用户名: 密码: 验证码:
电流体动力学节能干燥技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人民生活水平的不断提高,传统的水产品干燥方法已越来越不能满足人们对其高品质、低能耗的要求。电流体动力学干燥技术作为一种新兴的干燥技术以其低投入、低能耗、不升温等优点为热敏性物料干燥开辟了一条新途径,为了进一步提高电流体动力学干燥速度,降低干燥能耗,并将其应用于水产品的干燥加工,本论文主要开展了以下五个方面的研究工作:
     通过电场预处理、不同电极、不同电压、不同极性电场下的电流体动力学干燥速度对比实验和针电极电场下离子风屏蔽实验明确了电流体动力学干燥机理,即高压电场产生的离子风对被干燥物料的冲击作用是导致其干燥速度增加的主要原因。
     利用自制的电流体动力学干燥装置,通过改变干燥电压、电源极性、电极间距、针(线)间距等试验参数测定了它们对干燥速度与能耗的影响程度,确定了最佳干燥参数,即采用针电极,在针间距和上下电极间距分别为8cm和9cm,工作电压为45kV的正高压,能够获得较大的干燥速度并消耗相对较少的电能。
     以海参、海米等水产品为代表,应用电流体动力学干燥技术对它们进行了干燥试验,并和热风、自然干燥等方法就干燥速度、干燥能耗及干品品质等进行了对比,实验结果表明采用该技术干燥水产品节能效果非常明显,其干燥海参、海米和扇贝柱所消耗电能分别为热风干燥所消耗电能的21.31%、29.6%和28.7%。,与热风干燥相比,采用电流体动力学干燥技术干燥的海参、海米的具有更低的收缩率,更高的复水率,更好的感官品质,所干燥的海参干品具有更低的硬度、更高的蛋白质和酸性粘多糖含量。
     以鲅鱼为试验材料,考察了干燥电压、样品厚度、样品含水率和环境温度对其干燥速度的影响,利用数学分析知识和SPSS统计软件拟合建立了干燥速度与电压、环境温度、样品的厚度、含水率等干燥的数学模型。
     以海参为试验材料,进行了电流体动力学与真空冷冻组合干燥的初步试验,测定了干燥时间、能耗及干品品质,并和真空冷冻干燥方法进行了对比,取得了较好的干燥效果。
With the continuous improvement of living standards, traditional drying techniques for aquatic products are becoming increasingly inadequate and no longer even meet certain requirements, such as high product quality and low energy consumption. Electrohydrodynamic (EHD) drying technology, as a novel drying method, is a prospective alternative for heat-sensitive materials due to its pronounced advantages, including low equipment expense, low energy consumption, and non-thermal processing. To improve the drying rate and reduce the energy consumption of EHD drying technology when used on aquatic products, five parts are addressed in the present thesis:
     A contrast experiment of drying rate on tofu using a needle electrode, a wire electrode and a plate electrode under different voltages have been evaluated respectively. At the same time, the contrast experiments of drying rate on tofu using needle electrode with glass enclosure and counterpart without it, as well as high electric field pretreatment. According to the experiment results, the mechanism of EHD drying was confirmed, the impact of ion wind on the drying material played a major role to increase drying rate.
     The factors related to the drying rate and energy consumption were quantitatively studied by changing the voltage, the voltage polarity, the electrode spacing and the distance between the two neighboring needles (wires). The results indicate that when the electrode spacing is 9 cm and the distance between the two neighboring needles is 8 cm, the drying rate is the highest while the energy consumption is relative least,45 kV is the optimum value for drying voltage.
     Sea cucumber, shrimp, and scallop muscle samples, as representatives of aquatic products, were dried using ambient air, an EHD system, and an oven. The energy consumption of EHD and oven drying, the shrinkage rate, water absorption, and rehydration ratio, and sensory properties, such as color and trimness, of the dried products were measured. Results showed that the drying rate of the aquatic products significantly improved using the EHD drying system. Compared with oven drying, EHD drying was more efficient in terms of energy savings. It also only costs less than 30% of the electric energy required for oven drying. The dried products obtained by EHD had less shrinkage, better rehydration, and better sensory qualities, such as better color, lower distortion, and so on. The dried sea cucumber obtained by EHD had higher protein and acid mucopolysaccharide contents and lower hardness.
     With Spanish mackerel as materials, dried investigated voltage, sample thickness, moisture content and environmental temperature on the drying rate of EHD have been experimentally evaluated. The experimental data were analysed by mathematical analysis and SPSS software and has established the mathematical model about the voltage, environmental temperature, the thickness and moisture content of the Spanish mackerel and the drying rate.
     Combination of EHD drying and vacuum freeze drying was examined as a potential mean for drying sea cucumber. The energy consumption of combination and vacuum freeze drying; the shrinkage rate, rehydration ratio; the protein content, the acid mucopolysaccharide content and sensory properties such as color and hardness of the dried product were measured. Compared with vacuum freeze drying, the combined process take less drying time and energy comsuption, Compared with EHD drying, the combined process had lower shrinkage rate, higher rehydration rate, higher protein content, lower hardness and better sensory qualities.
引文
[1]Mujumdar A S. Handbook of industrial drying, Second Edition Revised and Expande. New York:Marcel Dekker, USA,1995.
    [2]潘永康.现代干燥技术.北京:化学工业出版社,1998.
    [3]姚惠源,陈正行,周惠明,等.世界稻米、小麦、玉米加工业发展趋势与我国发展的战略.食品与生物技术,2003,22(5):104-110.
    [4]崔政伟.微波真空干燥的数学模拟及其在食品加工中的应用: (博士学位论文).无锡:江南大学,2004.
    [5]尹磊昌.脉动流化干燥理论模型的建立及试验分析: (硕士学位论文).济南:山东理工大学,2005.
    [6]王相友,柏雪源.脉动干燥原理及应用M].北京:中国农业科技出版社,1997.
    [7]Duan Xu, Zhang Min, Li Xinlin. Microwave freeze drying of sea cucumber coated with nanoscale silver. Drying Technology,2008,26(4):413-419.
    [8]Takaharu T, Tadahisa H. Internal Resistance to water mobility in seafood during warm air drying and microwave-vacuum drying. Drying Technology,2007,25 (7):1393-1399.
    [9]张亚琦,高昕,许加超,等.鲍鱼热风、晾晒干燥的比较试验.农业工程学报,2008,24(1):296-299.
    [10]张国琛,毛志怀.水产品干燥技术的研究进展.农业工程学报,2004,20(4):297-300.
    [11]Mauricio B, Teixeira F, Satoshi T. A diffusion model for describing water transport in round squid mantle during with a moisture-dependent effective diffusivity. Journal of Food Engineering,1998,36:169-181.
    [12]Doe P E. Fish drying and smoking:Production and quality. Lancaster:Economic Publishing Company, Inc,1998.
    [13]Arason S. The drying of fish and utilization of geothermal energy; the Icelandic experience. Keynote lectures.1st Nordic Drying Conference. Trondheim,2001:27-29.
    [14]Reza M S, Bapary M A J, Islam M N. Optmization of marine fish drying using solar tunnel dryer. Journal of Food Processing and Preservation,2009,33(1):47-59.
    [15]Mansell R, Suite B, Roswell G A. Engineering a "fish dry". Food Engineering, 2002, (11):30.
    [16]Doymaz I, Drying kinetics of white mulberry. Journal of Food Engineering,2004, 61,341-346.
    [17]Bala B K, Mondol M R A. Experimental investigation on solar drying of fish using solar tunnel dryer. Drying Technology,2001,19(2):427-436.
    [18]Wall R, Howard J J, Bindu J. The seasonal abundance of blowflies infesting drying fish in south-west India. Journal of Applied Ecology 2001,38:339-348.
    [19]Lin T M, Timothy D D, Scaman C H. Physical and sensory properties of vacuum microwave dehydrated shrimp. Journal of Aquatic Food Product Technology,1999,8(4):41-53.
    [20]蒋维钧,雷良恒,刘茂林化工原理.北京:清华大学出版社,2002.
    [21]于亚宇.太阳能在干燥领域的应用及展望.中国工程师,1997,(6):46.
    [22]于阿民,于阿英,徐利军.鱼的太阳能干燥.能源研究与利用,1996,1:32.36.
    [23]娄永江.龙头鱼热风干燥的数学模型及优化参数组合.食品科技,2000,(1):30-31.
    [24]叶盛权,郭祀远,吴晖.罗非鱼片干燥技术的研究.食品工业科技,2008,29(9):205-207.
    [25]Bellagha S, Sahli A, Farhat A, Kechaou N, et al. Studies On salting and drying of sardine:Experimental kinetics and modeling. Journal of Food Engineering,2007, 780):947-952.
    [26]Mujaffar S, Sankat C K. The air drying behaviour of shark fillets. Canadian Biosystems Engineering,2005,47(3):11-21.
    [27]康鹏.裙带菜干燥技术.南京林业大学学报,1997,21(增刊):176-177.
    [28]纪家笙,黄志斌,扬运华,等.水产品工业手册.北京:中国轻工业出版社,1999.
    [29]Dlaz-Viteri I, Medina-Vivanco M, Hubinger M D, et al. Air drying of giant shrimp Muscle. Drying 2002-Proceedings of the 13th International Drying Symposium, Beijing, China, August 27-30,2002, vol C,1727-1733.
    [30]张国产,牟晨晓,潘澜澜,等.热风干燥参数对扇贝柱干燥速率及品质的影响.大连水产学院学报,2004,19(1):35-39
    [31]张琼,章梁,黄泽元.草鱼鱼片热风干燥特性的研究.武汉工业学院学报,2008,27(4):13-18.
    [32]段振华,张憨,汤坚.鳙鱼的热风干燥规律研究.水产科学,2004,23(4):29-32.
    [33]马先英,赵世明,牟晨晓.不同工艺方法对鱿鱼热风干燥效果的影响.水产科学,2007,26(2):106-108.
    [34]黄晓春,吴汉民,桑卫国,等.雪菜蛤鱼方便食品的研制.东海海洋,2002,20(2):51-57.
    [35]Prachayawarakorn S, Soponronnarit S, Wetchacama S, et al. Drying characteristics of shrimps upper heat steam and hot air. Drying Technology,2001,20(3):669-684.
    [36]张俊杰,段蕊.高蛋白鱼粉加工.淮海工学院学报,2000,6:44-46.
    [37]汪涛,杨风光,于谦林.无公害水产品加工综合技术.北京:中国农业出版社,2003.
    [38]Barbara Q. Dehydrated Goods. Food Manufacture,1998,73(6):30-31.
    [39]徐瑛,陈天及,谢壁.真空冷冻干燥水产品的技术分析.渔业现代化,2007,34(3):44-46.
    [40]孙小红,关志强,覃惠芳,等.贝肉真空冷冻干燥过程的数值计算.制冷,2008,27(1):21--26.
    [41]Yang J, Chen J F, Zhao Y Y, et al. Effects of Drying Processes on the Antioxidant Properties in Sweet Potatoes. Agricultural Sciences in China,2010,09(10): 1522-1529.
    [42]王联珠,谭乐义,陈远惠,等.我国冷冻水产品质量状况及发展前景.海洋水产研究,2002,23(2):83-88.
    [43]何学连,过世东.白对虾真空干燥的研究.食品与发酵工业,2008,34(6):89-94.
    [44]谢国山,王立业.海栗子真空冷冻干燥的工艺探讨.食品科技,2002,12:46-47.
    [45]徐瑛,陈天及,谢垄.黄蚬真空冷冻干燥工艺及模型研究.食品工业科技,2008,29(6):235-237.
    [46]叶彪,蒋小强,李敏,等.真空冷冻干燥过程参数对罗非鱼片冻干时间及其除水率的影响.大连水产学院学报,2008,23(1):47-51.
    [47]关志强,孙小红,蒋小强.真空冷冻干燥过程参数对墨西哥湾扇贝冻干时间和能耗的影响.水产学报,2006,30(3):390-396.
    [48]陈学玲,何建军,程薇,等.武昌鱼真空冷冻升华干燥工艺的研究.湖北农业科学,2006,45(3):367-369.
    [49]王鹏.真空冷冻干燥技术在水产品加工中应用的探讨.农产品加工,2009,(8):69-73.
    [50]李志军,贾忠伟,李八方.真空冷冻干燥技术在水产品加工中的应用.齐鲁渔业,1999,16(4): 43-44.
    [51]沈健,崔伟.浅谈真空冷冻干燥技术.农业装备技术,2006,32(2):26-28.
    [52]张郁松,罗仓学.真空冷冻干燥食品.食品研究与开发,2005,26(1):91-93.
    [53]Chua K J, Mujumdar A S, Hawlader M N A, et al. Batch drying of banana pieces-effect of stepwise change in drying air temperature on drying kinetics and product color. Food Research International,2001,34(8):721-731.
    [54]郑春明.热泵在农副产品干燥中的应用.农机与食品机械,1997(2):26-28.
    [55]薛志成.热泵特点及在农副产品干燥中的应用.农业机械化与电气化.2002,(5):19.
    [56]Zhang Guo chen, Arason S, Vikingurarnason S. Drying characteristics of heat pump dried shrimp (Pandalus borealis) and fish cake. Transaction of the CSAE,2006, 22(9):189-193.
    [57]赵强,张志,毕道军,等.LY P-2000型热泵食品干燥机,包装与食品机械,1999,17(6):28-29.
    [58]母刚,张国琛,邵亮.热泵干燥海参的初步研究.渔业现代化,2007,34(5):47-50.
    [59]Shi Q L, Xue C H, Zhao Y, Li Z J, et al. Drying characteristics of horse mackerel (Trachurus japonicus) dried in a heat pump dehumidifier. Journal of Food Engineering, 2008,84(1):12-20.
    [60]石启龙,赵亚,李兆杰.竹荚鱼热泵干燥数学模型研究.农业机械学报,2009,40(5):110-114.
    [61]胡光华,张进疆.罗非鱼热泵梯度变温干燥试验研究哪.现代农业装备,2004,5:35-37.
    [62]吕峰,郑明锋,陆则坚.气调脱水技术对脱水大黄鱼品质影响的研究.农业工程学报,2004,20(6):190-193.
    [63]李浙.水产品热泵干燥装置的设计计算.冷藏技术,1998,2:36-39.
    [64]陈依水.热泵在水产品干燥中的应用.渔业机械仪器,1992,3:35-37.
    [65]薛志成.热泵及其在农副产品干燥中的应用.河北农机,2002, (5):24.
    [66]李占勇,潘永康.几种新型干燥器.南京林业大学学报,1997,21(增刊):15:22
    [67]Chua K J, Chou S K, Ho J C, et al. Heating pump drying recent developments and future trends. Drying Technology,2002,20(8):1579-1610.
    [68]Klocker K, Schmidt E L, Steimle F. A drying heat pump using carbon dioxide as working fluid. Drying Technology,2002,20(8):1659-1671.
    [69]王隽冬,张国琛,王麓璐.微波真空干燥技术及其在水产品加工中的应用.大连水产学院学报,2009,24(增刊):202-205.
    [70]段振华,汪菊兰.微波干燥技术在食品工业中的应用研究.食品研究与开发,2007,28(1):155-158.
    [71]Duan Z H, Zhang M, Hu Q G. Characteristics of Microwave Drying of Bighead Carp. Drying Technology,2005,23(3):637-643.
    [72]Lin TM, Timothy D, Christine H. Physical and sensory properties of vacuum microwave dehydrated shrimp. Journal of Aquatic Food Product Technology,1999,8(4):41-53.
    [73]刘海新,叶玫.调味海带脆片生产工艺.福建水产,2002,93(6):71-73.
    [74]张薇.微波干燥扇贝柱热质传递模型的研究.四川理工学院学报,2005,18(2):107-110.
    [75]张国琛,毛志怀,牟晨晓,等.微波真空干燥扇贝柱的物理和感观特性研究.农业工程学报,2004,20(3):141-144.
    [76]张国琛,毛志怀,牟晨晓,等.微波真空与热风组合干燥扇贝柱的研究.农业工程学报, 2005,21(6):144-147.
    [77]郭文川,朱新华.微波干燥技术在食品工业中的应用.食品科技,1997,(2):13-14.
    [78]励建荣.我国水产品工业现状与发展策略.保鲜与加工,2005,(3):1-2.
    [79]Asakawa Y. Promotion and retardation of heat transfer by electric field. Nature, 1976,261(5):220-221.
    [80]Barthakur N N. Electrohydrodynamic Enhancement of Evaporation from NaCl Solutions. Desalination,1990,78:455-465.
    [81]Carlon H R, Latham J. Enhanced Drying Rates of Wetted Materials in Electric Field. Journal of Atmospheric and terrestrial Physics,1992,54(2):117-178.
    [82]Chen Y H, Barthakur N N. Electrohydrodynamic (EHD) drying of potato slabs. Journal of Food Engineering,1994,23(1):107-119.
    [83]Barthakur N N, Arnold N P. Evaporation rate enhancement of water wit h air ions from a corona discharge. International Journal of Biometeorology,1995,39 (1): 29-33.
    [84]Hashinaga F, Bajgai T R, Isobe S, et al. Electrohydrodynamic drying of apple slices. Drying Technology,1999,17(3):479-495.
    [85]Seyed-Yagoobi J. Electrohydronamically Enhanced Heat Transfer in Pool Boiling. Journal of Heat Transfer,1996,118(2):233-237.
    [86]董守绂,梁运章.电晕电场对物料干燥的试验.高电压技术,1996,22(2):69-71.
    [87]Yang Tiqing, Liang Yunzhang, Dong Soufu. The Experiment and Physics Analysis on Drying Vegetables in the Electric Field. The 3rd Internatinal Conference on Applied Electrostatics, Shanghai,1997,196-199.
    [88]Isobe S, Barthakur N N, Yashino T, et al. Electrohydrodynamic Drying Characteristic of Agar Gel. Food Science Technology Research.1999,5(2):132-136.
    [89]Xue X, Barthakur N N, Alli I. Electrohydrodynamically-dried whey protein:an electrophoretic and differential calorimetric analysis. Drying Technology,1999, 17(3):467-478.
    [90]Li Lite, Li Fade, Eizo T. Effects of high voltage electrostatic field on evaporation of distilled water and okara drying. Biosystem studies,2000,3(1): 43-52.
    [91]Cao W, Nishiyama Y, Koide S, et al. Drying enhancement of rough rice by an electric field. Biosystems Engineering,2004,87 (4):445-451.
    [92]Cao W, Nishiyama Y, Koide S. Elect rohydrodynamic drying characteristics of wheat using high voltage electrostatic field. Journal of Food Engineering,2004,62(3): 209-213.
    [93]Lai F C, Sharma R K. EHD-enhanced drying with multiple needle electrode. Journal of Electrostatics,2005,63(3):223-237.
    [94]Lai F C, Wong D S. EHD-enhanced drying with needle electrode. Drying Technology, 2003,21 (7):1291-1306.
    [95]Balcer B E, Lai F C. EHD-enhanced drying wit h multiple wire electrode. Drying Technology,2004,22(4):821-836.
    [96]Lai F C, Lai K W. EHD-enhanced drying wit h wire elect rode. Drying Technology, 2002,20(7):1393-1405.
    [97]Li Fade, Li Lite, Sun Jianfeng, et al. Effect of electrohydrodynamic (EHD) technique on drying process and appearance of okara cake. Journal of Food Engineering,2006, 77(2):275-280.
    [98]Wong D S, Lai F C. EHD-Enhanced Drying With Auxiliary Heating From Below. Journal of Energy Resources Technology,2004,122(2):133-139.
    [99]Goodenough T I J, Goodenough P W, Goodenough S M. The efficiency of corona wind drying and its application to the food industry. Journal of Food Engineering,2007, 80:1233-1238.
    [100]Ahmedou S A O, Rouaud 0, Havet M. Assessment of the electrohydrodynamic drying process. Food Bioprocess Technology,2009,2(3):240-247.
    [101]翁明,耿艳霞.植物静电干燥的实验研究.西安交通大学学报,2001,35(3):316-318.
    [102]孙剑锋,李里特,鲁战会,等.高压静电场影响蒸馏水蒸发的因素研究.食品技术,2004,(3):5-8.
    [103]崔国强,曹延华,庞圣杰.高压电场干燥豆渣的实验研究.泰山学院学报,2005,27(6):73-75.
    [104]Oussalah N, Zebboudj Y. Finite-element analysis of positive and negative corona discharge in wire-to-plane system. European Physical Journal Applied Physics,2006, 34(3):215-223.
    [105]梁运章,那日,白亚乡,等.静电干燥原理及应用.物理,2000,29(1):39-41.
    [106]刘强,翁明,詹伟.电晕风干燥实验的研究.真空电子技术,2004, (1):55-57.
    [107]李里特,刘志会,李法德.高压静电场对琼脂凝胶干燥规律的试验研究.食品与机械,2000,(2):14-15.
    [108]李里特,李法德,辰巳英三.高压静电场对蒸馏水蒸发的影响.农业工程学报,2001, 17(2):12-15.
    [109]梁运章,丁昌江.高压电场干燥技术及开发研究.科学技术与工程,2003,3(2):196.
    [110]梁运章,丁昌江.高压电场干燥技术原理的电流体动力学分析.北京理工大学学报,2005,25(增刊):17-19.
    [111]丁昌江,卢静.牛肉在高压静电场作用下的干燥特性.高电压技术,2008,34(7):1405-1409.
    [112]Li Fade, Li Lite, Sun Jianfeng, et al. Electrohydrodynamic(EHD)Drying characteristic of okara cake. Drying Technology,2005,23(3):565-580.
    [113]韩玉臻.针—盘式高压电场下物料干燥的试验研究: (硕士学位论文).泰安:山东农业大学,2006.
    [114]Bajgai T R, Vi jaya Raghavan G S, Hashinaga F. Electrohydrodynamic Drying-A Concise overview. Drying Technology,2006,24(7):905-910.
    [115]Bajgai T R, Hashinaga F. Drying of spinach with a high electric field. Drying Technology,2001,19(9):2331-2341.
    [116]Bajgai T R, Hashinaga F. High electric field drying of Japanese radish. Drying Technology,2001,19(9):2291-2302.
    [117]丁昌江,梁运章.高压电场干燥胡萝卜的试验研究.农业工程学报,2004,20(4):220-222.
    [118]丁昌江,杨军,梁运章.高压电场干燥马铃薯的试验研究.食品科学,2004,25(5):43-45.
    [119]邢茹,梁运章,丁昌江,等.高压电场干燥蔬菜的实验研究.食品工业科技,2004,25(6):69-70.
    [120]丁昌江,梁运章.高压电场于燥技术在中药材干燥中的应用.北京理工大学学报,2005,25(增刊):126-128.
    [121]那日,杨体强,梁道明,等.静电干操特性的研究.内蒙古大学学报(自然科学版),1999,30(6):699-705.
    [122]丁昌江,杨军,梁运章.高压电场浓缩液体物料技术的研究及进展.物理,2004,33(6):435-437.
    [123]郭军,田立杰,董贵成,等.高压静电干燥免疫初乳乳清的研究.中国乳品工业,2001,29(6):4-6.
    [124]杨军,丁昌江,梁运章,等.高压电场干燥技术在生物制品中的应用.内蒙古大学学报(自然科学版),2004,35(5):509-511.
    [125]Barthakur N N, Arnold N P. Evaporation rate enhancement of water wit h air ions from a corona discharge. International Journal of Biometeorology,1995,39 (1): 29-33.
    [126]韩玉臻,李法德,田富洋,等.高压电场下不同位置处土豆片水分的变化规律农机化.农机化研究,2006,(6):149-151.
    [127]丁昌江,梁运章.高压电场干燥植物种子的机理研究.中原工学院学报,2003,14(增刊):26-28.
    [128]丁昌江.电场对生物物料中水分子输运特性的试验及机理研究:(硕士学位论文).呼和浩特:内蒙古大学,2004.
    [129]孙日珍.电介质物理基础.广州:华南理工大学出版社,2003.
    [130]李里特.电磁处理技术与食品加工新探索(上).食品与机械,1995,7:7-9.
    [131]李里特,关东胜.水的功能和利用.食品工业科技,1998,19(1):71-73.
    [132]王莘,李肃华,闵伟红,等.高压电场处理月见草种子萌发期的生物学效应. 生物物理学报,1997,13(4):665-670.
    [133]余增亮.离子束生物技术引论.合肥:安徽科学技术出版社,1998.
    [134]Cross J A. Electrostatically assisted heat transfer. In: Electrostatics(Ed. J. Lowell), Inst. Phys ColIf,1979,48:191-199.
    [135]吴百诗.大学物理.北京:科学出版社,2001.
    [136]丁昌江,梁运章.电场对含水物料中水分子作用的研究进展.物理,2004,33(7):524-528.
    [137]房英春,张慧,陈曦.海参资源及生物学特征.北京水产,2007,(2):25-28.
    [138]农业部渔业局.中国渔业年鉴(2006).北京:中国农业出版社,2006.
    [139]夏翠风.开拓海参消费市场的探讨.中国渔业经济,2004,(3):49-50.
    [140]许钟.免发刺参的加工.农产品加工,2006,(2):46.
    [141]云霞,韩学宏,农绍庄,等.海参真空冷冻干燥工艺.中国水产科学,2006,13(4):662-666.
    [142]孙显武.刺参的加工技术.中国水产,2002,(6):71-72.
    [143]Mujumdar A S. Drying of Fish and Seafood. Handbook of industrial drying, third edition. Boca Raton:CRC Press,2006.
    [144]Mujumdar A S. Research and Development in Drying:Recent Trends and Future Prospects. Drying Technology,2004,22(1):1-26.
    [145]李志平,傅璞,杨伟元,等.刺参冻干加工技术研究.海洋渔业,2004,26(1):52-56.
    [146]Ratti C. Hot air and freeze-drying of high-value foods:a review. Journal of Food Engineering.2001,49(4):311-319.
    [147]李艳聪,李书环.真空冷冻干燥技术及其在食品加工中的应用.天津农学院学报,2003,(1): 42-44.
    [148]段君,云霞,朱蓓薇,等.海刺参粘多糖提取分离的最佳工艺条件.大连轻工业学院学报,2003,22(2):107-111.
    [149]王远红,吕志华,姜廷福,等.梅花参中多糖提取工艺及含量测定的研究.中国海洋大学学报,2005,35(6):987-990.
    [150]刘桂敏,赵秀梅,陈菊娣,等.刺参酸性粘多糖质控分析方法的研究.解放军预防医学杂,2004,22(2):107-111.
    [151]段续.海参微波-冻干联合干燥工艺与机理研究: (博士学位论文).无锡:江南大学,2009.
    [152]段续,张憨,朱文学.海参冻干-微波联合干燥技术研究.包装与食品机械,2009,27(5):36-41.
    [153]白亚乡,胡玉才,杨桂娟,等.高压电场干燥斑(?)鱼的试验.高电压技术,2008,34(4):691-694.
    [154]Valle J M, Del A V, Leon H. Effect of blanching and calcium infiltration on PPO activity, texture, microstructure and kinetics of osmotic dehydration of apple tissue. Food Research international,1998,31(8):557-569.
    [155]Strumillo C, Adamiec J. Energy and Quality Aspects of Food Drying. Drying technology,1996,14(2):423-448.
    [156]Lu Y, Zhang B Y, Dong Q, et al. The Effects of stichopus japonicus acid mucopolysaccharide on the apoptosis of the human hepatocellular carcinoma cell line HepG2. The American Journal of the Medical Sciences,2010,339(2):141-144.
    [157]李志平,傅璞,杨伟元,等.刺参冻干加工技术研究.海洋渔业,2004,26(1):52-56.
    [158]Yuvanaree N, Warunee T, Sakamon D, et al. Drying kinetics and quality of shrimp undergoing different two-stage drying processes. Drying Technology,2004, 22(4):759-778.
    [159]农业部工人技术培训教材编审委员会,海水贝类养殖,北京:中国农业出版社,1995.
    [160]王如才,王昭萍,张建中.海水贝类养殖学.青岛:青岛海洋大学出版社,1993.
    [161]张国琛.扇贝柱微波真空干燥机理及品质研究:(博士学位论文).北京:中国农业大学,2004.
    [162]魏利平.山东省扇贝养殖现状及持续发展的技术措施.齐鲁渔业,2000,17(2):21-22.
    [163]吴万夫,张荣权.渔业工程技术.郑州:河南科学技术出版社,2000:186-22.
    [164]王海洪,徐大伦,王扬.扇贝柱方便食品的研制.中国水产,2000.(7):46-47.
    [165]Chung H Y, Yung L K S, Ma W C J, et al. A nalysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry. Food Research International,2002,35(1):43,11.
    [166]李来好.传统水产品加工,广州:广东科技出版社,2002:73-93.
    [167]Wulandari D I, Dyah A. Design and experimental testing of a solar dryer combined with kerosene stoves to dry fish. ASAE.028024.
    [168]陈仲仁.微波干燥在食品干燥制程之应用.食品工业,2002,34(7):31-45.
    [169]Takahiro 0, Long W, Takeo S, et al. Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering,2008,85(2):303-308.
    [170]Ertekin C, Yaldiz 0. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering,2004,63(3):349-359.
    [171]Akpinar E K, Bicer Y. Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conversion & Management 2008,49(6):1367-1375.
    [172]A new model for thermodynamics analysis of a drying process. International Journal of Heat and Mass Transfer,2004,47:645-652.
    [173]Togrul H. Simple modeling of infrared drying of fresh apple slices. Journal of Food Engineering,2005,71(3):311-323.
    [174]Vaios T, Karathanos:Vasilios G, Belessiotis. Application of a thin layer equation to drying data fresh and semi-dried fruits. Journal of Agricultural Engineering Research,1999,74(4):355-361.
    [175]Kiranoudis C T, Maroulis Z B, Marinos-Kouris D. Drying kinetics of onions and green popper. Drying Technology,1992,10(4):995-1011.
    [176]Akpinar E K, Bicer Y, Yildiz C. Thin layer drying of red pepper. Journal of Food Engineering,2003,59(1):99-104.
    [177]Akpinar E K, Bicer Y, Midilli A. Modeling and experimental study on drying of apple slices in a convective cyclone dryer. Journal of Food Process Engineering, 2003,26(6):515-541.
    [178]Panchariya P C, Popovic D, Sharma A L. Thin layer modeling of black tea drying process. Journal of Food Engineering,2002,52(4):349-357.
    [179]Hayaloglu A A, Karabulut I, Alpaslan M. Mathematical modeling of drying characteristics of strained yoghurt in a convective type tray-dryer. Journal of Food Engineering.2007,78(1):109-117.
    [180]Chen C, Wu P C. Thin layer drying model for rough rice with high moisture content. Journal of Agriculture Engineering Research,2001,80(1):45-52.
    [181]Akpinar E K, Midilli A, Bicer Y. Single layer drying behavior of potato slices in a convective cyclone dryer and mathematical modeling. Energy Conversion and Management,2003,44(10):1689-1705.
    [182]Akpinar E k, Midilli A, Bicer Y. Experimental investigation of drying behavior and conditions of pumpkin slice via a cyclone-type dryer. Journal of the Science of Food and Agriculture,2003,83(14):1480-1486.
    [183]Doymaz I. Effect of drying treatment on air drying of plums. Journal of Food Engineering,2004,64(4):465-470.
    [184]Abdullah A, Aydin D. Thin layer solar drying and mathematical modeling of mulberry. International Journal of energy research,2009,33(7):687-695.
    [185]Ertekin C, Yaldiz 0. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering,2004,63(9):349-359.
    [186]Adnan M, Haydar K. Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management,2003,44(7):1111-1122.
    [187]肖旭霖.洋葱真空远红外薄层干燥模型.食品科学,2002,23(5):40-43.
    [188]陈丽梅,王瑞梅,闰毅,等.丸粒化玉米种子薄层干燥的数学模型.农业机械学报,2006,37(6):54-58.
    [189]赵思明,谭汝成,刘友明,等.方便米粉高温高湿干燥数学模型研究.食品科学,2003,24(7):52-54.
    [190]朱凤武,王景利,初立东,等.丸粒化玉米种子干燥特性及数学模型.吉林大学学报,2002,24(5):95.97.
    [191]Sanga E C M, Mujumdar A S, Raghavan G S V. Simulation of convection-microwave drying for a shrinking material. Chemical Engineering and Processing 2002,41(6): 487-499.
    [192]Phanindra K H S. Effect of combination drying on the physicochemical characteristics of carrot and pumpkin. Journal of Food Processing and Preservation 2001,25(6):447-460.
    [193]Claussen I C, Ustad T S. Atmospheric freeze drying-A review. Drying Technology, 2007,25(6):947-957.
    [194]Cui Z, Xu S, Sun D. Dehydration of garlic slices by combined microwave-vacuum and drying. Drying Technology,2003,21(7):1173-1184.
    [195]Xu Y Y, Zhang M, Tu DY. A two-stage convective air and vacuum freeze-drying technique for bamboo shoots. International Journal of Food Science and Technology, 2005,40(6):589-595.
    [196]Zhang J, Zhang M, Shah L, et al. Microwave-vacuum heating parameters for processing savory crisp bighead carp slices. Journal of Food Engineering,2007,79(2):885-891.
    [197]Hu Q G, Zhang M, Mujumdar A S, et al. Drying of edamames by hot air and vacuum microwave combination. Journal of Food Engineering,2006,77(4):977-982.
    [198]Xu Duan, Min Zhang, Arun S, et al. Microwave freeze drying of sea cucumber (Stichopus japonicus). Journal of Food Engineering,2010,96 (4):491-497.
    [199]Maskan M. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering,2001,48 (2):177-182.
    [200]Maskan M. Kinetics of color change of kiwifruits during hot air and microwave drying. Journal of Food Engineering,2001,48 (2):169-175.
    [201]Szabo G, Rajko R, Nemenyi M, et al. Modelling of combined hot-air convection drying of mushroom. The 13th International Drying Symposium. Beijing, China,2002, Vol. A:319-326.
    [202]Weerachal K, Somchai W. Combined microwave/fluidized bed drying of fresh Peppercorns. Drying Technology,2004,22(4):779-794.
    [203]Boehm V, Kuehnert S, Rohm H, et al. Improving the nutritional quality of microwave-vacuum dried strawberries a Preliminary study. Food science& Technology international.2006,12(1):67-75.
    [204]丛海花,薛长湖,孙妍,等.热泵-热风组合干燥方式对干制海参品质的改善.农业工程学报,2010,26(5):342-346.
    [205]Xu Duan, Min Zhang, Arun S, et al. Study on a combination drying technique of sea cucumber. Drying Technology,2007,25(12):2011-2019.
    [206]李琴,朱科学,钱海峰,周惠明.微波热风组合干燥制备板栗粉的研究.食品工业科技.2008.29(2):209-211
    [207]Tein M L, Timothy D, Durance C H, et al. Physical and sensory properties of vacuum microwave dehydrated shrimp. Journal of Aquatic Food Product Technology, 1999,8(4):41-53.
    [208]Litvin S, Mannheim C H, Miltz J. Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. Journal of Food Engineering, 1998,36(1):103-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700