基于逆向工程的动脉瘤及支架的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着技术进步,支架介入治疗心脑血管动脉瘤越来越普及。支架结构、支架丝截面形状、通透率、支架放置位置、支架连接体形状及支架疲劳特性等这些因素会对支架治疗动脉瘤产生不同的影响。在相等通透率条件下,对不同结构、不同截面形状支架对个体化颈内动脉瘤治疗有何不同的血液动力学方面的影响,还没有这方面的研究报告。为了研究支架对个体化脑动脉瘤血液动力学特性的影响,首先必须建立基于医学扫描图像的个体化血管模型。本文基于逆向工程思想构建了人体个体化动脉瘤模型,进行了动脉瘤及其支架治疗的血液动力学数值模拟研究。
     以提高个体化动脉血管进行计算流体动力学分析效率和减小计算误差为评价指标,探讨了两种从医学扫描图像到数值模拟计算流程的优缺点(分别基于STL模型与NURBS模型)。以快速准确构建动脉血管表面模型为标准,探讨了不同图像分割方法的优缺点。以提高动脉血管模型体网格质量为目标,探讨了如何提高表面模型面网格质量。
     依据上述建模方法,分别构建了一个胸主动脉和一个颈内动脉瘤血管模型,以便于进行生物力学分析。在此基础上,按照逆向工程中生成NURBS曲面模型的方法,建立了颈内动脉瘤血管壁模型。所建立的个体化颈内动脉瘤模型,不仅具有一个侧壁动脉瘤,而且有一个较大的S型弯曲。为了研究Von Mises Stress在血管壁面上的分布特性及随时间变化特性,对建立的个体化颈内动脉血管模型进行了瞬态流固耦合计算。对建立的血管壁模型进行了静态有限元分析,以确定是否可用静态有限元分析替代流固耦合计算来推断Von Mises Stress分布特性。经过对比分析,发现虽然个体化血管模型几何形状复杂,但静态有限元分析获得的Von Mises Stress分布特性可以替代流固耦合计算,两者之间相差不大。根据临床实践测得的血流速度值同数值模拟获得的数据进行了对比分析,初步验证了数值模拟的准确性。
     为了探讨支架结构对动脉瘤血流动力学的影响,设计构建了五种不同结构、不同截面形状裸支架(通透率近似相等)的三维实体模型。利用计算流体力学方法,借助于有限元软件ANSYS CFX11.0对五种支架分别植入颈内动脉瘤前后进行数值模拟研究。提取和分析了支架植入动脉瘤前后瘤腔内的流线、速度等值面面积、壁面切应力和压力等血流动力学参数。结果表明支架植入动脉瘤后瘤腔内的血流速度被削弱,血流对动脉瘤远端冲击面积减小,其中以圆形截面螺旋支架及矩形截面网格支架冲击面积减小最多。植入支架的五个模型中动脉瘤顶部局部较高壁面切应力区域完全消失,动脉瘤壁面压力略有增加,但增加值可忽略不计。
     本文摸索出来的方法具有较强的通用性,不仅适用于人体动脉血管,同样可以用于建立类似的血管甚至其他组织的个体化有限元模型。依据医学扫描图像建立的个体化模型在几何形状上更接近真实情况,为真实反映血液真实流动情形(特别是局部流动特性)打下了一个坚实的基础。本文的主要创新点如下:(1)对具有较大S型弯曲且带有侧壁动脉瘤的个体化颈内动脉模型进行了瞬态流固数值模拟计算。经过对比数值模拟结果发现,在动脉瘤血流动力学数值模拟中,可以使用静态有限元分析替代流固耦合计算获得的内壁面Von Mises Stress大小和分布特性。(2)在近似相等通透率条件下,对五种不同支架对动脉瘤腔的血液动力学参数的影响进行了数值模拟计算研究,综合考虑动脉瘤远端血流冲击面积减小量、动脉瘤WSS减小情况及支架弯曲变形能力,发现矩形截面网格支架具有较优的性能。这可以为支架结构设计提供一些理论指导意义。(3)通过计算发现,在植入支架后,动脉瘤壁面压力值略有增加(同没有支架的血管模型比较)。这同已有的一些研究报告结论正好相反,这主要是由于使用的入口边界条件不同而产生的。本文使用的均为速度的入口边界条件,而有些研究人员使用的是压力入口边界条件。这两者之间的本质区别是,前者血管入口的流量是相同的(植入支架的模型同没有支架的模型相比),而后者血管入口的流量是不同的。通过对网格支架与螺旋型支架进行静力有限元分析,发现网格支架的柔顺性(包括弯曲变形能力与扭转变形能力)好于螺旋型支架。
With the development of technology, it is very popular to use stent to treat vascular aneurysm. Many factors, such as stent structure, cross-section of stent wire, porosity, placement of stent, shape of stent connector and fatigue characteristics of stent will have different influence on stent intervention of aneurysms. It hasnot been reported about what different impacts on the hemodynamics of treatment for patient-specific internal carotid aneurysms will be made by stents with different structures and different cross section of strut at the same porosity. In order to perform the study mentioned above, first patient-specific vessel model must be established based on medical scan images. Based on the idea of reverse engineering, patient-specific aneurysimal model was constructed. Numerical simulation of hemodynamics was performed to the aneurysimal model and the models with stent.
     Taken the calculation efficiency of Computational Fluid Dynamics and reducing calculation errors for patient-specific vascular model as evaluation index, advantages and disadvantages about two calculatin flows from medical images to numerical simulation were discussed (based on STL model and NURBS model respectively). Taken the construction of surface model of arteries fast and accurately as evaluation indexes, advantages and disadvantages about different methods of image segmentation were discussed. To improve the quality of surface mesh for arterial vessel model, specific methods of improving the quality of the surface mesh were discussed.
     In order to facilitate the study of biomechanics, a patient-specific thoracic aortic model and a patient-specific internal carotid aneurysm model were constructed respectively based on the method mentioned above. In accordance with the method to generate NURBS surface model used in reverse engineering, a vessel wall model of internal carotid artery was established. The established patient-specific model of internal carotid arterial aneurysm has not only a sidewall aneurysm but also a large S-shaped bend. Vessels with S-shaped bend are very common in the human vascular system and worthy of study using the established model. Pulsatile Fluid-Structure Interaction simulation was performed using the patient-specific internal carotid arterial model in order to study the spacial distribution characteristics and temporal changing characteristics of Von Mises Stress on the vascular wall. Static finite element analysis was carried out using the vessel wall model of internal carotid artery so as to determine whether Fluid-Structure Interaction simulation can be replaced by static analysis or not when studying distribution characteristics of Von Mises Stress. Although the geometry shape of patient-specific vessel model is very complex, comparason analysis showed that Fluid-Structure Interaction simulation can be replaced by static analysis when studying distribution characteristics of Von Mises Stress. Difference between them is small. A comparison study between the blood flow velocities obtained from clinical practice and those extracted from the result of the numerical simulation was performed, and a preliminary accuracy of the numerical simulation was verified in this paper.
     Five virtual stents with different structures and wire cross-sections were designed for incorporation into the same patient-specific aneurysm model in order to investigate the influence of stent structure on the hemodynamics of aneurysm. Computational fluid dynamics simulations were performed using ANSYS CFX11.0 so as to study how these five types of stent affect the hemodynamic parameters before and after intervention. Hemodynamic parameters such as streamline in aneurysimal cavity, velocity isosurface, wall shear stress and wall pressure were extracted and analysed for models with and without stent. Numerical results demonstrated that the mean flow rate in the aneurismal cavity decreased. Impact area of blood flow to aneurysimal distal wall reduced the most in the model that used a stent with a rectangular wire cross-section and spiral stent with a circular wire cross-section. Local high wall shear stresses at the dome of the aneurysm disappeared completely in models with stent. The wall pressure on the aneurysm increased slightly after implantation of the stent in all five models, but the increased value is small.
     The method mentioned above has the advantages of generality. It can be applied to the establishment of not only human arterial vessel but also other similar vessel and even patient-specific finite element model of other organs. Patient-specific model based on medical scan images is very close to the true vessel shape in geometry. It laid a solid foundation for reflection of the true blood flow (especially local flow characteristics). The main innovations of this paper are as follows: (1) Pulsatile Fluid-Structure Interaction numerical simulation was performed to the patient-specific internal carotid artery model with a large S-bend and a sidewall aneurysm. Comparison of the numerical simulation results showed that Fluid-Structure Interaction calculation can be replaced by static analysis when assessing magnitude and distribution of Von Mises Stress on aneurismal inner wall in numerical simulation of hemodynamics of aneurysm. (2) Five different stents were implanted into internal carotid model and their porosity is approximately same. Comparison studies about their effects to the hemodynamics parameters of aneurismal cavity were performed. The results demonstrated that stent with rectangular wire cross-section has a better performance when comprehensively considering the reduction of impact area to distal aneurismal wall, the reduction of WSS on aneurismal wall and bending ability of stent. These results can provide theoretical guidance for the design of endovascular stent. (3) It is found that aneurismal wall pressure increased slightly after stent implantation (comparison with the model without stent). This result is not consistent with published literature which stated that aneurismal wall stress decreases slightly after stent implantation. The reason for this difference is that the boundary conditions in the models are different. Comparing models with and without stent, the drop in pressure is set the same in some pulbished literature. However, in the present study, the inlet velocity is set to be the same for all the models. The blood flow conditions used in models with and without stent in some published literature are not the same. The blood flow velocity used in the model with stent is less than that used in the model without stent. After stent implantation, blood flow resistance increases. Therefore, with the same pressure drop, the inlet velocity would be reduced, and the blood flow used in model with stent would also be reduced. For the convenience of comparability, boundary conditions of equal blood flow should be used. Through the static structure finite element analysis to the mesh stent and spiral stent, it is found that flexility of mesh stent is better than spiral stent (including bending and twisting deformation capacity).
引文
1 J.M. Wardlaw, P.M.White. The detection and management of unruptured intracranial aneurysms. Brain. 2000, 123: 205~221
    2陈潜德.动脉狭窄时血液流动的一个数学模型.四川大学学报, 2000, 32(4): 4~6
    3 C.A. Taylor, T.J.R. Hughes and C.K. Zarins. Finite Element Modeling of Blood Flow in Arteries. Computer Methods in Applied Mechanics and Engineering. 1998, 158: 156~196
    4乔爱科,刘有军.面向医学应用的血流动力学数值模拟Ⅰ:动脉中的血流.北京工业大学学报. 2008, 34(2): 189~196
    5孔维佳.耳鼻咽喉科学.北京:人民卫生出版社,2004:10
    6蔡彦,许世雄,景在平等.腹主动脉瘤几何形态对血液动力学影响的三维数值分析.医用生物力学. 2008, 23(2): 140~146
    7 Y.M. Hoi, S.H. Woodward, M. Kim et al. Validation of CFD Simulations of Cerebral Aneurysms with Implication of Geometric Variations. Journal of Biomechanical Engineering. 2006, 128(12): 843~851
    8 K. Perktold, G. Rappitsch. Computed simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics. 1995, 28(7): 845~856
    9 C.A. Taylor, T.J.R. Hughes and C.K. Zarins. Computational investigation in vascular disease. Computers in Physics. 1996, 10(3): 224~232
    10 C.A. Taylor, T.J.R. Hughes and C.K. Zarins. Finite Element Modeling of Blood Flow in Arteries. Computer Methods in Applied Mechanics and Engineering. 1998, 158: 156~196
    11 E.A. Finol1, C.H. Amon. Flow Dynamics in Anatomical Models of Abdominal Aortic Aneurysms: Computational Analysis of Pulsatile Flow. Biofluids. 2003, 54(1): 43~49
    12 J.R. Cebral, P.J. Yim, R. Lohner, O. Soto, H. Marcos and P.L. Choyke. New Methods for Computational Fluid Dynamics of Carotid Artery from Magnetic Resosnance Angiography. Medical Imaging 2001: Physiology and Function from Multidimensional Images, San Diego, 2001. 4321: 177~187
    13 P.J. Yim, J.R. Cebral, R. Mullick and P.J. Choyke. Vessel Surface Reconstruction with a Tubular Deformable Model. IEEE Transactions on Medical Imaging. 2001, 20(12): 1411~1421
    14 J.R. Cebral, R. Lohner, P.L. Choyke and P.J. Yim. Merging of intersecting Triangulations for Finite Element Modeling. Journal of Biomechanics. 2001, 34(6): 815~819
    15 G. Taubin. A Signal Processing Approach to Fair Surface Design. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, New York, 1995. 351~358
    16 J.R. Cebral and R. Lohner. From Medical Images to Anatomically Accurate Finite Element Grids. International Journal for Numerical Methods in Engineering. 2001, 51(8): 985~1008
    17 A.K. Wake. Modeling Fluid Mechanics in Individual Human Carotid Arteries. Ph.D.thesis, Georgia Institute of Technology. 2005
    18 S. Ding, J. Tu, C.P. Cheung, R. Beare, T. Phan, D. Reutens, Thien, Frank. Geometric Model Generation for CFD Simulation of Blood and Air Flows. 1st International Conference on Bioinformatics and Biomedical Engeering, Wuhan, 2007. 3: 1335~1338
    19 M. Eck and H. Hoppe. Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, New Orleans, 1996. 1338: 325~334
    20 K.F. Leong, C.K. Chua, Y.M. Ng. A Study of Stereolithography File Errors and Repair. Part 1: Generic Solution. International Journal of Advanced Manufacturing Technology. 1996, 12(6): 407~414
    21刘金义,侯保明. STL格式实体的快速拓扑重建.工程图学学报. 2003,4:34~39
    22乔爱科,伍时桂.主动脉弓内脉动流的有限元分析.生物医学工程学杂志. 2001,18(4): 583~588
    23罗小玉,匡震邦.动脉局部狭窄时脉动流的有限元分析.力学学报. 1992, 24(3): 320~328
    24林亚华,景在平,赵志清,梅志军,冯翔,冯睿,陆清声.人胸主动脉血液脉动流的三维数值分析.第二军医大学学报. 2006, 27(8): 867~875
    25黄启今,刘国权,马远征,薛海滨,高瑾.基于CT图像重建腰椎活动节段三维有限元模型及其应用.中国体视学与图像分析. 2004, 9(2): 120~124
    26杜鹃,顾永佳,张卫兵,严斌,倪晓宇,王林.上颌腭骨三维有限元模型的建立.口腔医学. 2006, 26(2): 124~126
    27程黎明,贾连顺,黄本才,朱川海,郑本辉,梅炯,于光荣,蔡宣松.下颈椎三维有限元模型的建立.第二军医大学学报. 2003, 24(3): 338~340
    28袁野,靳安民,何丽英,朱赞凌.利用CT扫描及CAD技术建立腰椎活动节段的有限元模型.临床生物力学. 2002, 20(4): 298~300
    29于力牛,常伟,王成焘,张富强.基于实体模型的牙颌组织三维有限元建模问题探讨.机械设计及研究. 2002, 18(2): 59~62
    30傅栋,靳安民.应用CT断层图像快速构建人体骨骼有限元几何模型的方法.中国组织工程研究与临床康复. 2007, 11(9): 1620~1623
    31彭亮,曾小丽,白净.基于CT数据的股骨三维有限元建模方法.清华大学学报(自然科学版). 2007, 47(3): 416~419
    32贾舒涵,蒲放,李淑宇,谢晟,李德玉,邓小燕.基于MRI图像的主动脉分割与三维建模.中国医学影像技术. 2007, 23(10): 1566~1568
    33金龙, Augsburger L, Vargas MI, Rufenacht DA.以CT图像为基础构建人狭窄颈动脉的血流动力学模型.中国医学影像技术. 2007, 23(8): 1237~1240
    34 R.B. Melville, S.A. Morton. Fully implicit aeroelasticity on overset grid systems. AIAA Paper, 1998, 98~05211
    35 K. Perktold, G. Rappitsch. Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model. Journal of Biomechanics. 1995, 28(7): 845~856
    36 Y. Liu, Y. Lai, A. Nagaraj et al. Pulsatile Flow Simulation in Arterial Vascular Segments with Intravascular Ultrasound Images. Medical Engineering & Physics. 2001, 23(8): 583~595
    37 D. Tang, C. Yang, D. Ku. A 3D Thin-wall Model with Fluid Structure Interactions for Blood Flow in Carotid Arteries with Symmetric and Asymmetric Stenoses.Computers and Structures. 1999, 72(1-3): 357~377
    38 D. Tang, C. Yang, S. Kobayashi et al. Generalized Finite Difference Method for
    3D Viscous Flow in Stenotic Tubes with Large Wall Deformation and Collapse. Applied Numerical Mathematics. 2001, 38(1-2): 49~68
    39 D. Tang, C. Yang, H. Walker et al. Simulating Cyclic Artery Compression Using a
    3D Unsteady Model with Fluid-Structure Interactions. Computers and Structures. 2002, 80(20-21):1651~1665
    40 M.X. Li, J.J. Beech-Brandta, L.R. John et al. Numerical Analysis of Pulsatile Blood Flow and Vessel Wall Mechanics in Different Degrees of Stenoses. Journal of Biomechanics. 2007, 40(16): 3715~3724
    41何凡,李晓阳.血流与动脉壁的流固耦合研究.医用生物力学. 2008, 23(5): 405~410
    42杨淳,唐达林.轴对称有狭窄弹性管流固耦合模型及数值模拟.北京师范大学学报(自然科学版). 2000, 36(2): 159~165
    43柳兆荣,吕岚,陈泳.血管局部扩张对血液流动的影响.水动力学研究与进展. 2001, 16(4): 412~421
    44冯元桢.生物力学-运动、流动、应力与生长.成都:四川教育出版社, 1993
    45张锡文,张研,何枫.夹层动脉瘤及覆膜支架模型的流固耦合分析.力学季刊. 2007, 28(4): 592~598
    46宋江湖,陈国定,任延平.考虑流固耦合作用的主动脉弓血液流动分析.中国生物医学工程学报. 2008,27(3): 405~409
    47顾媛,郦鸣阳,沈力行等人.狭窄动脉流固耦合模型Ansys/CFX数值的有限元分析.中国组织工程研究与临床康复. 2008, 12(52): 10293~10296
    48黄俊,周正东,戴耀东等人.腹主动脉瘤的流固耦合分析方法研究.现代生物医学进展. 2009,9(2): 334~336
    49 A.A. Valencia, A.M. Guzm, E.A. Finol et al. Blood Flow Dynamics in Saccular Aneurysm Models of the Basilar Artery. Journal of Biomechanical Engineering. 2006, 128(4): 516~526
    50 M. Toth, G.L. Nadasy, I. Nyary et al. Sterically Inhomogeneous Viscoelastic Behavior of Human Saccular Cerebral Aneurysms. Journal of Vascular Research. 1998, 35(5): 345~355
    51 V. Charles, V.K. Jeremiah and D.L. Sean. Intracranial Aneurysms: Current Evidence and Clinical Practice. American Family Physician. 2002, 66(4): 601~608
    52 de Rooij, N.K. Linn, F.H. van der Plas, J.A. Algra, A. Rinkel. Incidence of Subarachnoid Haemorrhage: a Systematic Review with Emphasis on Region, Age, Gender and Time Trends. Journal of Neurology, Neurosurgery and Psychiatry. 2007, 78(12): 1365~1374
    53 J.M.Wardlaw, P.M.White. The Detection and Management of Unruptured Intracranial Aneurysms. Brain. 2000, 123(2): 205~221
    54 A.G. Radaelli, L. Augsburger, J.R. Cebral et al. Reproducibility of Haemodynamical Simulations in a Subject-Specific Stented Aneurysm Mode-A Report on the Virtual Intracranial Stenting Challenge 2007. Journal of Biomechanics. 2008, 41(10): 2069~2081
    55 M. Kim, D.B. Taulbee, M. Tremmel and H. Meng. Comparison of Two Stents in Modifying Cerebral Aneurysm Hemodynamics. Annals of Biomedical Engineering. 2008, 36(5): 726~741
    56 S. Appanaboyina, F. Mut, R. Lohner, C.M. Putman and J.R. Cebral.Computational Fluid Dynamics of Stented Intracranial Aneurysms Using Adaptive Embedded Unstructured Grids. International Journal for Numerical Methods in Fluids. 2008, 57(5): 475~493
    57 Lanzino, G.A.K. Wakhloo, R.D. Fessler, M.L. Hartney, L.R. Guterman and L.N. Hopkins. Efficacy and Current Limitations of Intravascular Stents for Tracranial Internal Carotid, Vertebral, and Basilar Artery Aneurysms. Journal of Neurosurgery. 1999, 91(4): 538~546
    58 J.C. Parodi, J.C. Palmaz, H.D. Barone. Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms. Annals of Vascular Surgery. 1991, 5(6): 491~499
    59 S. Nishi, Y. Nakayama, H. Ishibashi-Ueda et al. Occlusion of Experimental Aneurysms with Heparin-Loaded Microporous Stent Grafts. Neurosurgery. 2003, 53(6): 1397~1405
    60田彦龙,宋冬雷.血管内支架治疗颅内复杂性动脉瘤的实验与临床研究.中国临床神经科学. 2006, 14(5): 533~537
    61 N. Koceral, O. Kizikilica, S. Albayrama et al. Treatment of Iatrogenis Internal Carotid Artery Laceration and Carotid Cavernous Fistula with Endovascular Stent-Graft Placement. American Journal of Neuroradiology. 2002, 23(3): 442~446
    62 B.L. Baruch, P.S. Alfred and K.W. Ajay. Alteration of Hemodynamics in Aneurysm Models by Stenting: Influence of Stent Porosity. Annals of Biomedical Engineering. 1997, 25(3): 460~469
    63 K. Rhee, M. H. Han, and S. H. Cha. Changes of Flow Characteristics by Stenting in Aneurysm Models: Influence of Aneurysm Gemometry and Stent Porosity. Annals of Biomechanical Engineering. 2002, 30(7) : 894~904
    64 B.L. Baruch, L. Veronica, L.N.Hopkins, K.W. Ajay. Particle Image Velocimetry Assessment of Stent Design Influence on Intra~Aneurysmal Flow. Annals of Biomechanical Engineering. 2002, 30(6): 768~777
    65 T.M. Liou, S.N. Liou. Pulsatile Flow in a Lateral Aneurysm Anchored on a Stented and Curved Parent Vessel. 2004 Society for Experiment Mechanics. 2004, 44(3): 253~260
    66 R.S. Gordan, A.S. David. Finite-Element Modeling of the Hemodynamics of Stented Aneurysms. Journal of Biomechanical Engineering. 2004, 126(6): 382~390
    67 T.M. Liou, S.N. Liou, K.L. Chu. Intra-Aneurysmal Flow with Helix and Mesh Stent Placement Across Side-Wall Aneurysm Pore of a Straight Paretn Vessel. Journal of Biomechanical Engineering. 2004, 126(2): 36~43
    68 T.M. Liou, Y.C. Li. Effects of Stent Porosity on Hemodynamics in a Sidewall Aneurysm Model. Journal of Biomechanics. 2008, 41(6): 1174~1183
    69 M. Ohta, C. He, T. Nakayama, A. Takahashi, D.A. Rufenacht. Three-Dimensional Reconstruction of a Cerebral Stent using Micro-CT for Computational Simulation. Journal of Intelligent Material Systems and Structures. 2008, 19(3): 313~318
    70杜建军.基于医学图像的个体化生物力学仿真建模系统开发.北京工业大学工学硕士论文. 2006: 56
    71张敬敏,蒋力培,邓双成.医学图像三维可视化技术研究.中国医学影像技术. 2004, 20(7): 1129~1132
    72 Y. Hoi, S.Woodward, M. Kim et al. Validation of CFD Simulations of Cerebral Aneurysms with Implication of Geometric Variations. Journal of Biomechanical Engineering. 2006, 128(12): 843~851
    73乔爱科,刘有军,张松. S形动脉中的血流动力学研究.医用生物力学. 2006, 21(1): 54~61
    74乔爱科,刘有军,伍时桂.弯曲动脉的血流动力学数值分析.计算力学学报. 2003, 20(2): 155~163
    75邱霖,岑人经.有锥角度的主动脉弓血液脉动流数值分析.医用生物力学. 2004, 19(2): 74~78
    76 N. Shahcheragh, H.A. Dwyer, A.Y. Cheer et al. Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch. Journal of Biomechanical Engineering. 2002, 124(8): 378~387
    77 C. Canstein, P. Cachot, A. Faust et al. 3D MR Flow Analysis in Realistic Rapid-Prototyping Model Systems of the Thoracic Aorta: Comparison with In Vivo Data and Computational Fluid Dynamics in Identical Vessel Geometries. Magnetic Resonance in Medicine. 2008, 59(3): 535~546
    78 N.B. Wood, S.J. Weston, P.J. Kilner et al. Combined MR Imaging and CFD Simulation of Flow in the Human Descending Aorta. Journal of Magnetic Resonance Imaging. 2001, 13(5): 699~713
    79 M.J. Eisenberg, S.A. Rice, A. Paraschos et al. The Clinical Spectrum of Patients with Aneurysms of the Ascending Aorta. American Heart Journal. 1993, 125(5): 1380~1385
    80康振黄.心血管血流动力学.成都:四川教育出版社. 1990: 441~444
    81 N. Shahcheraghi, H.A. Dwyer, A.Y. Cheer, A.I. Barakat, T. Rutaganira. Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch. ASME Journal of Biomechanical Engineering. 2002, 124(4): 378~87
    82 M. Markl, M.T. Draney, M.D. Hope et al. Time-Resolved 3-Dimensional Velocity Mapping in the Thoracic Aorta: Visualization of 3-Directional Blood Flow Patterns in Healthy Volunteers and Patients. Journal of Computer Assisted Tomography. 2004, 28(4): 459~468
    83 H.G. Bogren, M.H. Buonocore. 4D Magnetic Resonance Velocity Mapping of Blood Flow Patterns in the Aorta in Young vs. Elderly Normal Subjects. Journal of Magnetic Resonance Imaging. 1999, 10(5): 861~869
    84 H.欧特尔等著.普朗特流体力学基础.北京:科学出版社. 2008: 550
    85 Qiao, Y. Liu, S. Li, H. Zhao. Numerical Simulation of Physiological Blood Flow in 2-way Coronary Artery Bypass Grafts. Journal of Biological Physics. 2005, 31(2): 161~182
    86 Qiao, Y. Liu, Z. Guo. Wall Shear Stresses in Small and Large 2~way Bypass Grafts. Medical Engineering & Physics. 2006, 28(3): 251~258
    87 Qiao, Y. Liu. Influence of Graft-Host Diameter Ratio on the Hemodynamics of CABG. Bio-medical Materials and Engineering. 2006, 16(3): 189~201
    88 M. Aenis, A.P. Stancampiano, A.K. Wakhloo, B.B. Lieber. Modeling of Flow in a Straight Stented and Nonstented Side Wall Aneurysm Model. Journal of Biomechanical Engineering. 1997, 119(2): 206~212
    89 S.Z. Zhao, X. Y. Xu, A.D. Hughes et al. Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation. Journal of Biomechanics. 2000, 33(8): 975~984
    90 E.S. Di Martino, G. Guadagni, A. Fumero et al. Fluid-Structure Interaction within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm. Medical Engineering & Physics. 2001, 23(9): 647~655
    91 R. Torii, M. Oshima et al. Fluid–Structure Interaction Modeling of AneurysmalConditions with High and Normal Blood Pressures. Computational Mechanics, 2006, 38(4-5): 482~490
    92王芙昱.基于计算流体力学技术的个体化颅内动脉瘤的血流动力学模型与实验.军医进修学院博士学位论文. 2008: 73~84
    93 U.U. Ernemann, E. Gr?new?ller, F.B. Duffner et al. Influence of Geometric and Hemodynamic Parameters on Aneurysm Visualization during Three-Dimensional Rotational Angiography: an in Vitro Study. American Journal of Neuroradiology. 2003, 24(4): 597~603
    94乔爱科,刘有军,张松.支架治疗主动脉弓内侧动脉瘤的仿真研究.生物医学工程学杂志. 2007, 24(4): 852~856
    95 T.M. Liou, W.C. Chang and C.C. Liao. Experimental Study of Steady and Pulsatile Flows in Cerebral Aneurysm Model of Various Sizes at Branching Site. ASME Journal of Biomechanical Engineering. 1997, 119(3): 325~332
    96 V. Alvaro, B. Sergio, S. Juan et al. Comparison of Haemodynamics in Cerebral Aneurysms of Different Sizes Located in the Ophthalmic Artery. International Journal for Numerical Methods in Fluids. 2007, 53(26): 793~809
    97 T.M. Liou, Y.C. Li. Effects of Stent Porosity on Hemodynamics in a Sidewall Aneurysm Model. Journal of Biomechanics. 2008, 41(6): 1174~1183
    98 M. Henry, C. Klonaris, M. Amor et al. State of the Art: Which Stent for Which Lesion in Peripheral Interventions. Texas Heart Institute Journal. 2000, 27(2): 119~126
    99 Raval, A. Choubey, C. Engineer et al. Development and Assessment of 316LMV Cardiovascular Stents. Materials Science and Engineering. 2004, 386(1-2): 331~343
    100 L. Boussel, V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W.S. Smith, W.L. Young, D. Saloner. Aneurysm Growth Occurs at Region of Low Wall Shear Stress: Patient-Specific Correlation of Hemodynamics and Growth in a Longitudinal Study. Stroke. 2008, 39(11): 2997~3002
    101 A.M. Malek, S.L. Alper, S. Izumo. Hemodynamic Shear Stress and its Role in Atherosclerosis. The Journal of the American Medical Association. 1999, 282(21): 2035~2042
    102 T.M. Liou, Y.C. Li, T.C. Wang. Hemodynamics Altered by Placing Helix Stents in an Aneurysm at a 45°Angle to the Curved Vessel. Physics in Medicine and Biology. 2008, 53(14): 3763~3776
    103 K. Bando, S.A. Berger. Research on Fluid-dynamics Design Criterion of Stent Used for Treatment of Aneurysms by Means of Computational Simulation. Computational Fluid Dynamics Journal. 2003, 11(4): 527~531
    104周永恒,廖健宏,蒙红云,曾常春.血管内支架扩张行为的有限元分析.应用力学学报. 2007, 24(4): 619~622
    105宁静,曾攀,雷丽萍.血管支架紧缩行为的非线性有限元分析.中国医疗器械杂志. 2008,32(1): 10~13
    106王伟强,王丽,杨大智,齐民.血管支架有限元优化设计.生物医学工程学杂志. 2008, 25(2): 372~377
    107倪中华,顾兴中,王跃轩.医用血管支架非线性扩张过程快速预测方法的研究.中国科学E辑. 2008, 38(7): 1016~1025
    108 T. Welch, R.C. Eberhart, C.J. Chuong. Characterizing the Expansive Deformation of a Bioresorbable Polymer Fiber Stent. Annals of Biomedical Engineering. 2008, 36(5):742~751.
    109 Z.H. Xia, F. Ju, K. Sasaki. A General Finite Element Analysis Method for BalloonExpandable Stents Based on Repeated Unit Cell (RUC) Model. Finite Elements in Analysis and Design. 2007, 43: 649~658
    110周承倜,董何彦.冠状动脉支架力学性能的理论和实验研究.应用力学学报. 2008,25(4):556~562
    111申详,易红,倪中华.冠状动脉支架纵向柔顺性能有限元分析.功能材料. 2009, 40(3): 446~450
    112 W. Schmidt, R. Andresen, P. Behrens, K.P. Schmitz. Comparison of Mechanical Properties of Peripheral Self-expanding Nitinol and Balloon-expandable Stainless-steel Stents. Electronic Poster at the Annual Meeting and Postgraduate Course of the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), Barcelona, Spain, 2004. 25~29
    113 S. Muller-Hulsbeck, P.J. Schafer, N. Charalambous, S.R. Schaffner, M. Heller, T. Jahnke. Comparison of Carotid Stents: An In-Vitro Experiment Focusing on Stent Design. Journal of Endovascular Therapy. 2009, 16:168~177
    114 W. Schmidt, P. Lanzer, P. Behrens, L.D.T. Topoleski, K.P. Schmitz. A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems. Catheterization and Cardiovascular Interventions. 2009, 73: 350~360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700