地震作用下高墩刚构桥动力稳定性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国刚构桥仅仅有二十年的发展历程,作为山高谷深、地形复杂山区的首选桥型,其在抗震救灾等各种情况下扮演着重要生命线工程的角色。由于其跨径长、墩高差异大,结构动力特性及地震反应特点相对一般桥梁更为复杂,因此特别需要对其抗震性能进行研究。高墩刚构桥的抗震研究对同类桥梁的抗震设计及评估意义重大。
     本文对大跨度刚构桥的动力稳定性能进行了研究,主要包括第一类动力稳定(弹性稳定)计算理论和实例分析、刚构桥的非线性模拟方法、混凝土和钢筋的材料参数的确定、全桥及高墩的第二类动力稳定(非线性稳定)研究等几个部分。具体包括以下几点。
     1)通过查阅大量有关刚构桥的稳定问题、抗震研究以及实际工程结构的动力稳定研究现状的国内外文献,总结了刚构桥动力稳定研究的两个主要问题是:稳定性判别准则和求解方法。针对这两个问题提出了采用基于Liapunov运动稳定性理论的稳定性判别准则来进行刚构桥的动力稳定判别和通过数值求解方法来解决复杂结构在复杂地震动作用下的动力稳定问题的研究思路。
     2)为了确定符合本工程的钢筋和混凝土的材料参数,并评判刚构桥在地震作用下动力失稳时的性能水准,通过研究地震作用下钢筋混凝土桥墩的五种损伤状态——构件屈服、混凝土保护层压碎、混凝土保护层剥落、纵向钢筋屈曲和结构极限状态,确定了本工程对应的钢筋和混凝土的五级应变。
     3)刚构桥数值模拟的关键是如何考虑恰当的结构的非线性,而这一问题一直是刚构桥静力和动力分析中研究的难点和热点问题。选取纤维模型这一模拟钢筋混凝土材料非线性最精细的方法来模拟刚构桥的非线性性能,编写了矩形空心墩的纤维截面代码,并对高墩进行了非线性静力分析。
     4)通过基于纤维模型的龙潭河最大高墩和全桥在地震作用下的非线性IDA计算,解决了复杂结构在地震作用下,从初始激振、非线性振动直到失稳破坏的全过程模拟和动力失稳判别问题。根据B-R准则给出了其临界地震加速度幅值,并对其动力性能和特征响应指标进行了深入的探讨。
Recently Rigid-Frame Bridges have been built for only twenty years in our country and they have been used as the preferred bridge type in coplicated terrain mountain areas. They play important role as lifeline engineering in certain cases such as earthquake relief and so on. Therefore study on their seismic performance needs to be carried out, especially on their dynamic stability under earthquake action. Dynamic stability of a rigid-frame bridge has been investigated in this dissertation, and the seismic performance of the bridge is evaluated. The research of seismic response of rigid-frame bridge with high piers is of great significance to the seismic design and evaluation of other similar bridges.
     In this dissertaion, the studies on the dynamic stability of rigid-frame bridge with high piers are performed. The research content includes:the theory and example analysis of the elastic dynamic stability; the nonliear simulation method of bridge piers; the material parameters of reinforcement and concrete; the nonlinear dynamic stability of high pier and full bridge. The specific contents are as follows,
     1) Based on the massive domestic and international literature of the seismic response, static stability resarch and dynamic stability of rigid-frame bridges, summarizes the two key points of the research on the dynamic stability of rigid-frame bridge:what is the suitable and practical dynamic criteria and how to solve the dynamic stability of the bridge. The criteria based on Liapunov's motion stability theory and numerical simulation method are put forward to solve the dynamic stability of comples structures under earthquake. And the key point of the numerical simulation of rigid frame bridge is how to deal with the nonlinearity of the structure.
     2) In order to determine the reinforcement and concrete matrrial parameters which are suitable for this bridge, the strain corresponding to five damage states is investigated, which can also be used to evaluate the performance levels of the bridge under earthquake. The five damage states of the bridge piers subjected to seismic action are:members yielding, concrete cover crushing, concrete cover spalling, bar buckling, structure limit state respectively.
     3) Due to the challenging nature of accurately modeling the material nonlinearity of both steel reinforcement and concrete, conducting nonlinear static and dynamic analysis of the rigid frame bridge with high pier remains as a significant difficulty. The fiber model is choosed to model the nonlinearity of the rigid-frame bridge which is the most precise and latest method. The section code is developed and the nonlinear static analysis is done to the piers.
     4) The nonlinear IDA is done to the full bridge and piers based on the fiber model under earthquake action. The whole process of the structure from initial exitation, nonlinear vibrating to instabe failure is simulated. During the analysis B-R criteria is used to judge the critical load of the bridge. The dynamic performance and instablility mechanism of the bridge are researched.
引文
[1]李黎,廖萍,龙晓鸿等.薄壁高墩大跨度连续刚构桥的非线性稳定分析[J].工程力学,2006,23(5):119-124.
    [2]李睿,叶燎原,周亦唐.山区空心薄壁高墩的构造与力学分析[J].公路,2007,(11):46-50.
    [3]白浩,杨昀,赵小星.高墩大跨径弯连续刚构桥梁空间非线性稳定分[J].公路交通科技,2005,22(5):11 1-113.
    [4]王钧利,贺拴海.高墩大跨径连续刚构弯桥全过程非线性稳定分析[J].长安大学学报(自然科学版),2008,28(3):49-52.
    [5]王钧利,贺拴海.高墩大跨径弯桥在悬臂施工阶段刚构的非线性稳定分析[J].交通运输工程学报,2006,6(2):30-34.
    [6]王钧利.高墩大跨径连续刚构弯桥全过程稳定性分析[D].长安大学,2006.
    [7]张谢东,李卫华,汪娟娟等.高墩连续刚构桥施工阶段抗风与P-△效应分析[J].武汉理工大学学报(交通科学与工程版),2008,32(2):232-235.
    [8]韩万水,陈艾荣,马如进等.高墩大跨刚构桥施工阶段的抗风分析[J].同济大学学报(自然科学版),2007,35(2):166-170.
    [9]司学通,郭文华.高墩大跨连续刚构桥最大悬臂阶段风致响应及其对施工人员的影响[J].铁道科学与工程学报,2007,4(4):17-22.
    [10]王解军,梁锦锋.风荷载作用下高墩连续刚构桥的非线性稳定分析[J].中南林业科技大学学报,2008,28(2):74-79.
    [11]王宗林,张巍,徐亮.温度及垂直度对薄壁高墩连续刚构桥稳定性影响的研究[J].公路,2007,(6):48-51.
    [12]何钦象,田小红,宋丹.高墩大跨径连续刚构桥抗震性能评估[J].振动与冲击,2009,28(1):68-71.
    [13]周勇,张峰,李术才等.基于纤维模型的钢管混凝土拱非线性失稳分析[J].山东大学学报(工学版),2007,37(6):106-110.
    [14]谢肖礼,王波,张伟峰等.罕遇地震作用下高墩连续刚构桥双重非线性抗震分析[J].工程力学,2009,26(4):113-118.
    [15]竹晓华.连续刚构桥地震反应分析[J].铁道工程学报,2008,121(10):15-19.
    [16]何波,朱宏平,李俊等.大跨薄壁墩连续刚构桥抗震性能分析[J].华中科技大学学报(城市科学版),2006,23(4):51-56.
    [17]史小伟,李黎,杨军等.地震动空间变异性对大跨刚构桥地震反应的影响[J].公路交通科技,2006,23(1):86-90.
    [18]全伟.大跨桥梁多维多点地震反应分析研究[D].大连理工大学,2008.
    [19]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [20]艾庆华,王东升,李宏男等.基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J].工程力学,2009,26(4):158-166.
    [21]孙强.杆桩结构的动力稳定与动力特性[M].合肥:合肥工业大学出版社,2005.
    [22]舒仲周.运动稳定性[M].四川:西南交通大学出版社,1989.
    [23]武际可,苏先樾.弹性系统的稳定性[M].北京:科学出版社,1994.
    [24]秦元勋,王慕秋,王联.运动稳定性理论与应用[M].北京:科学出版社,1981.
    [25]符华.鲍洛金.弹性体系的动力稳定性[M].北京:高等教育出版社,1960.
    [26]Pintoda Costa A, Martins. J. A. C., Brance F, et al. Oscillations of bridge stay cables included by periodic motions of deck and/or towers[J]. Journal of Engineering Mechannics,1996,122(7):613-622.
    [27]亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22.
    [28]汪志刚,孙柄楠.斜拉桥参数振动引起的拉索大幅振动[J].工程力学,2000,18(1):103-109.
    [29]赵跃宇,王涛,康厚军.斜拉索主参数共振的稳定性分析[J].动力学与控制学报,2008,6(2):112-117.
    [30]童乐为,周国梁.偏心周期荷载作用下闭口薄壁杆件的动力稳定性[J].上海力学,1992,13(2):4148.
    [31]Quanfeng Wang, Yi Luo. Dynamic stability of thin-walled column under periodic excitation[J]. Communication in Numerical Methods in Engineerin,2004,20: 627-638.
    [32]罗漪,王全凤.考虑阻尼的变刚度薄壁杆件动力稳定[J].华侨大学学报(自然科学版),2002,23(2):157-163.
    [33]罗漪,王全凤.变刚度薄壁杆件的动力稳定性[J].华侨大学学报(自然科学版), 2001,22(3):272-277.
    [34]杨平,孙兰.偏心周期荷载作用下薄壁构件的动力稳定性[J].武汉交通科技大学学报,1998,22(4):403-407.
    [35]孙强.直杆的动力稳定性及基桩动力非线性的研究[D].上海:同济大学,2002.
    [36]姚云龙.叠层橡胶支座与悬臂柱串联体系动力稳定性分析.兰州理工大学,2003.
    [37]王策,沈世钊.单层球面网壳结构动力稳定分析[J].土木工程学报,2000,33(6):17-24.
    [38]V. Gioncu. Buckling of Reticulated Shells:State-of-art[J]. International Journal of Space Structures,1995,10(1):1-46.
    [39]李忠学,李元奇,严慧等.结构非线性动力稳定性研究中的关键问题探讨[J].空间结构,2000,6(4):29-35.
    [40]S.D.Kim, M. M. Kang, J.J.Kwun. Dynamic Instability of Shell-like Shallow Trusses Considering Damping[J]. Computers & Structurers,1997,64(1):481-489.
    [41]李忠学.杆系钢结构的非线性动力稳定性分析[D].上海:同济大学,1998.
    [42]Li Zhongxue, Shen. Zuyan, Deng Changgen. Nolinear Dynamic Stability Analysis of Frame under Earthquake Loading. Preceeding of the 3rd International Conference on Nonlinear Mechanics[C], Shanghai. Shanghai Universitu Press,1998:187-292.
    [43]李忠学,沈祖炎,邓长根.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报(自然科学版),2000,27(2):148-151.
    [44]李忠学,沈祖炎,邓长根等.钢网壳模型的动力稳定性振动台试验研究[J].实验力学,1999,14(4):482-491.
    [45]Akshay Gupta, Helmut Krawinkler. Dynamic P-Delta Effects for Flexible Inelastic Steel Structures[J]. Journal of Structural Engineering, ASCE,2000,126(1):145-154.
    [46]Qiang Xue, John L. Meek. Dynamic response and instability of frame structures [J]. Comput Methods Appl Mech Engrg,2001,190:5233-5242.
    [47]N.J. Mallon, R. H. B. Fey, H. Nijmeijer, et al. Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape [J]. International Journal of Non-Linear Mechanics,2006,41:1057-1067.
    [48]邱德修.弧形钢闸门的动力特性及动力稳定性分析.河海大学,2006.
    [49]计静.地震作用下单层钢框架动力稳定性研究.大庆石油学院,2004.
    [50]刘迎春.单层钢框架动力稳定性与防倒塌设计理论研究.大庆石油学院,2005.
    [51]何艳丽.桅杆结构的动力稳定性分析[D].上海:同济大学,1999.
    [52]叶继红,沈祖炎.初始缺陷对网壳结构动力稳定性能的影响[J].土木工程学报,1997,30(1):37-42.
    [53]叶继红,沈祖炎.单层网壳结构在简单荷载下动力稳定分析[J].哈尔滨建筑大学学报,1997,30(1):24-31.
    [54]叶继红,沈祖炎.单层鞍型网壳在地震作用下的动力稳定分析[J].空间结构,1996,2(1):18-25.
    [55]叶继红,沈世钊.竖向阶跃荷载下单层球壳动力失稳临界荷载的确定[J].工业建筑,2005,35(7):77-79.
    [56]郭海山,沈世钊.单层网壳结构动力稳定性分析方法[J].建筑结构学报,2003,24(3):1-9.
    [57]王策.在强地震作用下球面网壳的动力稳定[J].清华大学学报(自然科学版),2000,40(S 1):57-60.
    [58]王策,刘西拉.空间刚架动态失稳全过程分析[J].工程力学,2001,18(6):68-75.
    [59]徐艳,胡世德.钢管混凝土模型拱的弹性动力稳定性的研究[J].同济大学学报(自然科学版),2005,33(1):6-10.
    [60]徐艳,胡世德.钢管混凝土拱桥的动力稳定极限承载力研究[J].土木工程学报,2006,39(9):68-73.
    [61]徐艳,胡世德.地震作用下钢管混凝土拱桥的动力稳定性[J].同济大学学报(自然科学版),2007,35(3):3 1 5-319.
    [62]吴玉华.大跨度钢管混凝土拱桥抗震性能及动力稳定研究[D].浙江大学,2009.
    [63]张行,李黎,尹鹏.地震作用下大跨越输电塔弹性动力稳定性能探讨[J].电力建设,2008,29(11):6-11.
    [64]李庆伟,李宏男.输电塔结构的动力稳定性研究[J].防灾减灾工程学报,2008,28(2):202-206.
    [65]李黎,张行.地震作用下高墩大跨连续刚构桥的弹性动力稳定性能研究[J].工程抗震与加固改造,2008,30(6):84-88.
    [66]韩强,张善元,杨桂通.结构静动力屈曲问题研究进展[J].力学进展,1998,28(3):349-360.
    [67]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
    [68]朱因远,周纪卿.非线性振动和运动稳定性[M].西安:西安交通大学出版社,1992.
    [69]沈祖炎,叶继红.运动稳定性理论在结构动力分析中的应用[J].工程力学,1997,14(3):21-28.
    [70]徐艳.钢管混凝土拱桥的动力稳定性能研究[D].上海:同济大学,2004.
    [71]Bernal, Dionisio. Instability of buildings subjected to earthquakes[J]. J Struct Engng, ASCE,1992,18(8):2239-2260.
    [72]艾庆华.钢筋混凝土桥墩抗震性态数值评价与试验研究[D].大连理工大学,2008.
    [73]R. Clough, S. Johnston. Effect of stiffness degradation on earthquake ductility requirements. Transactions of Japan Earthquake Engineering Symposium, Tokyo, 1966.
    [74]M. Giberson. The response of non-linear multi-story structures subjected to earthquake excitations. Earthquake Engineering Research Laboratory, Pasadena,1967.
    [75]R. Clough, L. Benuska. Nonlinear earthquake behavior of tall buildings[J]. Journal of Mechanical Engineering, ASCE,1967,93(EM3):129-146.
    [76]T. Takeda, M. A. S., N. Nielsen. Reinforced concrete respongse to simulated earthquakes[J]. Journal of Structural Engineering, ASCE,1970,96(ST12): 2557-2573.
    [77]H. Banon, J. B., M. Irvine. Seismic damage in reinforced concrete frames[J]. Journal of Structural Engineering, ASCE,1981,107(ST9):1713-1729.
    [78]Anagnostopoulos, S.. Inelastic beams seismic analysis of structures [J]. Journal of Structural Engineering, ASCE,1981,107(ST7):1297-1311.
    [79]F. A. Zahn, R. P., M. J.N. Priestley. Strength and ductility of square reinforced concrete column sections subjected to biaxial bending[J]. ACI Struct J,1989,86(2):123-131.
    [80]F. C. Filippou, Ambrisi A. D., Issa A.. Effects of reinforcement slip on hysteretic behavior of reinforced concrete frame members[J]. ACI Struct J,1999,96(3): 327-335.
    [81]汪梦甫.钢筋混凝土框剪结构非线性地震反应分析[J].工程力学,1999,16(4):136-143.
    [82]齐虎,孙景江,林淋.OPENSEES中纤维模型的研究[J].世界地震工程,2007,23(4):48-54.
    [83]凌炯.面向对象开放程序OpenSees在钢筋混凝土结构非线性分析中的应用与初步开发.重庆:重庆大学,2004.
    [84]彭成明.地震作用下高墩桥梁抗倒塌性能研究.上海:同济大学,2008.
    [85]Michael H. Scott, Paolo Franchin, Gregory L. Fenves. Response sensitivity for nonlinear beam-column elements[J]. Journal of Structural Engineering, ASCE,2004, 130(9):1281-1288.
    [86]Iason Papaioannou, Michalis Fragiadakis, Manolis Papadrakakis. Inelastic analysis of framed structures using the fiber approach[C]. Proceedings of the 5th GRACM International Congress on Computational Mechanics, Limassol, Cyprus.2005.
    [87]Berry Michael Patrick. Performance modeling strategies for modern reinforced concrete bridge columns[D]. Washington:University of Washington,2006.
    [88]王勖成.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社,1997.
    [89]中华人民共和国国家标准.混凝土结构设计规范GB50010-2002[M].北京:中国建筑工业出版社,2002.
    [90]J. B. Mander, M. J. N. Priestley, R. Park. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering,1986,114(8):1804-1826.
    [91]S. Watson, F. A. Zahn, R. Park. Confining Reinforcement for Concrete Columns[J]. Journal of Structural Engineering,1994,120(6):1789-1824.
    [92]Telemachos B.Panagiotakos, Michael N. Fardis. Deformations of reinforced concrete members at yielding and ultimate[J]. ACI Struct J,2001,98(2):135-147.
    [93]Li B, Park R.. Confining reinforcement for high-strength concrete columns[J]. ACI Struct J,2004,101(3):314-324.
    [94]蒋欢军,吕西林.钢筋混凝土柱对应于各地震损伤状态的侧向变形计算[J].地震工程与工程振动,2008,28(2):44-50.
    [95]蒋欢军,王斌,吕西林.钢筋混凝土梁和柱性能界限状态及其变形值[J].建筑结构,2010,40(1):10-14.
    [96]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,25(6):53-61.
    [97]Berry Micharl Patrick. Performance Models for flexural damage in reinforced conrete columns. Pacific Earthquake Engineering Research Center, University California, Berkeley,2003.
    [98]Michael P. Berry, Marc O. Eberhard. Practical performance model for bar buckling[J]. Journal of Structural Engineering,2005,131(7):1060-1070.
    [99]Priestly M. J. N.. Brief comments on the elastic flexibility of reinforcement concrete frames and significance to seismic design[J]. Bulletin of the New Zealand National Society on Earthquake Engineering,1998,31(4):246-259.
    [100]Paulay T, Priestly M. J. N.. Seismic design of reinforced concrete and masonry buildings[M]. New York:John Wiley & Sons, Inc,1992.
    [101]Mark Yashinsky, M. E., Thomas Ostrom. Caltrans'New Seismic Design Criteria for Bridges[J]. Earthquake Spectra,2000,16(1):285-307.
    [102]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [103]Sheikh S. A., Khoury S. S.. Confined concrete columns with stubs[J]. ACI Struct J, 1993,90(4):414-431.
    [104]Sheikh S. A., Shah D. V., Khoury S. S.. Confinement of high-strength concrete columns[J]. ACI Struct J,1994,91(1):100-111.
    [105]Bayrak, O. Seismic performance of rectilinearly confined high strength concrete columns. Toronto:PhD thesis, University of Toronto,1999.
    [106]Oguzhan Bayrak, Shamin A. Sheikh. Plastic Hinge Analysis [J]. Journal of Structural Engineering,2001,127(9):1092-1100.
    [107]Mander J. B., Priestley M. J. N., Park R. Observed stress-strain behavior of confined concrete[J]. Journal of Structural Engineering,1988,114(8):1827-1849.
    [108]Maurizio Papia, Gaetano Russo. Compressive concrete strain at buckling of longitudinal reinforcement[J]. Journal of Structural Engineering,1989,115(2): 382-397.
    [109]陈滔.基于有限单元柔度法的钢筋混凝土框架结构三维非弹性地震反应分析.重庆:重庆大学,2003.
    [110]张强,周德源,伍永飞等.钢筋混凝土框架结构非线性分析纤维模型研究[J].结构工程师,2008,24(1):15-20.
    [111]叶列平,陆新征,马千里等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,23(增刊Ⅱ):131-140.
    [112]陆新征,李易,叶列平等.钢筋混凝土框架结构抗连续倒塌设计方法的研究[J].工程力学,2008,25(增刊Ⅱ):150-157.
    [113]吴庆雄,陈宝春,韦建刚.钢管混凝土结构材料非线性的一种有限元分析方法[J].工程力学,2008,25(6):68-74.
    [114]马千里,叶列平,陆新政等.采用逐步增量弹塑性时程方法对RC框架结构推覆分析侧力模式的研究[J].工程力学,2008,29(2).
    [115]杨红,徐海英,王志军.考虑柱底纵筋滑移的纤维模型及框架地震反应分析[J]. 建筑结构学报,2009,30(4):130-137.
    [116]高文生.考虑钢筋粘结滑移影响的钢筋混凝土框架地震反应分析[D].重庆:重庆大学,2008.
    [117]Bo-Zhou Lin, Ming-Chieh Chuang, Keh-Chyuan Tsai. Object-oriented development and application of a nonlinear structural analysis framework[J]. Advances in Engineering Software,2009,40(1):66-82.
    [118]罗辑.基于OpenSees计算平台的钢管混凝土拱桥抗震性能分析.成都:四川大学,2004.
    [119]Peter Fajfar, Matjaz Dolsek, Damjan Marusic, et. al. Pre-and post-test mathematical modelling of a plan-asymmetric reinforced concrete frame building[J]. Earthquake Engineering and Structural Dynamics,2006,35:1359-1379.
    [120]Kenneth J. Elwood, Jack P. Moehle. Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures[J]. Earthquake Engineering and Structural Dynamics,2008,37:991-1012.
    [121]Fragiadakis Michalis, Vamvatsikos Dimitrios, Papadrakakis Manolis. Evaluation of the influence of vertical irregularities on the seismic performance of a nine-storey steel frame[J]. Earthquake Engineering and Structural Dynamics,2006,35:1489-1509.
    [122]T. Y. Yang, B. Stojadinovic, J. Moehle. Hybrid simulation of a zipper-braced steel frame under earthquake excitation[J]. Earthquake Engineering and Structural Dynamics,2009,38:95-113.
    [123]Tao Wang, Nobuya Yoshitake, Peng Pan, et. al. Numerical characteristics of peer-to-peer(P2P) internet online hybrid test system and its application to seismic simulation of SRC structure[J]. Earthquake Engineering and Structural Dynamics, 2008,37:265-282.
    [124]Keh-Chyuan Tsai, Po-Chien. Hsiao, Hung-Juin Wang, et.al. Pseudo-dynamic tests of a full-scale CFT/BRB frame—Part Ⅰ:Specimen design, experiment and analysis[J]. Earthquake Engineering and Structural Dynamics,2008,37:1081-1098.
    [125]Tae-Hyung Lee, Khalid. M. Mosalam. Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method[J]. Earthquake Engineering and Structural Dynamics,2005,34:1719-1736.
    [126]Terje Haukaas, Armen Der Kiureghian. Methhods and object-oriented software for FE reliability and sensitivity analysis with application to a bridge structure[J]. Journal of Computing in Civil Engineering, ASCE,2007,21(151):151-163.
    [127]Michael H. Scott, Terje Haukaas. Modules in opensees for the next generation of performance-based engineering[J]. ASCE Conf Proc,2006,202(33):1-12.
    [128]Thomas H.-K. Kang, John W. Wallace, Kenneth J. Elwood. Nonlinear modeling of flat-plate systems[J]. Journal of Structure Engineering, ASCE,2009,135(2):147-158.
    [129]Y. L. Mo, Y.-K. Yeh, Thomas T.C. Hsu. Seismic behavior of shear-critical hollow bridge columns [J]. ASCE Conf Proc,2006,201 (40):389-410.
    [130]李存权.结构稳定和稳定内力[M].北京:人民交通出版社,2000.
    [131]苗家武,肖汝诚,裴岷山等.苏通大桥斜拉桥静力稳定分析的综合比较研究[J].同济大学学报(自然科学版),2006,34(7):869-873.
    [132]何波,郭小川,朱宏平等.大跨度薄壁墩连续刚构桥稳定性分析[J].公路交通科技,2006,23(12):62-66.
    [133]中华人民共和国行业标准.公路桥涵设计通用规范JTG D602004[M].北京:人民交通出版社,2004.
    [134]中华人民共和国行业推荐性标准.公路桥梁抗震设计细则JTG/T B02-01-2008[M].北京:人民交通出版社,2008.
    [135]Federal Emergency Management Agency. FEMA350-Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings[R]. Washington D C,2000.
    [136]Dimitrios Vamvatasikos, C. Allin Cornel. Incremental Dynamic Analysis[J]. Earthquake Engineering and Structural Dynamics,2002,31(3):491-514.
    [137]梁垚,彭伟.桥梁结构弹塑性地震反应分析新进展[J].世界地震工程,2007,23(4):163-169.
    [138]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,27(4):15-23.
    [139]张玉辉,赵忠虎,鞠杨.地震力作用下钢筋混凝土框架结构倒塌的数值模拟研究[J].工业建筑,2004,34(3):57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700