极大螺旋藻对几种金属离子生物吸附的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题已成为21世纪人们关注的焦点。环境污染是多方面的,重金属是其中的一个重要方面。重金属进入环境后不能被生物降解,参与食物链循环并最终在生物体内积累,破坏生物体正常生理代谢活动,危害人体健康,是对生态环境危害极大的一类污染物。目前,有各种物理、化学方法如中和沉淀法、电解法、蒸馏法及离子交换法等等用于重金属污水处理,但这些方法或者价格昂贵,或者不能有效处理低浓度的重金属污水,甚至造成二次污染。生物吸附技术应用于痕量重金属污水处理,效果较好,价格相对便宜,而引起人们的兴趣。
    利用藻类、细菌、真菌和酵母吸附污水中重金属已有很多报道。藻类资源丰富,易加工,经济,并具有高的吸附能力,而日益受到人们的重视。近年来,海洋养殖在全世界尤其亚洲昌盛起来,并且发现螺旋藻能在海水中生长良好,从而降低了培养成本。目前对极大螺旋藻吸附金属离子的研究还比较少。为探讨极大螺旋藻对水中金属离子的吸附特性,本文用非活性的极大螺旋藻和氯化钙预处理藻体对铅、铜、镉、锌四种离子进行批次吸附实验,并通过红外光谱法和化学处理法对藻体吸附金属离子的官能团进行研究,旨在探讨微生物的吸附机理。现结果如下:
    在pH5.5,吸附时间2小时,金属离子浓度50mg/l,藻体生物量2g/l的条件下,极大螺旋藻藻体对银、铅、锌、铜、锰、镍六种金属离子均有不同程度的吸附作用,对这六种离子的吸附能力依次为银>铅>锌>铜>锰>镍。
    极大螺旋藻吸附金属离子受多种因素的影响,pH值是重要的影响因素之一。在低pH值条件下(pH≤3),藻体对四种金属离子的吸附量都很小。在一定范围内,随着酸性的减弱,藻体对金属离子的吸附量增加。本实验条件下,当pH≥4,藻体对铅、镉、铜三种离子的吸附量较大,并且随pH值增大,吸附量增大不明显;而对锌离子的吸附
    
    
    量一直随pH的增大而增大。
    氯化钙预处理后的极大螺旋藻对四种金属离子的吸附产生不同的影响。预处理后的藻体对铅离子的吸附量明显高于天然藻体;对铜和镉离子的吸附量和天然藻体无显著差别;对锌的吸附量明显低于天然藻体。
    藻体生物量对金属吸附的影响主要是随着生物量的增加,藻体的单位金属吸附量减小,而吸附率升高。天然和预处理藻体对铅、镉、铜和锌四种金属离子的吸附都符合Freudlich方程,在相同条件下(pH5,金属离子浓度50mg/l,藻生物量1g/l),两者对铅、铜、锌三种离子的吸附强度均为铅>镉>铜。锌的吸附等温线实验是在pH6的条件下进行的,因而无法比较。
    非活性的极大螺旋藻体对金属离子的吸附可分为三个阶段,首先为快速吸附阶段,其次是缓慢吸附阶段,最后是平衡阶段。第一阶段速度很快,15min时的金属吸附量可达到总吸附量的70%以上。
    用EDTA、硝酸和柠檬酸钠作为解吸剂洗脱吸附于藻体上的铅、镉离子,发现三种解吸剂对镉离子的解吸作用较好,而柠檬酸钠对铅离子的解吸效果不佳。混合金属离子溶液中,钾、钙、镁和钠四种离子对铜离子的吸附影响不大。
    藻体吸附镉、铜、锌三种离子后的红外图谱中,羟基和胺基的混合吸收峰、磺酸基特征吸收峰都减小,说明在吸附这三种金属离子时,胺基、羟基和磺酸基可能都参与了吸附作用。对藻体进行化学处理,使得藻体细胞成分的羧基、胺基和羟基被修饰,以了解这些官能团在吸附中的作用。藻体在化学处理后对四种离子的吸附量均有下降,说明这三种官能团在吸附过程中均有一定的作用,但对不同金属离子的作用各不相同。羧基和胺基是Zn2+吸附过程中的重要化学基团,而羟基在吸附中的作用不大;在Cu2+、Cd2+吸附过程中,羧基、胺基和羟基都参与吸附;而在Pb2+吸附过程中,羧基和羟基是吸附功能团,胺基的作用不大。
With rapid development of industry, environmental pollution became more and more serious. Heavy metals are major resources of pollutants. These metals could be accumulated in organisms (including humans) through the food chain, and then do harm to human body. There are many different physical or chemical methods to remove metal pollutants from liquid waste when these metals are present in high concentration. since such methods as precipitation, evaporation, electroplating, ion exchange and membrane processes not only cost expensively, but also are unsatisfactory for removing such contaminants at very low concentration, even possibly make secondary environmental pollution, this has led to an increasing interest in the application of biosorption technology which is comparatively cheaper for the removal of trace amounts of toxic metals from dilute aqueous solutions.
    The accumulation of metals by algae, bacteria, fungi, and yeasts has been extensively studied and its application in the treatment of metal water was well documented. Of these studies, algae gained increasing attention due to the fact that not only the resource of algae is rich, but also algae are relatively cheap to be processed and able to accumulate high metal content. Mariculture is thriving all over the world, especially in Asia. More recently, it has been found that Spirulina could be adapted to grow well in seawater, thereby saving valuable farm land and expensive culture medium. However, metal ions adsorption by Spirulina has been rarely studied. The lack of information concerning Spirulina adsorption warrants detailed studies.
    In this paper, microalga Spirulina maxima was chosen for four metals accumulation studies. The objective was to study the effects of environmental transformation on metal-algae interactions and the mechanisms of metals
    
    
    adsorption by Spirulina maxima. The conditions of adsorption were tested by using batch tests. The role played by various functional groups in the cell wall of Spirulina maxima in adsorbing metal ions was investigated by using infrared spectroscopy and chemical treatment to modify the functional groups. Results were as follows:
    Many metals ions could be adsorbed by Spirulina maxima. Under the condition of pH5.5, 2h contact time, 50mg/l of the metal ions concentration, 2g/l biomass, the absorption ability of the alga from high to low was silver, lead, zinc, copper, manganese and nickel.
    The value of pH would have significant effect on the metal ions uptake by Spirulina maxima . The amount of metal biosorption was comparatively little when the value of pH was less than 3, and increased with pH rising. When pH ≥4, the amount of lead, cadmium and copper ions adsorption did not increased with rising of pH. The amount of zinc adsorption increased while the value of pH ranged from 2 to 6.
    The biomass of Spirulina maxima pretreated by CaCl2 would have different influences on the following four metals uptake. The amount of lead adsorption by raw spirulina mixama was less than that by pretreated biomass. There were no significant differences between raw and pretreated biomass adsorbing cadmium or copper. The amount of zinc adsorption by raw biomass was more than that by pretreated biomass.
    When the quantity of the biomass was increased, the adsorption amount reduced and the adsorption ratio added. Equilibrium isotherms of Freudlich for raw and pretreated biomass adsorbing metal ions were obtained from batch adsorption experiments. The intensity of Spirulina maxima adsorbing metal ions from high to low was lead, cadmium and copper in turn under the same conditions.
    There was a phase of rapid ions uptake in the first fifteen minutes of contact, followed by a period of slow ions uptake. Above 70% of metal ions uptake occurred at the phase of rapid ions uptake .
    Three desorbing agents EDTA, HNO3 and Sodium citrate were used in the
    
    
    ions desorption. All three desorbing agents were considered efficient on cadmium desorption , and sodium citrate couldn’t desorb lead well. Po
引文
[1] 曹文炉,丛威,蔡昭铃等. 螺旋藻的营养方式及光合作用影响因素. 植物学通报,2002,19(1):70-77
    [2] 陈必链,庄惠如,余望等. 钝顶螺旋藻对锌和硒生物富集作用的研究. 食品与发酵工业,1998,6:27-29
    [3] 陈必链,吴松刚. 钝顶螺旋藻对7种重金属的富集作用. 福建师范大学学报(自然科学版),15(1):81-85
    [4] 陈 峰,姜悦主编. 微藻生物技术. 北京:中国轻工业出版社,1999
    [5] 陈勇生,孙启俊,陈均等. 重金属的生物吸附技术研究. 环境科学进展,1997,5(6):34-42
    [6] 陈勇生,孙启俊,王大力. 啤酒酵母菌、盐泽螺旋藻对重金属离子的吸附研究. 上海环境科学,1998,17(7):14-16
    [7] C.奥尔德里奇等. 用生物吸附浮选法除去废水中的重金属. 国外金属矿选矿,2001,7:18-22
    [8] 常秀莲,王文华,冯咏梅等. 不同海藻吸附重金属镉离子的研究. 离子交换与吸附,2002,18(5):432-439
    [9] 韩润平,李建军,杨贯羽等. 结合重金属前后浮萍的红外光谱比较. 光谱学与光谱分析,2000,20(4):489-490
    [10] 韩润平,李建军,杨贯羽等. 化学修饰与酵母菌对铅离子的吸附研究. 郑州大学学报, 2000,32(3):72-75
    [11] 胡 罡,张力,童明容等. 龟裂链霉菌对废水中Pb2+的吸附作用. 南开大学学报(自然科学版),2000,33(2):29-31
    [12] 胡稳奇,张志光. 微生物方法在重金属污染处理中的应用现状及展望. 大自然探索,1995,14(2):58-62
    [13] 黄淑惠. 细菌固定金属的机制. 微生物学通报. 1992,19(3):171-173
    [14] 荆煦瑛,陈式棣,么恩云. 红外光谱实用指南. 天津:天津科学出版社
    [15] 鞠 宝,陈永珉,温少红等. 几种稀土元素对螺旋藻生长的影响. 海洋通报,2000,19(4):92-95
    [16] 雷国元. 重金属离子吸附剂的研究进展. 国外金属矿选矿,2000,10:2-6
    [17] 李建宏,曾昭琪,薛宇鸣等. 极大螺旋藻富积重金属机理的研究. 海洋与湖沼,1998,29(3):274-278
    [18] 李日强,王翠红,席玉英等. 钝顶螺旋藻对五种元素生物富集作用的研究. 山西大学学报(自然科学版),2001,24(2):167-169
    [19] 李叙凤,王长海,温少红. 螺旋藻培养条件研究. 食品与发酵工业,1999,25(4):13-17
    [20] 李明春,姜恒,侯文强等. 酵母菌对重金属离子吸附的研究. 菌物系统,1998,17(4):367-373
    
    [22] 黎有文. 螺旋藻的生物学特性及其医用价值. 中国新药与临床杂志,1999,18(1):1-4
    [23] 刘月英,傅锦坤,李仁忠等. 细菌吸附Pd2+的研究. 微生物学报,2000,40(5):535-539
    [24] 莫健伟,姚兴东,张谷兰等. 海藻去除水中双偶氮染料机理及重金属离子研究. 中国环境科学,1997,17(3):241-243
    [25] 曲荣君,阮文举,王祥梅等. 甲壳质-重金属离子配合物的红外光谱研究. 离子交换与吸附,2000,16(3):213-218
    [26]《水和废水监测分析方法指南》编委会编,水和废水监测分析方法指南. 北京:中国环境科学出版社,1990
    [27] 孙铁珩,周启星,李培军主编. 污染生态学. 北京:科学出版社
    [28] 汤岳琴,牛慧,林军等. 产黄青霉废菌体对铅的吸附机理研究——参与铅生物吸附的化学物质及功能团的确定. 四川大学学报(工程科学版),2001,33(3):50-54
    [29] 汤岳琴,牛慧,林军等. 产黄青霉废菌体对铅的吸附机理研究(Ⅱ)——铅生物吸附途径和吸附类型的确定. 四川大学学报(工程科学版),2001,33(4):45-49
    [30] 屠 娟,张利,俞耀庭等. 非活性黑根霉菌对废水中重金属离子的吸附. 环境科学,1995,16(1):12-15
    [31] 田建民. 生物吸附法在含重金属废水处理中的应用. 太原理工大学学报,2000,31(1):74-77
    [32] 王大志,高亚辉,程兆第等. 两种培养温度下钝顶螺旋藻吸收累积锗的研究. 海洋与湖沼,1999,30(6):646-651
    [33] 王 宪,徐鲁荣,陈丽丹等. 海藻生物吸附金属离子技术的特点和功能. 台湾海峡,2003,22(1):120-124
    [34] 王亚雄,郭瑾珑,刘瑞霞. 微生物吸附剂对重金属的吸附特性. 环境科学,2001,22(6):72-75
    [35] 汪小兰. 有机化学. 北京:高等教育出版社
    [36] 魏复盛. 水和废水监测分析方法. 北京:中国环境科学出版社
    [37] 杨 芬,藻类对重金属的生物吸附技术研究及其进展. 曲靖师范学院学报,2002,21(3):47-49
    [38] 叶锦韶,尹华,彭辉等. 重金属的生物吸附研究进展. 城市环境与城市生态,2001,14(3):30-32
    [39] 尹平河,赵玲,Yu Qi-ming等. 海藻生物吸附废水中铅、铜和镉的研究. 海洋环境科学,2000,19(3):11-15
    [40] 张剑波,冯金敏. 离子吸附技术在废水处理中的应用与发展. 环境污染治理技术与设备,2000,1(1): 46-50
    [41] 章非娟主编. 工业废水污染防治. 上海: 同济大学出版社, 2001
    [42] 张 瑶,张克荣,罗永义等. 活性炭对铅镉镍钴离子的吸附机理探讨. 华西医大学报,1995,26(3):322-325
    [43] 赵 玲,尹平河,Yu Qi-ming等. 海洋赤潮生物原甲藻对重金属的富集机理. 环境科学,2001,22(4):42-45
    
    [44] Aksu, Z., I. Kutsal. A bioseparation process for removing lead(Ⅱ) ions from waste water by using C. vulgaris. Journal of Chemical Technology and Biotechnology, 1991, 52: 109-118
    [45] Beveridge, T.J., R.G.E. Murray. Sites of metal deposition in the cell wall of Bacillus subtilis. Bacteriology, 1980, 141: 876-887
    [46] Blackwell, K.L., I. Singleton, J.M. Tobin. Metal cation uptake by yeast:a review. Applied Microbiology and Biotechnology, 1995,43:579-584
    [47] Blackwell, K.L., J.M. Tobin. Cadmium accumulation and its effects on intracellular ion pools in a brewing strain of Saccharomyces cerevisiae. Journal of industrial Microbiology and Biotechnology, 1999, 23:204-208
    [48] Brady, D., J.R. Duncan. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1994, 41:149-154
    [49] Crist R.H., K. Oberholser, B. Wong. Amine alge interactions:cation exchange and hydrogen bonding. Environmental Science Technology, 1992,26:1523-1526
    [50] Darnall, W.D., B. Greene, M.T. Henzel, M.J. Hosea, A.R. McPerson, J. Sneddon, D.M. Alexander. Selection recovery of gold and other metal ions from an algal biomass. Environmental Science Technology, 1986, 20: 206-208
    [51] Fourest, E., B.Volesky. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargaaaum fluitans. Environmental Science Technology , 1996,30,227-282
    [52] Gardea-Torrsedey, J.L., H. M.K. Becher,J.M. Hosea. Effect of chemical modification of algal carboxyl groups on metal ion binding. Environmental Science Technology, 1990, 24:1372-1378
    [53] Harry, E.. Treatment of metal-contaminated wastes: why select a biological process. Trends in Biotechnology, 1999 , 17(12): 462-465
    [54] Holan, Z.R., B. Volesky. Accumulation of cadmium, lead and nickel by fungal and wood biosorption. Applied Biochemistry and Biotechnology, 1995, 53: 133-146
    [55] Jalali, R., H. Ghafourian, Y. Asef. Removal and recovery of lead using nonliving biomass of marine algae. Journal of Hazardous Materials, 2002, 92(3): 253–262
    [56] Kapoor, A., T. Viraraghavan. Heavy metal biosorption sites in Aspergillus niger. Bioresource Technology, 1997,61:221-227
    [57] Kuyucak, N., B. Volesky. Accumulation of cobalt by marine alga. Biotechnology and Bioengineering, 1989, 33: 809-814
    [58] Kuyucak, N., B. Volesky. The mechanism of cobalt biosorption. Biotechnology and Bioengineering, 1989, 33: 823-831
    [59] Matheickal, J.T.,Yu Qiming. Biosorption of lead(Ⅱ)and copper(Ⅱ)from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresource Technology, 1999,69:223-229
    
    [60] Michael, A. B.. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 1999, 70: 313–321
    [61] Muraleedharan, T.R., C. Venkobachar. Mechanism of biosorption of copper(Ⅱ) by Ganoderma lucidum. Biotechnology and Bioengineering, 1990, 35: 320-325
    [62] Muraleedharan, T.R., L. Iyengar, C. Venkobachar. Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidum. Environmental Science Technology, 1994, 15: 1015-1027
    [63] Nriagu, J.O.. A silent epidemic of environmental metal poisoning. Environmental Pollution, 1988, 50: 139-161
    [64] Sar, P., S.K. Kazy, K.K. Asthana. Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. International Biodeterioration Biodegadation, 1999, 44: 101-110
    [65] Terry, P.A., W. Stone. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 2002,47:249-255
    [66] Ting, Y.P., F. Lawson, I.G. Prince. Uptake of cadmium and zinc by the alga Chlorella vulgaris: part Ⅰ, Individual ion species. Biotechnology and Bioengineering, 1989, 34: 990
    [67] Ting, Y.P., F. Lawson, I.G. Prince. Uptake of cadmium and zinc by the alga Chlorella vulgaris: partⅡ, Multi-ion situation. Biotechnology and Bioengineering, 1991, 37: 445-455
    [68] Tobin, J.M., D.G. Cooper, R.J. Neufeld. Investigation of the mechanism of metal uptake by denatured Rhizopus arrhizus biomass. Enzyme Microbiology Technology, 1990,12:591-595
    [69] Trujillo, E.M.. Mathematically modeling the removal of heavy metals from a waste water using immobilized biomass. Environmental Science Technology, 1991, 25: 1559-1565
    [70] Tsezos, M., B. Volesky. The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnology and Bioengineering, 1982, 24: 385-401
    [71] Volesky B., H.A. May-Phillips. Biosorption of heavy metals by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1995,42:797-806
    [72] Wong J.P.K.,Y.S. Wong, N.F.Y. Tam. Nickel biosorption by two chlorella species,C. Vulgaris(a commercial species)and C. Miniata(a local isolate). Bioresource Technology, 2000,73:133-137
    [73] Zhou, J.L., P.L. Huang, R.G. Lin. Sorption and desorption of Cu and Cd by macroalgae and microalgae. Environmental Pollution, 1998, 101(1): 67-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700