130]秦建中,刘井旺,刘宝泉,等.加温时间加水量对模拟实验油气产率及地化参数的影响.石油实验地质,2002,24(2):l52~157.
    [131]宋春财,胡浩权.生物质秸秆在水中热化学液化研究.四川大学学报(工程科学版),2002,34(5):59~62.
    [132]宋春财,王刚,胡浩权.生物质热化学液化技术研究进展.太阳能学报,2004,25(2):242~248.
    [133]孙辉,吕秀阳,陈良.不同植物油脂在近临界水中水解反应动力学的比较.化工学报,2007,58(4):925~929.
    [134]王晓峰,刘文汇,徐水昌,等.水在有机质形成气态烃演化中作用的热模拟实验研究.自然科学进展,2006,16(10):1275~1281.
    [125]王行信,王国力,蔡进攻,等.有机粘土复合体与油气生成.北京:石油工业出版社,2006,126~134.
    [126]王炫,段培高,戴立益.超(近)临界水在有机化学反应中的应用.化学通报,2005,68(53):1~6.
    [127]王兆明,罗晓容,陈瑞银,等.有机质热演化过程中地层压力的作用与影响.地球科学进展,2006,21(1):39~46.
    [128]王振平,付晓泰,卢双舫,等.原油裂解成气模拟实验产物特征及其意义.天然气工业,2001,21(3):12~15.
    [129]熊永强,耿安松,王云鹏,等.干酪根二次生烃动力学模拟实验研究.中国科学(D辑),2001,31(4):315~320.
    [130]徐有生,侯渭,郑海飞,等.超临界水的特性及其对地球深部物质研究的意义.地球科学进展,1995,10(5):445~449.
    [131]张荣华,张雪彤,胡书敏.川白界区流体与矿物和岩石在地球内部极端条件下的反应.地学前缘,2009,16(1):53~67.
    [132]周世新,邹红亮,解启来,等.沉积盆地油气形成过程中有机一无机相互作用.天然气地球科学,2006,17(1):42~47.
    [133]邹艳荣,帅燕华,孔枫,等.油气生成过程实验研究的思考与展望.石油实验地质,2004,26(4):375~382.
    [134]赵喆,钟宁宁,黄志龙.碳酸盐岩烃源岩生烃增压规律及其含义.石油与天然气地质,2005,26(3):344~355.
    [135]周连德,徐国盛,王威,等.白音查干凹陷达尔其油田沉积相与油气分布.物探化探计算技术,2007,29(5):405~410.
    [136]裘亦楠,王衡鉴.差异压实与大油气田.石油勘探与开发,1981,8(1):1~12.
    [137]吴崇筠,薛叔浩.中国含油气盆地沉积学.北京:石油工业出版社,1992.
    [138]刘德良.地球与类地行星构造地质学.合肥:中国科学技术大学出版社,1997.
    [139]田在艺,张庆春.中国含油气沉积盆地论.北京:石油工业出版社,1996.
    [140]韩晋阳,肖军,郭齐军等.渤海湾盆地南堡凹陷沉降过程岩浆活动温压场演化与油气成藏的耦合关系.石油实验地质,2003,25(3):257~263.
    [141]黄第藩,李晋超,周翥虹等.陆相有机质演化和成烃机理.北京:石油工业出版社,1984.
    [142]朱又红,王骏.松辽盆地十屋断陷长岭凹陷深层资源潜力分析.石油实验地质,2003,25(2):149~152.
    [143]王秉海,钱凯.胜利油区地质研究与勘探实践.东营:石油大学出版社,1992.
    [144]周玉琦,易荣龙,舒文培等.未来中国的油气资源前景探讨.石油实验地质,2003,25(3):227~234.
    [145]胡文海,陈冬晴.美国油气田分布规律和勘探经验.北京:石油工业出版社,1995.
    [146]秦建中,王静,李欣等.渤海湾盆地饶阳凹陷未熟-低熟油成烃成藏条件研究.石油实验地质,2003,25(增刊):566~572.
    [147]张林晔,孔祥星,张春荣,等.济阳坳陷优质烃源岩的发育及其意义.地球化学,2003,32(1):35~42.
    [148]李明诚.石油与天然气运移研究综述.石油勘探与开发,2000,27(4):3~10.
    [149]张林晔,张春荣.低熟油生成机理及成油体系-以济阳坳陷牛庄洼陷南部斜坡为例.北京:地质出版杜,1999,120~122.
    [150]田世澄,陈建渝,张树林等.论成藏动力学系统.勘探家,1996,1(2):20~24.
    [151]费琪,等.成油体系分析与模拟.武汉:中国地质大学出版社,1997.
    [152]汪品先.地质计时的天文“钟摆”.海洋地质与第四纪地质,2006,26(1):1~7
    [153]李前裕, Lucas Lourens,汪品先.新近纪海相生物地层事件年龄新编.地层学杂志,2007,33(3),196~208.
    [154]徐道一,韩延本,等.天文地层学的兴起.地层学杂志,2006,30(4),323~326.
    [155]叶得泉,钟筱春,等.中国北方含油气区白垩系》.北京:石油工业出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700