Ubiquitin B在HDAC抑制剂选择性诱导肿瘤细胞凋亡中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     组蛋白去乙酰化酶(Histone Deacetylases, HDACs)抑制剂是一类新型的非细胞毒类抗肿瘤药物,对多种肿瘤细胞中具有抑制增殖、诱导凋亡和分化的作用。目前,全球有超过100个关于HDAC抑制剂的临床试验正在进行,并已取得令人振奋的结果,显示了该药良好的临床应用前景。2006年,美国食品与药品管理局(FDA)正式批准第一个HDAC抑制剂——Zolinza胶囊(Vorinostat)上市,用于治疗皮肤T细胞淋巴瘤。然而,关于HDAC抑制剂作用机制的研究还相对落后,目前国内外对HDAC抑制剂广谱、特异性抗肿瘤效应的作用靶点的认识仍不十分明确,近年来,虽然有一些研究报道了HDAC抑制剂相关的效应分子,但并不能在HDAC抑制剂与其选择性杀灭肿瘤细胞效应间建立必然的因果逻辑联系。因此,系统性的筛选HDAC抑制剂的作用靶点,不仅有助于阐明HDAC抑制剂选择性抗肿瘤效应的机制,还对进一步发展肿瘤靶向性药物的研究具有重要意义。
     目的
     通过构建SMART (Suppression of Mortality by Antisense Rescue Technique)文库,以功能效应为基础筛选HDAC抑制剂的作用靶点,阐明HDAC抑制剂选择性诱导肿瘤细胞凋亡的新机制。
     方法
     建立Trichostatin A选择性诱导肿瘤细胞凋亡模型,构建Trichostatin A诱导MCF-7细胞反义cDNA文库,筛选凋亡效应基因,结合生物信息学分析,确定相应的靶点进行深入机制研究。
     结果
     成功构建了Trichostatin A选择性诱导肿瘤细胞反义cDNA文库,经过两轮严格筛选,共获得了24个候选靶点。通过对Ubiquitin B基因进行深入机制研究发现:UbiquitinB在肿瘤细胞中可以被Trichostatin A选择性诱导表达升高,Trichostatin A可以引起线粒体膜上BCL-2家族抗凋亡蛋白BCL-2和MCL-1的泛素化降解,改变线粒体膜电位,启动线粒体凋亡途径,最终导致肿瘤细胞凋亡,反义封闭Ubiquitin B可以抵抗Trichostatin A的凋亡诱导作用。而另一类HDAC抑制剂·——Apicidine,也与TrichostatinA具有相同的作用。此外,Trichostatin A还可以引起白血病细胞K562中融合蛋白BCR/ABL发生泛素化降解。
     结论
     SMART技术作为一种基于功能效应的高通量筛选方法,可以成为研究凋亡相关机制的有效手段。通过筛选获得的Ubiquitin B基因是HDAC抑制剂选择性诱导肿瘤细胞凋亡的重要靶点,HDAC抑制剂通过特异性诱导肿瘤细胞中Ubiquitin B的表达,激活泛素-蛋白酶体系统,引起线粒体膜上BCL-2家族抗凋亡蛋白BCL-2和MCL-1的泛素化降解,改变线粒体膜电位,启动线粒体凋亡途径,最终导致肿瘤细胞凋亡。
Background Histone deacetylase inhibitors (HDACis) are now emerging as a new class of anticancer agents with potent activity in the inhibition of proliferation and induction of apoptosis and differentiation in a wide spectrum of tumors. At least 12 HDACis are under evaluation in over 100 clinical trials and have produced encouraging therapeutic responses with surprisingly good safety profiles. The clinical potential of HDACis has been well exemplified by the successful development of Vorinostat which was recently approved by the US Food and Drug Administration for treatment of cutaneous T-cell lymphoma. Despite the rapid clinical progress achieved, the mechanism of action of HDACis is not yet well understood. One of the central questions is how these agents selectively kill tumor cells while sparing normal cells. Identification of the critical intracellular targets responsible for the tumor selectivity of HDACis will further improve the design of optimized clinical protocols. More attractively, unraveling the potential "death programs" selectively activated in tumor but not in normal cells will have broader implications for the understanding of tumorigenesis and the design of targeted therapies.
     Objective To screen some novel functional proapoptotic genes associated with HDAC inhibitors by suppression of mortality by antisense rescue technique and to explore the possible mechanisms of tumor-selective killing by HDAC inhibitors.
     Methods MCF-7 cells treated with 250 nmol/L Trichostatin A for different time points were harvested to construct an antisense cDNA library. HeLa cells were transfected with the library, and were selscted with Trichostatin A and Hygromycin B for 2 weeks. Then surviving colonies were amplified and Hirt DNA were extracted for sequencing.
     Results Twenty-four genes were identified, the most significant of which was ubiquitin B (UbB). The expression of UbB was selectively up-regulated by TSA in tumor cells, but not non-malignant cells. Further observation indicated that TSA induced a substantial dissipation of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, and proteolytic cleavage of caspases 3/9 in HeLa cells which was apparently mediated by ubiquitylation and the subsequent degradation of mitochondrial membrane proteins including BCL-2 and MCL-1. In contrast, knockdown of UbB expression inhibited the TSA-induced apoptotic cascade by abolishing TSA-induced ubiquitylation and the subsequent degradation of mitochondrial membrane proteins. Furthermore, apicidine, another HDACi, exhibited activity similar to that of TSA. Interestingly, TSA induced UbB-dependent proteasomal degradation of BCR-ABL fusion protein in K562 leukemic cells.
     Conclusion Ubiquitin B and Ubb-dependent proteasomal protein degradation play an essential role in HDACi-induced tumor selectivity. The mechanism provides a novel starting point for dissecting the molecular mechanism underlying the tumor selectivity of HDACi.
引文
1. Carey N, La Thangue NB. Histone deacetylase inhibitors:gathering pace. Curr Opin Pharmacol 2006; 6:369-375.
    2. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5:769-784.
    3. Marchion D, Munster P. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther 2007; 7:583-598.
    4. Duvic M, Vu J. Vorinostat:a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs 2007; 16:1111-1120.
    5. Kasper G, Weiser AA, Rump A, Sparbier K, Dahl E, Hartmann A, Wild P, Schwidetzky U, Castanos-Velez E, Lehmann K. Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer 2005; 117(6):961-973.
    6. ZHAO Le, CHEN Wei, LI Xu. Expression of LIV-1 mRNA in human cervical carcinoma and endometrial carcinoma. Nan Fang Yi Ke Da Xue Xue Bao 2007; 27(10): 1590-1592.
    7. Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T. Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 2004; 429(6989):298-302.
    8. Nenoi M. Induced accumulation of polyubiquitin gene transcripts in HeLa cells after UV-irradiation and TPA-treatment. Int J Radiat Biol 1992; 61:205-211.
    9. Delic J, Morange M, Magdelenat H. Ubiquitin pathway involvement in human lymphocyte gamma-irradiation-induced apoptosis. Mol Cell Biol 1993; 13:4875-4883.
    10. Finch JS, St John T, Krieg P, Bonham K, Smith HT, Fried VA et al. Overexpression of three ubiquitin genes in mouse epidermal tumors is associated with enhanced cellular proliferation and stress. Cell Growth Differ 1992; 3:269-278.
    11. Ryu KY, Sinnar SA, Reinholdt LG, Vaccari S, Hall S, Garcia MA et al. The mouse polyubiquitin gene Ubb is essential for meiotic progression. Mol Cell Biol 2008; 28: 1136-1146.
    12. Kouzarides T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 1999; 9(1):40-48.
    13. Fenrick R, Hiebert S W. Role of histone deacetylases in acute leukemia.J Cell Biochem 1998; 30-31(Suppl):194-202.
    14. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, and Pelicci P G. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Medicine 2005; 11: 71-76.
    15. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P, Alvarez R, Schiavone E M, Ferrara F, Bresciani F et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nature Medicine 2005; 11:77-84.
    16. Mariadason JM, Corner GA and Augenlicht LH. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids:comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 2000; 60:4561-4572.
    17. Deiss L P, and Kimchi A. A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal. Science 1991; 252:117-120.
    18. Hofman ER, Boyanapalli M, Lindner DJ et al. Thioredoxin reductase mediates cell death effects of the combination of beta interferon and retinoic acid. Mol Cell Biol 1998; 18:6493-6504.
    19. Angell JE, Lindner DJ, Shapiro PS et al. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinotic acid combination, using a genetic approach. J Biol Chem 2000; 275:33416-33426.
    20. Ma X, Ma Q, Liu J, Tian Y, Wang B, Taylor KM, Wu P, Wang D, Xu G, Meng L, Wang S, Ma D, Zhou J. Identification of LIV1, a putative zinc transporter gene responsible for HDACi-induced apoptosis, using a functional gene screen approach. Mol Cancer Ther 2009; 8(11):3108-3116.
    1. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature 2009; 458(7237):438-444.
    2. Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO. Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 2009; 100(1):24-28.
    3. Nenoi M. Induced accumulation of polyubiquitin gene transcripts in HeLa cells after UV-irradiation and TPA-treatment. Int JRadiat Biol 1992; 61:205-211.
    4. Delic J, Morange M, Magdelenat H. Ubiquitin pathway involvement in human lymphocyte gamma-irradiation-induced apoptosis. Mol Cell Biol 1993; 13:4875-4883.
    5. Finch JS, St John T, Krieg P, Bonham K, Smith HT, Fried VA et al. Overexpression of three ubiquitin genes in mouse epidermal tumors is associated with enhanced cellular proliferation and stress. Cell Growth Differ 1992; 3:269-278.
    6. Ryu KY, Sinnar SA, Reinholdt LG, Vaccari S, Hall S, Garcia MA et al. The mouse polyubiquitin gene Ubb is essential for meiotic progression. Mol Cell Biol 2008; 28: 1136-1146.
    7. Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 1999; 6:303-313.
    8. Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron 1990; 5: 411-419.
    9. Roy C, Brown DL, Little JE, Valentine BK, WalkerPR, Sikorska M, Leblanc J Chaly N. The topoisomerase Ⅱ inhibitor teniposide (VM-26) induces apoptosis in unstimulated mature murine lymphocytes. Exp Cell Res 1992; 200:416-424.
    10. Lauzon RJ, Patton CW, Weissman IL. A morphological and immunohistochemical study of programmed cell death in Botryllus schlosseri (Tunicata, Ascidiacea). Cell Tissue Res 1993; 272:115-127.
    11. Delic J, Morange M, Magdelenat H. Ubiquitin pathway involvement in human lymphocyte y-irradiation-induced apoptosis. Mol Cell Biol 1993; 13:4875-4883.
    12. Monney L, Otter I, Olivier R, Ozer HL, Haas AL, Omura S, Borner C. Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2.J Biol Chem 1998; 273:6121-6131.
    13. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell 2010; 37(3):299-310.
    14. L Xi, G C, J Zhou, G Xu, S Wang, P Wu, T Zhu, A Zhang, W Yang, Q Xu, Y Lu, D Ma. Inhibition of telomerase enhances apoptosis induced by sodium butyrate via mitochondrial pathway. Apoptosis 2006; 11:789-798.
    15. Akgul C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 2009; 66(8):1326-1336.
    1. Kramer OH, Muller S, Buchwald M, Reichardt S, Heinzel, T. Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. Faseb J 2008; 22:1369-1379.
    2. Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. Embo J 2003; 22:3411-3420.
    3. Rao R, Fiskus W, Yang Y, Lee P, Joshi R, Fernandez P et al. HDAC6 inhibition enhances 17-AAG-mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 2008; 112:1886-1893.
    4. Duus J, Bahar HI, Venkataraman G, Ozpuyan F, Izban KF, Al-Masri H et al. Analysis of expression of heat shock protein-90 (HSP90) and the effects of HSP90 inhibitor (17-AAG) in multiple myeloma. Leuk Lymphoma 2006; 47:1369-1378.
    5. Rahmani M, Reese E, Dai Y, Bauer C, Kramer LB, Huang M et al. Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol Pharmacol 2005; 67:1166-76.
    6. Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F et al. Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell 2009; 15:57-66.
    1. Mayer R J. The Nobel Prize for Chemistry 2004. European Biopharm. Rev. (in the press).
    2. Hershko A, Heller H, Elias S et al. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983; 258: 8206-8214.
    3. Thrower J S, Hoffman L, Rechsteiner M et al. Recognition of the polyubiquitin proteolytic signal. EMBO J 2000; 19:94-102.
    4. Wilkinson K D. Ubiquitination and deubiquitination:targeting of proteins for degradation by the proteasome. Semin. Cell Dev Biol 2000; 11:141-148.
    5. Ikeda F, Dikic I. Atypical ubiquitin chains:new molecular signals. EMBO Rep 2008; 9: 536-542.
    6. Kirisako T. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006; 25:4877-4887.
    7. Rahighi S. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 2009; 136:1098-1109.
    8. Iwai K, Tokunaga F. Linear polyubiquitination:a new regulator of NF-κB activation. EMBO Rep 2009; 10:706-713.
    9. Lange O F et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 2008; 320:1471-1475.
    10. Komander D et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10:466-4473.
    11. A G Eldridge, T O'Brien. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ 2010; 17:4-13.
    12. Reed SI. The ubiquitin-proteasome pathway in cell cycle control. Results Probl Cell Differ 2006; 42:147-181.
    13. Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7: 758-765.
    14. Kodadek T, Sikder D, Nalley K. Keeping transcriptional activators under control. Cell 2006; 127:261-264.
    15. Wang J, Maldonado MA. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol 2006; 3:255-261.
    16. Huen MS, Chen J. The DNA damage response pathways:at the crossroad of protein modifications. Cell Res 2008; 18:8-16.
    17. Tokunaga F, Sakata S-i, Saeki Y et al. Involvement of linear polyubiquitylation of NEMO in NF-[kappa]B activation. Nat Cell Biol 2009; 11:123-132.
    18. Peng J, Schwartz D, Elias JE et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21:921-926.
    19. Nijman SM, Luna-Vargas MP, Velds A et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123:773-786.
    20. Sun L, Chen ZJ. The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 2004; 16:119-126
    21. Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001; 2: 195-201.
    22. Rebecca L, Welchman, Colin Gordon et al. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 2005; 6:599-609.
    23. Huang L, Kinnucan E, Wang G et al. Structure of an E6AP-UbcH7 complex:insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999; 286:1321-1326.
    24. Verdecia MA, Joazeiro CA, Wells NJ et al.Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 2003; 11: 249-259.
    25. Ogunjimi AA, Briant DJ, Pece-Barbara N et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 2005; 19:297-308.
    26. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428.
    27. Chew E-H, Poobalasingam T, Hawkey CJ et al. Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells-evidence for cullin dimerization. Cell Signal 2007; 19:1071-1080.
    28. Lovering R, Hanson IM, Borden KL et al. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 1993; 90:2112-2116.
    29. Freemont PS. The RING finger:A novel protein sequence motif related to the zinc finger. Ann NY Acad Sci 1993; 684:174-192.
    30. Petroski MD, Deshaies RJ. Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6:9-20.
    31. Ohi MD, Vander Kooi CW, Rosenberg JA et al. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol 2003; 10:250-255.
    32. Aravind L, Koonin EV. The U box is a modified RING finger-a common domain in ubiquitination. Curr Biol 2000; 10:R132-R134.
    33. Asher G, Lotem J, Sachs L et al. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci USA 2002; 99:13125-13130.
    34. Shi CS, Kehrl JH. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem 2003; 78:15429-15434.
    35. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387:299-303
    36. Haupt Y, Maya R, Kazaz A et al. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387:296-299.
    37. Lai Z, Yang T, Kim YB et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc Natl Acad Sci USA 2002; 99:14734-14739
    38. Huang J, Sheung J, Dong G et al. High-throughput screening for inhibitors of the e3 ubiquitin ligase APC. Methods Enzymol 2005; 399:740-754.
    39. Vassilev LT, Vu BT, Graves B et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303:844-848.
    40. Issaeva N, Bozko P, Enge M et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10: 1321-1328
    41. Midgley CA, Lane DP. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 1997; 15:1179-1189.
    42. Koblish HK, Zhao S, Franks CF et al. Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Therapeut 2006; 5:160-169.
    43. Shembade N, Harhaj NS, Parvatiyar K et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008; 9:254-262.
    44. Crawford LJ, Walker B, Ovaa H et al. Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132. Cancer Res 2006; 66: 6379-6386.
    45. Ma MH, Yang HH, Parker K et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 2003; 9:1136-1144.
    46. Orlowski RZ, Kuhn DJ. Proteasome inhibitors in cancer therapy:lessons from the first decade. Clin Cancer Res 2008; 14:1649-1657.
    47. Verma R, Oania R, Graumann J, Deshaies RJ. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 2004; 118: 99-110.
    48. Chen L, Madura K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 2002; 22:4902-4913.
    49. Elsasser S, Chandler-Militello D, Muller B et al. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 2004; 279:26817-26822.
    50. Nijman SM, Luna-Vargas MP, Velds A et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123:773-786.
    51. Aleo E, Henderson CJ, Fontanini A et al. Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res 2006; 66: 9235-9244.
    52. Sakamoto KM, Kim KB, Kumagai A et al. Protacs:chimeric molecules that target proteins to the Skpl-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 2001; 98:8554-8559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700