基于Vicsek模型的自驱动集群动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集群动力学是研究集群运动的一门新兴学科,近几年受到国内外学者的广泛关注。集群行为无处不在,遍及自然界、生物系统和人类社会。其中深具代表性并广为人们熟知的集群行为包括:在宏观上,生物界中的鸟群、鱼群、蚂蚁等的运动;在微观上,细菌等微生物以及人类的黑色素细胞等都在进行群体运动。研究这些集群运动不仅对人们的工作和生活具有重要的现实意义,对了解自然界和生物系统具有深远的科学意义。而且集群运动的研究具有广阔的应用前景:在工程方面,生物群体中的同步、避障机制可以有效地应用到分布式机器人集群、无人驾驶飞行器群以及卫星群的运动控制中。在信息管理方面,可以从生物群体如何形成有效决策的研究中得到启示,为管理机制的改进和管理效率的提高提供新的思想源泉。
     研究集群运动的最终目的是了解集群系统具有怎样的集体动力学行为和如何干预控制应用这些系统。关于集群动力学的研究,物理学者主要是通过建立模型的方法来实现的。其中,典型的模型主要有以下几个: Vicsek Model、Three-Circle Model和Leader-follower Model.本文主要调研了基于Vicsek Model的近几年的各种研究。一般来说,所有的研究方法可以分为两类:一种是通过理论推导及应用已有的物理理论,试图去理解和解释集群行为形成的内在原因;另一种则是从实际的集群运动及个体生物特征出发,通过构造模型去发现实际集群运动中存在的规律。这里我们采取的是后者方法,通过充分的调研,我们在Vicsek模型的基础上提出一种有限视野角度模型,发现了最佳视野角度的存在,在最佳视野角度下系统既能快速达到同步又节省能量。
     在本文中,我们提出了有限视角模型,即每个个体的视野角度为其向前运动时眼睛所能看到的一个扇形范围而非Vicsek模型中的全局角度。我们发现,系统的收敛时间与个体的视野角度是非线性关系的,即不是角度越大收敛越快,而是存在最佳视野角度,使系统可以最快地达到同步;我们进一步研究了周围个体的平均数与收敛时间的关系,我们发现个体间过多的通信有时反而阻止系统的同步效果。我们的模型与实践更接近,得到的结果一是有助于对Vicsek模型更深层次的理解,另一个就是,在对人工智能如无人驾驶车辆和机器人的设计与控制研究中,可以为其提供借鉴,使其节省能量并更好地达到控制目的。
     以上研究成果已经发表于:Phy. Rev. E 79.052102 (2009).
Collective dynamics has been considered as an important approach for describing and understanding collective motions. In nature, collective motions of abundant organisms universally exist in biological flocks、swarms、schools, ranging from the behavior of groups of ants, colonies of bacteria and clusters of cells in the microcosmic scale, to migration of flocks of birds and schools of fish in the macroscopical scale. These different forms of collective behavior root in the different kinds of interactions among group members, and hence the investigation on the inter-individual interactions among self-driven swarms has attracted more and more attention among physicists, biologists, as well as social and systems scientists. Its value is to extract some generic rules from those natural systems, and apply them in other relevant industrial application realms, such as sensor network data fusion, load balancing, swarms/flocks, unmanned air vehicles (UAVs), attitude alignment of satellite clusters, congestion control of communication networks, multi-agent formation control, and so on.
     The ultimate goal of studying collective dynamics is two-fold: (i) examine the nature of such collective behaviors among bio-groups; (ii) understand the nature of collective behaviors and apply them in other field. The synchronization of collective motion is an important issue. With the advent of large computers, the field of collective dynamics has been dominated by numerical models. The typical models are Vicsek Model、Three-Circle Model、Leader-follower Model etc. In this paper, the main job is research on the various studies based on the Vicsek Model in recent years. Generally speaking, all research methods can be divided into two categories: from theory to the actual situation and from the actual situation to the theoretical research. The former is derived through the theory and tries to understand and explain the nature of collective motion. In the latter case, physicist is modeling the collective phenomenon to find the law of collective motions. Here, we adopt the latter method and propose a new model with the restricted vision and find that there exists an optimal view angle.
     In this paper, we have studied the effects of restricted vision of a group of self-propelled agents. The field of vision of every agent is only a sector of disc and the included arc represents the view angle. It is interesting to find that there exists an optimal angle resulting in the fastest direction consensus. The value of the optimal view angle increases as the increasing of sensor radius, while decreases as the increasing of swarm number, the absolute velocity or the noise strength. Another interesting phenomenon is that agents with optimal view angle have the least number of neighbors in the steady state. Our studies indicate the existence of superfluous communications in the Vicsek model, which indeed hinder the direction consensus. Moreover, our results may be useful in designing the man-made swarms such as autonomous mobile robots.
引文
[1] T. Vicsek,Universal patterns of collective motion from minimal models of flocking, Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems
    [2] Segel. L., 1977. A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM Journal on Applied Mathematics, 32:653–665.
    [3] A. Czirók, E. Ben-Jacob, I. Cohen and T. Vicsek: Formation of complex bacterial colonies via self-generated vortices; Phys. Rev. E 54 , 1791 (1996)
    [4] F. Nédélec, T. Surrey, A. Maggs, and S. Leibler, Self-organization of microtubules and motors Nature ,London 389, 305 (1997).
    [5] J. K. Parrish and W. M. Hamner, Animal Groups in Three Dimensions Cambridge University Press, Cambridge, England, (1997), and references therein.
    [6] M. T. Laub and W. F. Loomis, A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Mol. Biol. Cell 9, 3521 (1998).
    [7] E. Ben-Jacob, I. Cohen, and H. Levine, Cooperative self-organization of microorganisms. Adv. Phys. 49, 395 (2000).
    [8] R. Kemkemer, V. Teichgr?ber, S. Schrank, D. Kaufmann, and H. Gruler, Nematic order-disorder state transition in a liquid crystal analogue formed by oriented and migrating amoeboid cells. Eur. Phys. J. E 3, 101 (2000).
    [9] Y. Inada and K. Kawachi, Order and flexibility in the motion of fish schools.J. Theor. Biol. 214, 371 (2002).
    [10] I. D. Couzin and J. Krause, Self-organization and collective behaviour in vertebrates, Adv. Study Behav. 32, 175 (2003).
    [11] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control, July 2002, 48: 988–1001.
    [12]R. Olfati-Saber and R. M. Murray. Distibuted cooperative control of multiple vehicle formations using structural potential functions. The 15th IFAC World Congress, June 2002.
    [13] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, Stable flocking of mobile agents, Part I: Fixed topology, in Proc. IEEE Conference on Decision and Control, Maui, Hawaii USA, December 2003, 2: 2010–2015.
    [14] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, Stable flocking of mobile agents, Part II: Dynamic topology, in Proc. IEEE Conference on Decision and Control, Maui, Hawaii USA, December 2003, 2: 2016–2021.
    [15] R. W. Beard and V. Stepanyan. Synchronization of information in distributed multiple vehicle coordinated control. In Proceedings of IEEE Conference on Decision and Control, December 2003.
    [16] D. E. Chang, S. Shadden, J. Marsden, and R. Olfati-Saber. Collision Avoidance for Multiple Agent Systems. Proc. Of the IEEE Conf. on Decision and Control, December 2003.
    [17] R. Olfati-Saber. A unified analytical look at Renoldys flocking rules. Technical Report 2003–014, California Institute of Technology, Control and Dynamical Systems, Pasadena, California, September 2003.
    [18] V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE Transactions on Automatic Control, April 2003, 48(4): 692–697.
    [19] R. Olfati-Saber. Flocking with Obstacle Avoidance. Technical Report 2003–006, California Institute of Technology, Control and Dynamical Systems, Pasadena, California, February 2003.
    [20] Y. Liu, K. M. Passino, and M. M. Polycarpou. Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology. IEEE Transactions On Automatic Control, January 2003, 48(1): 76–95.
    [21] Pete Seiler, Analysis of bird formations. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December 2002.
    [22] Dong Hun Kim, Self-Organization for Multi-Agent Groups. International Journal of Control, Automation, and Systems, September 2004, 2: 333-342.
    [23] B.L.Partridge, The structure and function of fish schools, Scientific American, pp.114-123.
    [24] http://www.red3d.com/cwr/boids/.
    [25] E.Shaw, Fish in schools, Natural History, vol.84, No.8, pp.40-46, 1975.
    [26]郭雷,许晓鸣,复杂网络,上海科技教育出版社
    [27] Reynolds, C. W. (1987) Flocks, herds, and schools: A distributed behavioral model, in computer graphics. Proc. Of SIGGRAPH '87, 21(4): 25-34.
    [28] Heppner, F. H., Grenander, U. (1990) A stochastic nonlinear model for coordinated bird flocks. In: The ubiquity of chaos Washington, DC: American Association for the Advancement of Science 233-238
    [29] Vicsek, T., Czirók, A., Ben-Jacob, E. et al.(1995) Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75: 1226-1229.
    [30] Mu SM, Chu TG and Wang L, Coordinated collective motion in a motile particle group with a leader,Physica A 351, 211 (2005).
    [31] Monetti R, Rozenfeld A and Albano E, Study of Interacting Particle Systems: The Transition to the Oscillatory Behavior of a Prey—Predator Model, Physica A 283, 52 (2000).
    [32] V. Gazi and K. M. Passino, Stability analysis of social foraging swarms: Combined effects of attractant/repellent profiles, American Control Conf.Anchorage,Alaska,May 2002.
    [33] Jadbabaie A, Lin J and Morse AS, Coordination of groups of mobile autonomous agents using nearest neighbors rules,IEEE. Trans. Autom. Control. 48, 988(2003).
    [34] Czirok A, Stanley HE and Vicsek T, Spontaneously ordered motion of self- propelled particles, Journal of Physics A-Mathematical and General 30, 1375(1997).
    [35] Simha RA and Ramaswamy S, Hydrodynamic Fluctuations and Instabilities in Ordered Suspensions of Self-Propelled Particles,Phys. Rev. Lett. 89, 058101(2002).
    [36] Olfati-Saber R and Murray RM, Consensus problems in networks of agents with switching topology and time-delays, IEEE. Trans. Autom. Control. 49, 1520(2004).
    [37] Couzin I. D, Krause J., Franks N. R. and Levin S. A., Effective leadership and decision-making in animal groups on the move, Nature, vol. 433, pp.513-516, 2005.
    [38] Bellerini M., et al., Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proceedings of National Academy of Science U.S.A,. vol. 105, no.4. pp.1232-1237, 2009.
    [39] Zhang H. T., Chen M. Z. Q., and Zhou T., Synchronized Collective Behavior via Low-cost Communication, Arxiv preprint arXiv:0707.3402, 2007.
    [40] Zhang H. T., Chen M. Z. Q., and Zhou T., Predictive protocol of flocks with small-world connection pattern, Physical Review E, vol. 79, 016113, 2009.
    [41] Guillaume Gre′goire and Hugues Chate,Onset of Collective and Cohesive Motion PhysRevLett.92.025702 (2004)
    [42] A. V. Savkin, Coordinated collective motion of autonumous mobile robots: Analysis of Vicsek’s model, IEEE Transactions on Automatic Control, June 2004, 49: 981–983.
    [43] H. Tanner Flocking with Obstacle Avoidance in Switching Networks of Interconnected Vehicles, IEEE International Conference Robotics and Automation, New Orleans LA, April 26-May 1, 2004: 3006-3011.
    [44] T. Vicsek. A question of scale. Nature, May 2001, 411: 421–421.
    [45] H. Levine and W. J. Rappel, Self organization in systems of self-propelled particles, Physical Review E, 2001, 63: 208–211.
    [46] N. Leonard and E. Friorelli, Virtual leaders, artificial potentials and coordinated control of groups, in IEEE Conference on Decision and Control, Orlando, FL, 2001.
    [47] N. E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials, and coordinated control of groups. Proc. of the 40th IEEE Conference on Decision and Control, 2001: 2968–2973.
    [48] C. W. Reynolds. Interaction with a group of autonomous charachters. In Proc. of Game Developers Conference, CMP Game Media Group, San Francisco, CA, 2000: 449–460.
    [49] A.Bacciotti and F.ceragioli, Stability and stabilization of discontinuous systems and nonsmooth lyapunov functions, Control Optimisation and Calculus of Variations, 1999, 4: 361-376.
    [50] C. W. Reynolds. Steering behaviors for autonomous charachters. In Proc. of Game Developers Conference, Miller Freeman Game Group, San Francisco, CA, 1999: 763–782.
    [51] J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Physical Review E., 1998, 58: 4828–4858.
    [52] John Toner, Yuhai Tu and Sirram Ramaswamy. Hydrodynamics and phases of flocks. Annals of Physics, 2005, 318: 170–244.
    [53] Herbert G. Tanner, Flocking in Fixed and Switching Networks, IEEE Transactions on Automatic Control , (to appear), 2005.
    [54] R. Olfati-Saber,Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory, IEEE Transactions on Automatic Control , (to appear), 2005.
    [55] N. Moshtagh, A. Jadbabaie, and K. Daniilidis. Vision-based distributed coordination and flocking of multi-agent systems. In Proceedings of Robotics: Science and Systems, Cambridge, USA, June 2005.
    [56] H. Shi, L. Wang, T. Chu, and W. Zhang, Coordination of a group of mobile autonomous agents, Proc. International Conference on Advances in Intelligent Systems—Theory and Applications, Luxembourg, November 2004.
    [57] A. Fax and R. M. Murray. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, September 2004, 49: 1465-1475.
    [58]Dongjun Lee, Flocking of Inertial agents on balanced graph, American Control conference, 2006.
    [59] L. Wang, H. Shi, T. Chu, W. Zhang and L. Zhang, Aggregation of forging swarms, Lecture Notes in Artificial Intelligence, Springer-Verlag, 2004, 3339: 766–777.
    [60] B. Liu, T. Chu, L. Wang, and F. Hao, Self-organization in a group of mobile au- tonomous agents, in Proc. of the 23rd Chinese Control Conference, Wuxi, China, August 2004: 45–49.
    [61] A. V. Savkin, Coordinated collective motion of autonumous mobile robots: Analysis of Vicsek’s model, IEEE Transactions on Automatic Control, June 2004, 49: 981–983.
    [62] H. Tanner Flocking with Obstacle Avoidance in Switching Networks of Interconnected Vehicles, IEEE International Conference Robotics and Automation, New Orleans LA, April 26-May 1, 2004: 3006-3011.
    [63] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, Stable flocking of mobile agents, Part I: Fixed topology, in Proc. IEEE Conference on Decision and Control, Maui, Hawaii USA, December 2003, 2: 2010–2015.
    [64] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, Stable flocking of mobile agents, Part II: Dynamic topology, in Proc. IEEE Conference on Decision and Control, Maui, Hawaii USA, December 2003, 2: 2016–2021.
    [65] R. W. Beard and V. Stepanyan. Synchronization of information in distributed multiple vehicle coordinated control. In Proceedings of IEEE Conference on Decision and Control, December 2003.
    [66] D. E. Chang, S. Shadden, J. Marsden, and R. Olfati-Saber. Collision Avoidance for Multiple Agent Systems. Proc. Of the IEEE Conf. on Decision and Control, December 2003.
    [67] R. Olfati-Saber. A unified analytical look at Renoldys flocking rules. Technical Report 2003–014, California Institute of Technology, Control and Dynamical Systems, Pasadena, California, September 2003.
    [68] V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE Transactions on Automatic Control, April 2003, 48(4): 692–697.
    [69] R. Olfati-Saber. Flocking with Obstacle Avoidance. Technical Report 2003–006, California Institute of Technology, Control and Dynamical Systems, Pasadena, California, February 2003.
    [70] Y.Liu, K. M. Passino, and M. M. Polycarpou. Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology. IEEE Transactions On Automatic Control, January 2003, 48(1): 76–95.
    [71] W. Ren and R. W. Beard, Consensus seeking in multi-agent systems under dynamically changing interaction topologies, IEEE Trans. on Automatic Control, 2005, 50: 655-661.
    [72] W. Ren and R. W. Beard, Multi-agent consensus with relative uncertainty, American Control Conference, Portland, 2005.
    [73] D. B. Kingston and W. Ren, Consensus algorithm are input-to-state stable, American Control Conference, Portland, 2005.
    [74] Wei Ren, Randal W. Beard, E. Atkins, A Survey of Consensus Problems in Multi-agent Coordination, American Control Conference, 2005: 1859-1864.
    [75] Felipe Cucker, Steve Smale, Emergent behavior in flocks, 2005.
    [76] R. Olfati-Saber. Ultrafast consensus in small-world networks. Proc. of the 2005 American Control Conference, 2005: 2371-2378.
    [77] R. Olfati-Saber. Distributed Kalman Filter with Embedded Consensus Filters, Proc. of the joint CDC-ECC '05 Conference, 2005.
    [78] R. Olfati-Saber. Distributed Kalman Filtering and Sensor Fusion in Sensor Networks, Workshop on Network Embedded Sensing and Control, 2005.
    [79] R. Olfati-Saber, E. Franco, E. Frazzoli, J.S. Shamma, Belief consensus and distributed hypothesis testing in sensor networks, Workshop on Networked Embedded Sensing and Control, 2005.
    [80] L. Moreau, Stability of multi-agent systems with time-dependent communication links, IEEE Trans. on Automatic Control, 2005, 50: 169-182.
    [81] T. W. McLain and R. W. Beard, Coordination variables, coordination functions, and cooperative timing missions, AIAA Journal of Guidance, Control, and Dynamics, 2005, 28: 150–161.
    [82] Y. Hatano and M. Mesbahi. Agreement over random networks. IEEE Trans. on Automatic Control, 2005, to appear.
    [83] R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. on Automatic Control, 2004, 49: 1520–1533.
    [84] Fax and R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. on Automatic Control, 2004, 49: 1465-1475.
    [85] Z. Lin, M. Broucke, and B. Francis, Local control strategies for groups of mobile autonomous agents, IEEE Trans. on Automatic Control, 2004, 49: 622–629.
    [86] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. on Automatic Control, 2003, 48: 988–1001.
    [87] L. G. Dario Bauso and R. Pesenti, Distributed consensus protocols for coordinating buyers, in Proc. of IEEE Conf. on Decision and Control, 2003, 588-592.
    [88] Maximino Aldana, Cristian Huepe, Phase transitions in self-driven many particle systems and related non-equilibrium models: a network approach, Journal of Statistical Physics, 2003, 112: 135-150.
    [89] H. Yamaguchi, T. Arai, and G. Beni, A distributed control scheme for multiple robotic vehicles to make group formations, Robotics and Autonomous Systems, 2001,36: 125–147.
    [90] V. Gazi and K. M. Passino Stability Analysis of Swarms Proc. American Control Conf.Anchorage,Alaska,May 2002.1813–1818
    [91] I.D.Couzin et al. N.R. (2002) Collective memory and spatial sorting in animal groups .Journal of Theoretical Biology .218,1-11
    [92] Ali Jadbabaie, Jie Lin, and A. Stephen Morse, Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules,IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 6,2003
    [93] Iain D. Couzin etc,Effective leadership and decision-making in animal groups on the move,NATURE |VOL 433 | 3 FEBRUARY 2005
    [94] Juezhang, Yangzhao, Bao-mei Tian, Liqian Peng etc,Accelerating consensus of self-driven swarm via adaptive speed, Physica A 388(2009)1228-1236
    [95] W. Li, X.F. Wang, Adaptive velocity strategy for swarm aggregation, Phys. Rev. E 75 (2007) 021917.
    [96] W. Li, H.T. Zhang, M.Z.Q. Chen, T. Zhou, Singularities and symmetry breaking in swarms,Phys. Rev. E 77 (2008) 021920.
    [97] Liqian Peng,Yang zhao, Bao-mei Tian,Jue zhang etc, Consensus of self-driven agents with avoidance of collisions,Phys. Rev. E 79.026113(2009);
    [98] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, Collective memory and spatial sorting in animal groups,J. Theor. Biol. 218, 1 (2002).
    [99] G. R. Martin, Visual fields in woodcocks Scolopax rusti- cola (Scolopacidae; Charadriiformes), J Comp Physiol A 174, 787 (1994)
    [100] A. Huth, C. Wissel, The simulation of the movement of fish schools, J. Theor. Biol. 156 (1992), pp. 365–385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700