激光去除金属氧化物的机理与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效环保的激光去除金属氧化物技术,是近年来激光技术应用的重点发展方向之一。它以激光作为加工工具,在去除金属氧化物的同时形成高性能的表面质量,提高界面结合强度等表面性能,具有便于与焊接设备集成、去除度高、定域性好、操作方便等优势,可在大型海洋工程装备、船舶制造、全自动化工业生产等领域推广应用。
     激光与金属或金属氧化物之间的作用,包含光子-电子-声子-等离子体等微观粒子之间的相互作用,目前机理研究主要集中在仿真模拟,激光去除机理存在巨大的理论研究空间。金属表面在激光作用下允许发生一定程度的永久性特征变化,激光能量选取是否合理不能单纯用激光损伤阈值判断,需要综合分析激光去除后的金属表面质量;对于大面积金属氧化物的去除,采用高速的激光扫描系统,但去除效果的影响因素很多,很难通过常用的试错实验选取工艺参数,比如激光光斑叠加的热效应影响,材料表面会再次被氧化,需要采用有效的方法选取最优工艺参数,因此激光去除技术存在巨大的技术研究空间。
     本文开展激光去除金属氧化物的基础研究,主要研究内容有:
     (1)分析激光去除金属氧化物的微观过程,揭示激光去除金属氧化物的物理机制。
     基于激光烧蚀理论,研究激光作用下金属和金属氧化物的温升规律,分析激光能量、激光脉宽等参数的影响。检测激光去除金属氧化物的微观过程,分析激光等离子体光谱谱线成分和强度变化,研究激光烧蚀分解表面物质发生的物理化学效应,分析出激光与金属氧化物之间的作用机理;检测激光去除过程的等离子体冲击波传播特性,分析材料表面的弹性变形过程,研究激光去除过程的弹性振动效应。结合形貌分析,提出金属氧化物的激光去除机理是激光烧蚀的物理化学效应和弹性振动效应共同作用的结果,为激光工艺参数的选取和在线监测技术提供依据。
     (2)构建适合工业应用需求的在线监测系统,实时分析激光去除程度。
     成本低、操作简单、稳定性好、对平台和环境要求低等使用条件,是工业应用对在线监测系统的要求。采用光电二极管、宽带麦克风等常用设备,实现对激光诱导等离子体发光信号和声波信号的检测。采用等离子体发光强度峰值的变化趋势,以及声波持续时间的变化趋势,表征出金属氧化物是否去除干净。采用BiDoseResp模型,分析发光强度峰值与作用激光能量的关系,计算出基体损伤能量阈值等关键数据,验证激光去除机理,并为工艺参数的选取提供依据。
     (3)建立激光去除效果的评价准则。
     定义激光去除效果评价参数,如去除干净、去除度、良好的表面形貌等,采用肉眼观察或JSM-7001F型扫描电镜及能谱分析仪、DM2500M型光学显微镜、Surface130A表面粗糙度仪等各种表面性能测试设备,分析激光去除后金属表面质量,参考已有传统去除手段的评价准则,提出表面质量的评估方法,为激光去除效果的评价建立准则。
     (4)提出系统选取最优工艺参数的有效方法:由机理分析入手,以检测技术为辅,确定因素及水平,根据表面质量评估,结合正交试验和优化工艺,获取最优工艺参数。
     构建高速激光去除系统,研究激光能量和激光扫描速度等工艺参数对激光去除效果的影响,得出很难通过试错实验来确定最优工艺参数的结论。采用正交试验方法,根据机理分析和在线监测结果,确定正交试验的因素及水平区间,采用L9(34)正交试验方案,初步判断出较优的参数水平区间。根据表面质量评估准则,进一步优化工艺参数,获取最优工艺参数:当氧化层厚度约30μm时,激光功率为20W,扫描速度为3000mm/s,激光作用次数2次。在最优工艺参数下,金属氧化物被去除干净,去除度达到100%;分析横截面金相具体形态,表面同内部相比没有发生变化;凹坑底部的硬度小于凹坑顶部的硬度,均大于金属基体的硬度;在凹坑底部观察到微纳米多级精细结构的表面形貌。
     本文的研究结果对金属氧化物的激光去除技术、激光诱导等离子体行为的检测以及激光与物质相互作用的机理研究均具有一定的促进作用。
Laser removal technology is one of the key development directions of laser application technology due to its high efficiency and environmentally friendlyness. As a processing tool, the laser is used to generate the the high quality surface after the removal of metal oxides and improve the surface performance, such as the interfacial bonding strength. This technology has many advantages, such as easy integration with welding equipment, high removal degree, good locality and easy operation, et al. It can be used in many fields such as large marine engineering equipment, ship building, automatic industry production, et al.
     The mechanisms between the laser and the metal or metal oxide are the interaction between individual particles including photons, electrons, phonon and plasma. The research emphasis at present is focused on the simulation analysis. There is a huge theory study space of the laser removal mechanisms. The metal surface performances are changed permanently to some extent by laser. The reasonableness of laser energy selection can not be judged simply by the laser-damaged threshold, but by the surface quality analysis after laser removal. The high speed laser scanning system is used to remove the large area metal oxides. But there are many factors affecting the removal efficiency. It is difficult to select the process parameters through the trial experiments, such as the heating effect of laser superposition and reoxidation. The parameters selection must give consideration to the laser removal effect and efficiency. There is a huge technical study space of the laser removal technology.
     The fundamental research of the laser removal technology is carried out in this dissertation. Four major results are listed as follows:
     (1)The microscopic process of laser removal is analyzed and the physical mechanism of the laser removal of metal oxides was revealed.
     Temperature rise laws of laser interaction with metal or metal oxides is calculated and the effects of the parameters such as laser power and laser pulse width are analyzed based on the theory of laser ablation. Experimental research on the microcosmic process characteristics of laser removal is carried out through testing the laser induced plasma spectral line and intensity changes. The physical and chemical reaction of surface material decomposition by laser ablation is investigated and the mechanism of interaction between laser and metal oxides is analyzed. The propagation characteristics of laser plasma shock wave are detected in the laser removal process. The elastic deformation process of the material surface is analyzed and the elastic vibration effect of the laser removal process is investigated. Combined with the morphology analysis, we proposed that the physical mechanism of the laser removal of metal oxides is the combined effect of the physicochemical effect and the elastic vibration effect. Those provide the basis for the laser processing parameters selection and the on-line monitoring technology.
     (2) The on-line monitoring system of laser removal process suitable for industrial application requirements is built up.
     The requirements of the on-line monitoring system for industrial applications are of several advantages, such as low cost, simple operation, good stability and low requirement for experiment platform and environment condition. Some common equipment such as the photodiode and broadband microphone are applied to deceting the macro-signal of laser induced plasma. The variation trends of the light intensity of laser induced plasma and the duration of the sound signal are symbolized to characterize whether the metal oxide is removed totally. The relationship between the peak signal of the light intensity and the laser energy is analyzed through BiDoseResp model. The laser energy damage threshold of the body material is calculated. The mechanism of laser removal is verified. All the above mentioned provide the basis for the processing parameters selection.
     (3) The evaluation rules of the laser removal effect are established.
     The evaluation parameters of the laser removal effect are defined, such as the clean removal, the removal ratio, the good surface topography, et al. The surface quality after the laser removal is analyzed through visual inspection and various test equipments such as JSM-7001F scanning electron microscopy (SEM) and energy spectrum analyzer, DM2500M optical microscope and Surface130A surface rough meter. An evaluation method of the surface quality is put forward according to the evaluation criterion of the traditional means. The evaluation criterion of laser removal effect of is established.
     (4) An effective method of the optimum technique parameters selection is put forward. The factors and levels are established by analyzing the mechanism and on-line monitoring. The optimum technique parameters are obtained by the orthogonal experiment and optimization process according to the evaluation criterion of the surface quality
     The high speed laser removal system is built and the impact on the laser removal effectiveness of the laser repetition frequency, laser energy, laser scanning speed is experimentally investigated. We propose that it is difficult to obtain the optimum technique parameters by the trial and error test. The orthogonal experiment method is used and its experimental factors and levels are obtained by the mechanism analysis and online monitoring results. The orthogonal experiment scheme L9(34) is used and the optimal parameters and levels are preliminary obtained. The optimum technique parameters are obtained through process optimization and according to the assessment criteria of surface quality. Under the optimum technique parameters:oxide thickness30μm, laser power20W, laser scanning speed3000mm/s, laser action number2, the effect of laser removal is ideal and the laser removal ratio is100%. The metallic phase of the cross section on the surface is the same as that in the body. The hardness at the bottom of the craters is smaller than that at the top of the craters and both are higher than on the body material. The surface topography of micro/nano multistage fine structure is observed at the bottom of the craters.
     The research results of this dissertation are favorable to the laser removal technology of the metal oxide, the detection of the laser induced plasma behavior and the interaction mechanism of laser and matter.
引文
[1]王桂林,段梦兰,冯玮等.深海油气田开发模式及控制因素分析.海洋工程,2011,29(3):140-142.
    [2]张永康,张朝阳,王飞等.海洋工程装备的大尺寸浮态制造方法.中国,发明专利,201110360660.7,2012.
    [3]王飞,圆筒型深水钻井储油平台浮态制造的关键问题研究.[博士学位论文].江苏镇江:江苏大学,2013.
    [4]谭文生.铁的吸氧腐蚀与析氢腐蚀对比实验设计.化学教学,2011,(6):48-49.
    [5]刘富桥.钢结构常用表面除锈处理方法.南方建筑,2006,(7):81-83.
    [6]程岩.一种全新的除锈工具——钢丝轮除锈机.上海涂料,2011,10:48-50.
    [7]田彬,邹万芳,刘淑静等.激光干式除锈.清洗世界,2006,22(8):33-38.
    [8]姚冠新.钢管外壁喷砂除锈作业线的设计与研制.表面技术,2000,(3):22-24.
    [9]朱煜秋,刁小燕,刘贤兴等.钢管内外表面喷砂除锈半自动生产线设计.石油机械,2006,(2):20-22.
    [10]娄伟,张军.大型油罐喷砂除锈机器人躯体结构设计.山东农业大学学报(自然科学版),2006,(2):279-283.
    [11]周晓君,韩延峰,王法永.喷砂除锈机理及参数优化研究.船舶工程,2008,(1):66-68.
    [12]任启乐,郭宏彬,庞雷等.大直径旋转磨料水射流除鳞除锈技术研究.流体机械,2012,(12):11-14.
    [13]王磊,王益民.多功能水射流除锈系统的研制.煤矿机械,2013,(7):172-173.
    [14]张黎霞.金属表面高压水清洗机除锈技术.清洗世界,2005,(6):26-28.
    [15]李江云,薛胜雄,周其源.超高压纯水射流除锈机的数值模拟.武汉大学学报(工学版),2007,(1):48-52.
    [16]薛胜雄,陈正文,王永强等.超高压水射流除锈生产线的设计及试验.流体机械,2008,(6):1-5.
    [17]林国宁,陈欣义,汤兵等.钢铁化学酸洗除锈清洁生产过程.广东化工,2008,(5):56-60.
    [18]胡丽.酸洗除油除锈添加剂的研究.广州化工,2013,(9):126-128.
    [19]高军林,唐卫平,闵更田等.常温高效金属除锈剂的研究.材料保护,2008, (9):49-51.
    [20]张圣麟.酸洗除锈工艺的试验研究.表面技术,2002,(4):35-36.
    [21]张永康.激光加工技术.北京:化学工业出版社,2004:5-10.
    [22]DM Kane. Laser Cleaning Ⅱ. World Scientific Publishing Co Pte Ltd,2011:3-23
    [23]陈杰,李冬冬,陈培杰.激光加工技术的应用与发展.河南科技,2013,3:28.
    [24]朱萍.激光加工技术发展现状及展望.安徽科技,2013,1:50-51.
    [25]吴士蓉,周健.我国激光加工技术发展分析与展望——基于专利之星平台中国专利检索数据.现代情报,2013,8:112-116.
    [26]王宏睿.激光清洗原理与应用研究.清洗世界,2006.22(9):20-23.
    [27]徐滨士.材料表面工程.哈尔滨:哈尔滨工业大学出版社,2005:1-20.
    [28]冯爱新.界面结合性能激光划痕检测技术基础研究,[博士学位论文].江苏镇江:江苏大学,2009.
    [29]李旭峰.金属纳米尖局域电磁场增强的数值模拟研究,[硕士学位论文].辽宁:大连理工大学,2007
    [30]施曙东,李伟,易三铭等.从激光清洗专利看激光清洗技术的发展.清洗世界,2009.25(9):26-35.
    [31]Arvi Kruusing. Underwater and water-assisted laser processing:Part 1—eneral features, steam cleaning and shock processing.Optics and Lasers in Engineering,2004, (41):307-327.
    [32]Rachel S. Edwards, Ben Dutton, A.R. Clough. Interaction of laser generated ultrasonic waves with wedge-shaped samples.Applied Physics Letters, 2012,100(18):102-104.
    [33]X.Wang, X.Xu.Thermoelastic wave induced by pulsed laser heating.Applied Physics A,2001,73(1):107-114
    [34]F.Bloisia, A.C.Baroneb,L.Vicari.Dry laser cleaning of mechanically thin films. Applied Surface Science,2004,238:121-124.
    [35]Shin-Chun Hsu, Jehnming Lin. Removal mechanisms of micro-scale particles by surface wave in laser cleaning. Optics & Laser Technology,2006,38:544-551.
    [36]张平,卞保民,李振华.激光等离子体冲击波清洗中的颗粒弹出移除.中国激光,2007,34(10):1451-1455.
    [37]田彬.干式激光清洗的理论模型与实验研究,[硕士学位论文].天津:南开大 学,2008
    [38]D. Grojo,A.Cros,Ph.Delaporte et al.Experimental investigation of ablation mechanisms involved in dry laser cleaning.Applied Surface Science,2007, 253:8309-8315.
    [39]A. Leontyev, A. Semerok, D. Farcage, et al.Theoretical and experimental studies on molybdenum and stainless steel mirrors cleaning by high repetition rate laser beam. Fusion Engineering and Design,2011, (86):1728-1731
    [40]司马媛.激光清洗硅片表面颗粒沾污的试验研究,[硕士学位论文].山东:大连理工大学,2006.
    [41]吴东江,许媛,王续跃等.激光清洗硅片表面Al2O3颗粒的试验和理论分析.光学精密工程,2006,5:764-770.
    [42]陈菊芳,张永康,孔德军等.短脉冲激光清洗细微颗粒的研究进展.激光技术,2007,3:301-305.
    [43]Liyang Yue, Zengbo Wang, Lin Li.Modeling and simulation of laser cleaning of tapered micro-slots with different temporal pulses. Optics&Laser Technology, 2013,45:533-539.
    [44]X. Zhoua, K. Imasakia, H. Furukawaa et al.Simulation study and experiment on laser-ablation surface cleaning. Optics & Laser Technology,2001.33:189-194.
    [45]K. Imen,S. J. Lee,S. D. Allen.Laser-assisted micron scale particle removal. Appl. Phys. Lett.1990,58(2):203-205.
    [46]Yong-Feng Lu,Wen-Dong Song,Teck-Seng Low.Laser cleaning of micro-particles from a solid surface theory and applications. Materials Chomiatry and Physics, 1998,54:181-185
    [47]G. Vereecke,E. Rohr,M.M. Heyns.Influence of beam incidence angle on dry laser cleaning of surface particles. Applied Surface Science,2000,157:67-73.
    [48]J.M.Lee, K.G.Watkins.Laser removal of oxides and particles from copper surfaces for microelectronic fabrication. OPTICS EXPRESS,2000.7(2):68-76.
    [49]Delivre J, Laser cleaning: is there specific laser esthetics.Journal of Cultural Heritage,2003, (4):245s-248s.
    [50]Naylor, A.Conservation of the eighteenth century lead statue of George II and the role of laser cleaning.Journal of Cultural Heritage,2000, (1):145-149.
    [51]Roberto Pinia, Salvatore Sianoa, Renzo Salimbenia,et al.Tests of laser cleaning on archeological metal artefacts. J. Cult. Heritage,2000, (1):S129-S137.
    [52]Omar Abdel-Kareem,M. A.Harith. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles. Applied Surface Science,2008,254:5854-5860.
    [53]Halina Garbacz,Andrzej Koss,Jan Marczak. Optimized laser cleaning of metal artworks evaluation of determinants. Physics Procedia,2010,5:457-466.
    [54]N. Carmona, M. Oujja, H. Roemich et al. Laser cleaning of 19th century Congo rattan mats. Applied Surface Science,2011,257:9935-9940.
    [55]Hurst, K.E. Quartz-crystal microbalance for in situ monitoring of laser cleaning of carbon nanotubes.2010,48:2521-2525.
    [56]N. G. Semaltianos, M. Sharp, C.J. Williams,et al.Nano-Particle Generation by Femto Second LASER Ablation.2007,46:269-281.
    [57]Asmus, J.F.More Light for Art Conservation.IEEE Circuits and Devices Magazine, 1986,2:6-14.
    [58]R.M. Esbert, A. Rojo, F.J. Alonso,et al. Application limits of Q-switched Nd:YAG laser irradiation for stone cleaning based on colour measurements. Journal of Cultural Heritage,2003,4:50-55
    [59]Y.F. Lu, M.H. Hong, T.S. Low,et al. Acoustic wave monitoring of cleaning and ablation during excimer laser interaction with copper surfaces.Applied Surface Science,1997,119:137-146.
    [60]A. Vatrya,A. Marchand,Ph. Delaporte, et al., Studies of laser-induced removal mechanisms for tokamak-like particles. Applied Surface Science,2011, 257:5384-5388.
    [61]Jens Hildenhagen. Low-cost sensor system for online monitoring during laser cleaning. Journal of Cultural Heritage,2003,4:343s-346s.
    [62]Giovanni Buccolieri, Vincenzo Nassisi, Alessandro Buccolieri, et al. Laser cleaning of a bronze bell. Applied Surface Science,2013,272:55-58.
    [63]Hyeyoun Leea, Namchul Chob,Jongmyoung Leec, et al. Study on surface properties of gilt-bronze artifacts, after Nd:YAG laser cleaning. Applied Surface Science,2013,284:235-241.
    [64]Pini R.Tests of laser cleaning on archaeological metal artifacts. J. Cult.Heritage, 2000,1:129-130.
    [65]Siano, S. and Salimbeni, R. The Gate of Paradise:Physical Optimization of the Laser Cleaning Approach. Studies in Conservation,2001,46:269-281.
    [66]Yangsook Koh, Istvan Sarady. Cleaning of corroded iron artefacts using pulsed TEA C02-and Nd:YAG-lasers.Journal of Cultural Heritage,2003,4:129s-133s.
    [67]Christian Degrigny, Eric Tanguy b, Rene Le Gall c et al. Laser cleaning of tarnished silver and copper threads in museum textiles. Journal of Cultural Heritage, 2003,4:152s-156s.
    [68]S. Siano, J. Agresti, Ⅰ. Cacciari et al. Laser cleaning in conservation of stone, metal and painted artifacts:state of the art and new insights on the use of the Nd:YAG lasers. Appl. Phys. A,2012,106:419-446.
    [69]Kumar, n. and M.C. Gupta.Surface preparation of Ti-3A1-2.5V alloy tubes for welding using a ber laser. Optics and Lasers in Engineering,2009,47:1259-1265.
    [70]Kumar, A. A study on laser cleaning and pulsed gas tungsten arc welding of Ti-3A1-2.5V alloy tubes. Journal of Materials Processing Technology,2010,210: 64-71.
    [71]Rechner, R., I. Jansen, and E. Beyer. Infuence on the strength and aging resistance of aluminium joints by laser pre-treatment and surface modication. International Journal of Adhesion & Adhesives,2010,30:595-601.[72]陈继民,赵宏亮.便携式激光清洗系统,中国,发明专利,ZL200610065407.8,2007.
    [73]D. Scapati.Laser Cleaning as a Conservation Technique for Corroded Metal Artifacts.2006,2:10-16
    [74]郭为席,胡乾午,王泽敏等.高功率脉冲TEA CO2激光除漆的研究.光学与光电技木,2006.4(3):32-35.
    [75]陈菊芳,张永康,孔德军等.轴快流CO2激光脱漆的实验研究.激光技术,2008.32(1):64-70.
    [76]高智星,汤秀章,张绍哲等.利用紫外激光清洗放射性沾染金属模拟靶.中国原子能科学研究院年报,2009,00:302.
    [77]李强.以连续二氧化碳激光对铁基材料表面除锈的研究.[硕士学位论文].沈阳:东北大学,2008.
    [78]邱兆飚,朱海红.脉冲激光除锈工艺研究.应用激光,2013,04:416-420.
    [79]曹长宏,冯进良,手持式激光清洗机的光学系统.中北大学学报(自然科学版),2008.29(1):88-91
    [80]森敦,中田嘉教METHOD FOR CLEANING LASER WORKING HEAD,日本,发明专利,JP 5318165,1994.[81]Kagelmann,Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen,德国,发明专利,DE20023754(U1),2006.
    [82]METHOD AND SYSTEM FOR CLEANING SURFACES WITH THE USE OF LASER PULSES OF TWO DIFFERENT WAVELENGTHS,希腊发明专利,GR 2002100116,2003
    [83]路磊,王菲,赵伊宁等.背带式双波长全固态激光清洗设备.航空制造技术,2012,10:83-85.
    [84]路磊.全固态1064nm/532nm双波长激光清洗机关键技术的研究,[硕士学位论文].吉林:长春理工大学,2012.
    [85]徐军,孙振永,周文明等.激光除锈过程的实时监测技术研究.光子学报,2002.31(9):1090-1092.
    [86]J. M. Lee, K.G. Watkins and W. M. Steen. Fuzzy Rule Based Prediction System of Surface Damage in the Laser Cleaning Process.Advanced Manufacturing Technology,2000.16:649-655.
    [87]M. strlic, Optimisation and on-line acoustic monitoring of laser cleaning of soiled paper. Applied Physics A Materials Science & Processing,2005,81:943-951.
    [88]Marta Jankowska, Gerard Sliwinski.Acoustic monitoring for the laser cleaning of sandstone.2003,4:65s-71s.
    [89]T. Kim, J.M.Lee, S.H. Cho, et al.Acoustic emission monitoring during laser shock cleaning of silicon wafers. Optics and Lasers in Engineering,2005.43:1010-1020.
    [90]S. Klein, T.Stratoudaki, V. Zafiropulos,et al.Laser-induced breakdown spectroscopy for on-line control of laser cleaning of sandstone and stained glass. Applied Physics A:Materials Science & Processing,1999.69:441-444.
    [91]Stefan Kleina, Jens Hildenhagena, Klaus Dickmanna,et al.LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass. 2000,1:S287-S292.
    [92]P.Maravelaki-Kalaitzaki,V.Zafiropulos, C.Fotakis.Excimer laser cleaning of encrustation on Pentelic marble:procedure and evaluation of the effects. Applied Surface Science,1999,148:92-104.
    [93]F.J. Fortes, L.M. Cabalin, J.J. Laserna.The potential of laser-induced breakdown spectrometry for real time monitoring the laser cleaning of archaeometallurgical objects. Spectrochimica Acta Part B,2008,63:1191-1197.
    [94]F.Colao, R.Fantoni, V.Lazic,et al.Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks—pplication on multi-layered ceramics and copper based alloys.2002,57:1219-1234
    [95]D.J.Whitehead, P.L.Crouse, M.J.J.Schmidt,et al.Monitoring laser cleaning of titanium alloys by probe beam reflection and emission spectroscopy. Applied Physics A Materials Science & Processing,2008.93:123-127.
    [96]J.M.Lee,W. M. Steen.In-Process Surface Monitoring for Laser Cleaning Processes using a hromatic Modulation Technique. Advanced Manufacturing Technology,2001. 17:281-287.
    [97]B. Gene Oztoprak, E. Akman, M.M. Hanon, et al, Laser welding of copper with stellite 6 powder and investigation using LIBS technique, Optics & Laser Technology,2013,45(2),748-755
    [98]J. Moros, J. Serrano, F.J. Gallego, et al. Recognition of explosives fingerprints on objects for courier services using machine learning methods and laser-induced breakdown spectroscopy, Talanta,2013,110(15):108-117.
    [99]Hongqiang Chen,Y.Lawrence Yao,Jeffrey W.Kysar, et al. Fourier Analysis of X-ray Micro-diffraction Profiles to Characterize Laser Shock Peened Metals. International Journal of Solids and Structures,2005, (42):3471-3485.
    [100]王军,铝合金光纤激光及其复合焊接的等离子体行为与工艺研究,[博士学位论文],湖北:华中科技大学,2012.
    [101]袁冬青,周明,沈坚等,激光诱导等离子体技术(LIBS)在金薄膜加工微检测中的应用研究.光谱学与光谱分析,2008.28(10):2232-2236.
    [102]韩敬华,段涛,高胥华等.激光等离子体效应对薄膜损伤特性的影响.光谱学与光谱分析,2012.32(5).1162-1165.
    [103]孙承纬.激光辐照效应.北京:国防工业出版社,2001:11-16.
    [104]任旭东,基于激光冲击机理的裂纹面闭合与疲劳性能改善特性研究,[博士学位论文].江苏镇江:江苏大学,2012.
    [105]鲁先洋,徐国伟,费腾等.金属材料的激光诱导等离子体光谱法成分分析的实验研究.量子电子学报,2011,(1):1-5.
    [106]D. A. Cremers and L. J. Radziemski. Handbook of Laser-Induced Breakdown Spectroscopy. Chichester: John Wilkey & Sons Ltd,2006.
    [107]张树东,刘兆远,陈冠英等.环境气体对激光诱导A1等离子体光谱的影响.原子与分子物理学报,2001,(1):64-66.
    [108]国家技术监督局,GB8923-88,涂装前钢材表面锈蚀等级和除锈等级,中华人 民共和国国家标准,1988.
    [109]冶金工业部科技标准化研究所.光谱线波长表.北京:中国工业出版社,2009.
    [110]党海军,秦启宗.脉冲激光烧蚀金属氧化物的物理化学过程及反应机理.量子电子学报,2004,(2).216-224.
    [111]Peugnet C.Kinetic temperature measurement of the front surface of a target exposed to an intense pulsed electron beam.J.Appl.Phys.,1977,48(8):3206.
    [112]W. Chen, B. Song, Dj Frew, et al. Dynamic Small Strain Measurements of a Metal Specimen with a Split Hopkinson Pressure Bar. Experimental Mechanics.2003, 43(1):20-23.
    [113]徐先锋,何柏林.机械工程材料.北京:化学工业出版社,2010.
    [114]冯先成.斐索光纤干涉仪在超声检测中的应用,光学与光电技术,2006,(4):12-16.
    [115]宗思光,王江安,蒋兴舟.液体激光聚焦击穿声辐射特性研究,激光技术,2009,(3):46-49.
    [116]高岳,光电检测技术与系统,成都:电子工业出版社,2009.
    [117]Zhao Shengli,Liu Xiannian,et al.Time of flight spectra of species ablated from LiMn2O4 by 355 nm laser.Science in China (B),2002,32(5):406-412.
    [118]段颖异,陈洪章.固态发酵基质的三相结构变化对其传递性质的影响.化工学报,2012,(4):1204-1210.
    [119]顾宜,赵长生等.材料科学与工程基础.北京:化学工业出版社,2011.
    [120]庞迎春.钛合金表面多孔Ti02的制备及提高涂层结合性能的研究.[硕士学位论文].南京航空航天大学.2008
    [121]Auezhan Amanov, Tsukasa Watabe, Ryo Tsuboi,et al. Improvement in the tribological characteristics of Si-DLC coating by laser surface texturing under oil-lubricated point contacts at various temperatures. Surface & Coatings Technology. 2013,(232):549-560
    [122]刘延辉,李军,于治水等.光纤激光热加工的特点与应用现状,上海工程技术大学学报,2012,(3):242-248.
    [123]Zhou Jianzhong, Zhang Yongkang, Zhou Ming, et al. Theoretical Analysis on Deformation of Sheet Metal under One Laser Shot Loading. Chinese Journal of Lasers.2005,32(1):135-138.
    [124]李鹏,高速混合机桨叶的失效分析及强化、修复技术,[硕士学位论文],江苏镇江:江苏大学,2012.
    [125]方开泰,马长兴,正交与均匀试验设计.北京:科学出版社,2001.
    [126]Yibo Gao, Benxin Wu, Yun Zhou,et al,A two-step nanosecond laser surface texturing process with smooth surface finish,Applied Surface Science,2011,(257): 9960-9967.
    [127]Rechner, R, I. Jansen, and E. Beyer. Infuence on the strength and aging resistance of aluminium joints by laser pre-treatment and surface modi cation. International Journal of Adhesion & Adhesives,2010,30:595-601.
    [128]吴双成,钢铁发蓝工艺与碱性发蓝故障处理,表面工程资讯,2011,(5):32-35.迈耶斯.张庆明译.材料的动力学行为.北京:国防工业出版社,2006.
    [129]王晓东,汪盛烈,刘劲松,高重复频率脉冲激光材料烧蚀的准真空环境效应,中国激光,2009.36(1):238-243.
    [130]张永康,张署光,张朝阳等.一种基于激光毛化技术的激光除锈装置和方法,中国,发明专利,201210536238.7,2012
    [131]T. Cesca, P. Calvelli, G. Battaglin,et al. Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets, Optics Express,2012,20(4): 4537-4547.
    [132]中国船舶工业总公司.CB1069-87.造船涂装工时定额.中国船舶工业总公司部标准.1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700