神华煤直接液化残渣结构特性的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于煤炭直接液化残渣的性质尚缺少系统全面的研究探讨,为此,本文把“神华煤直接液化残渣结构特性的探讨”作为研究课题,全面系统地分析神华煤直接液化残渣的组成、结构特性等物理、化学性质,为残渣的加工利用作基础性准备工作。
     本文选择用溶剂萃取的方法将残渣分成油(HS)、沥青烯(HI-BS)、前沥青烯(BI-THFS)和四氢呋喃不溶物(THFI)四个组分来分别进行分析研究。
     本文除了采用元素分析、分子量测定等常规分析方法外,还采用了傅立叶红外光谱法、核磁共振波谱法以及热解色谱—质谱等物理仪器分析方法对三个有机组分进行组成和结构的分析。通过对大量的分析结果的解析,得出三个组分的分子结构的基本特征。重点分析了油和沥青烯分子的官能团的种类和变化情况、分子内部的主要结构单元以及氢碳原子的分布情况。发现油和沥青烯都含有四十种以上的结构形式,不仅包括1~4个(沥青烯达到6个)环的缩合芳香结构单元和部分加氢饱和的氢化芳香结构,而且含有一系列的碳数不等的正构烷烃,这些正构烷烃并不是单独存在于组分中,而是以芳香结构单元键合的侧链形式存在。综合仪器分析的结果,计算出油和沥青烯分子的平均结构参数,从而绘制出油和沥青烯的平均分子结构模型。对前沥青烯也进行了多种分析,得到了部分性质参数。
     另外,在沥青烯的热解色谱质谱的分析中发现存在四氢呋喃的聚合体,说明溶剂萃取过程中存在四氢呋喃的聚合现象。
     对于四氢呋喃不溶物,本文采用了岩相显微分析法和X射线衍射法(XRD)进行分析。发现原料煤中的矿物质有些转变成了硫酸盐,以及催化剂的活性形态是具有八种晶体结构的磁黄铁矿Fe_((1-X))S。
Coal direct liquefaction will be taken into commercial application, but the properties of residue have been little researched. Therefore, in this paper, the structure characters of Shenhua coal direct liquefaction residue have been studied. In order to deal with and utilize the residue, the systematical study of the physical and chemical properties of the residue could provide basic data for its utilizations in the future.
    The residue has been separated into four fractions by using solvent extraction, that is, the oil(HS), asphaltene(HI-BS), preasphaltene(BI-THFS) and the insoluble of tetrahydrofuran (THFI), which have been studied respectively.
    In this paper, not only routine analyses, such as elemental, molecule weight etc., but also fourier infrared spectrometry, nuclear magnetic resonance spectrometry and pyrolysis GC-MS and so on have been used. The characters of three organic fractions have been obtained by analyzing the much data and information from above instrumental analyses. The emphasis in this paper is the molecular structure of the oil and asphaltene fractions, including the species and characters of the functional groups, the main structure units of intra-molecule and distributions of carbon and hydrogen atoms. The oil and asphaltene fractions contain more than forty kinds of structure fragments, including 1~4 rings (6 rings for asphaltene) of condensing aromatic and partially hydrogenated aromatic structure units, as well as a series of n-alkane chain that are linked with aromatic structure. Average molecule structure model of the oil and asphaltene fractions have been drawn out, in according to colligating the data of instrumental analysis and calculating average structure parameters of the two fractions. The properties of preasphaltene have been partially studied.
    In addition, polymers of tetrahydrofuran have been found in the pyrolysis GC-MS analysis of the asphaltene fraction, which has been shown that polymerization of tetrahydrofuran has occurred in the course of solvent extraction.
    For the insoluble of tetrahydrofuran, using microscopy analysis and X-ray diffraction analysis, it has been found out that a part of the mineral substances in feed coal have become sulphates as well as the active forms of catalyst are 8 kinds of crystal structures of Fe_(1-x)S.
引文
[1] 张玉卓.神华集团大型煤炭直接液化项目的进展.中国煤炭,2002(5):8~9
    [2] 陈鹏.中国煤炭性质、分类和利用.北京:化学工业出版社.2001.342-352
    [3] 曹征彦.中国洁净煤技术.北京:中国物资出版社.1998.
    [4] Neavel R. C. Liquefaction of Coal in Hydrogen-Donor and Non-Donor Vehicles. Fuel, 1976, 55: 237
    [5] 赵鹏.胜利褐煤含氧官能团赋存形态及其在液化预反应中脱除的研究:[硕士研究生学位论文].北京:煤炭科学研究总院,2003
    [6] M. J. G. Alonso et al. Pyrolysis behaviour of pulverised coals at different temperatures. Fuel, 1999, 78(13): 1501-1513
    [7] Wiser W. H.. Kinetic Comparision of Coal Pyrolysis and Dissolution. Fuel, 1968, 47: 475
    [8] Han K., Wen C. Y. Initial Stage(Short Residence Time)Coal Dissolution. Fuel, 1979, 58: 779
    [9] 舒歌平,史士东,李克健.煤炭液化技术.北京:煤炭工业出版社.2003
    [10] 郭树才.煤化工工艺学.北京:化学工业出版社.1995.263~300
    [11] Liu Z Y, Yang J L. Some thoughts on the strategy of direct coal liquefaction. Proceedings of the 15th Annual International Pittsburgh Coal Conference, 1998, Sep. 14~18
    [12] Robin A M. Annum Report FE-2247-7: Gasification of residual materials from coal liquefaction. Fossil Energy: Energy Research and Development Administration. 1977
    [13] Ouchi et al. Mechanism of hydrogenation of coal-derived asphaltene. Fuel, 1978, 57: 676-680
    [14] Isao Yoshimoto, Hironori Itoh et al. Pressure and temperature effects on the hydrogenation of coal-derived asphaltene. Fuel, 1984, 63: 978-983
    [15] Bohdan Radomyski, Jerzy Szczygie. Statistical and mathematical analysis of the catalytic hydrogenating depolymerization of benzene-insoluble coal extract fraction. Fuel, 1984, 63: 1687-1693
    [16] Ruth E., Baltus John L. Andersen. Comparison of g. p. c, elution characteristics and diffusion coefficients of sphaltenes. Fuel, 1984, 63: 530-535
    [17] Colin E. Shape, Keith D. Battle. Definition of fossil fuel-derived asphaltenes in terms of average structural properties. Fuel, 1984, 63: 883-887
    [18] Mikio Miyake, Toshimasa Kagajyo et al. Hydrocracking of asphaltene from coal using Zncl_2 as catalyst. Fuel processing technology. Fuel, 1984, 63 (9): 293-306
    [19] Jeffrey Solash, Jeffrey Northrup et al. Oxidation of coal-derived asphaltenes with thallium(Ⅲ). Fuel, 1984, 63: 217-220
    [20] Kiyoshi Mashimo, Jiro Suezawa et al. Hydrogenolysis reaction of coal-derived asphaltene using molten salt catalysts. Fuel, 1986, 64: 495-499
    [21] 鹈野建夫,奥原捷晃,和田幸一.液化残渣的热分解分析.日本能源协会誌,1993,72,(10)
    [22] 增田薰,大隈修,金持真理子,松村哲夫等.褐煤液化残渣的组成分析.日本能源协会誌,1993,72(10):943-949
    [23] Maria T. Martinez, Ana M. Benito et al. Kinetics of asphaltene hydroconversion. Fuel, 1997, 76: 899-905
    [24] 埃利奥特 M.A.煤利用化学,下册.孙亻弄等译.北京:化学工业出版社.1991.438-441
    [25] NamikiY KuboH WadaK. Effect of Operation Conditionon Characteristics of Residue Produced at the 1t/d Process Supporting Unit(PSU). Journal of Japan Institute of Energy, 1993, 72(10): 1027-1033
    [26] Anderson R R, Bockrath B C. Effect of Sulphuron Coal Liquefaction in thePresence of Dispersed Ironor Molybdenum Catalysts. Fuel, 1984. 63: 329-335
    [27] 史士东,金嘉璐,舒歌平等.云南先锋褐煤直接液化示范厂技术经济初步分析.洁净煤技术,1996,2(3):8-11
    [28] Hirano K. Outline of NEDOL Coal Liquefaction Process Development (PilotPlantProgram). Fuel Processing Technology, 2000, 62(1): 109-110
    [29] Nakagama T, SugiyamaI, SakawaM. Fluidity of Coal Liquefaction Residue. Journal of Japan Institute of Energy, 1993, 72(10): 977-984
    [30] Li Wenhua, Bai xiangfei and Shu geping. Characterization of Hydroliquefaction Residues from Yilan Lignite. The 7th China-Japan Symposium on Coal and C1 Chemistry Processing. Haikou, Hainan, China, 2001, 265~268
    [31] M. Sobkowiak E. Reisser et al. Determination of aromatic and aliphatic CH groups in coal by FT-i. r.: 1. Studies of coal extracts. Fuel, 1984, 63: 1245-1252
    [32] 谢克昌.煤的结构与反应性.北京:科学出版社.2002.360-382
    [33] Colin E. Snape. Estimation of aliphatic H/C ratios for coal liquefaction products by spin-echo ~(13)C n. m. r. Fuel, 1983, 62: 621-624
    [34] Michael A. Wilson, Brian C. Young, Keith M. Scott. Coal pyrolysis residue analysis by ~(27)Al and 29Si nuclear magnetic resonance spectrometry. Fuel, 1986, 65: 1584-1587
    [35] Gaye Erbatur, Oktay Erbatur et al. Investigation of pyridine extracts and residues of coals by solid-state ~(13)C n. m. r, spectroscopy. Fuel, 1986, 65: 1265-1272
    [36] Zaoru Masuda, Osamu Okuma et al. High-temperature n. m. r, analysis of aromatic units in asphaltenes and preasphaltenes derived from Victorian brown coal. Fuel, 1996, 75: 295-299
    [37] Kaoru Masuda, Osamu Okuma et al. Chromatographic characterization of preasphaltenes in liquefied products from Victorian browncoal. Fuel, 1996, 75: 1065-1070
    [38] Richard J. Baltisberger, Kundanbhai M. et al. Use of acetylation and ~(14)C-counting to quantitate hydroxyl groups in preasphaltenes and asphaltenes from coal hydrogenation. Fuel, 1982, 61: 848-852
    [39] Colin E. Shape. Estimation of quaternary and tertiary aromatic carbon in coal liquefaction products by spin-echo ~(13)C n. m. r. Fuel, 1982, 61: 1164-1167
    [40] S. J. W., Grigson W. Kemp .Pyrolysis of SCG extract coal asphaltenes Gas chromatographic-mass spectroscopic study of the n-pentane soluble fraction. Fuel, 1983, 62: 695-699
    [41] John A. G. Drake, Derry W. Jones. Analysis of solvent extracts of bituminous coal macerals by chromatography, ~1H n. m. r, and field-desorption mass spectrometry. Fuel, 1984, 63: 634-639
    [42] Helena Wachowska ,Antoni Andrzejak, Jacek Thiel. Structural studies of coal extracts. Fuel, 1985, 64: 644-649
    [43] Donald R. Bobbitt, Barbara H. Reitsma. Characterization of extracts of coals and coal-derived products by liquid chromatography using optical activity detection .Fuel, 1985, 64: 114-118
    [44] Andrew P. Tytko, Keith D. Battle et al. Identification of aromatic systems by differential pulse voltammetry in the study of the hydropyrolysis of pyrene and coal asphaltenes .Fuel, 1985, 64: 1024-1026
    [45] Stephen Wallace, Malcolm J. Crook at al. Isolation of nitrogen bases from coal-derived asphaltenes and preasphaltenes. Fuel, 1986 65: 138-139
    [46] R. F. Rathbone, J. C. Hower, F. J. Derbyshire. The application of fluorescence microscopy to coal derived reside characterization. Fuel, 1993, 72: 1177-1185
    [47] 田中尚羲,村田聪,野村正榺等.伊利诺6号在NEDOL工艺上的液化残渣的化学结构的研究.日本能源协会誌,1993,72(10):935-942
    [48] Verina J. Wargadalm et al. Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements. Fuel, 2002, 81: 1403-1407
    [49] H. Cui, J. Yang, Z. Liu, J. Bi. Effects of remained catalysts and enriched coal minerals on devolatilization of residual chars from coal liquefaction. Fuel, 2002, 81: 1530-1531
    [50] Hayashi J, Kawakami T, Kusakabe K and Morooka S. Compositive pyrolysis of coal and coal liquefaction residue. Journal of Japan Institution of energy. 1993, 72(10): 1009
    [51] Takayuki TAEARADA, Hideomi ABE. Catalytic Steam Gasification of Liquefaction Reside. Journal of Japan Institution of Energy, 1993, 72(10): 1016~1020
    [52] Beker P. W. DeGeorge. C, W. Lahu. G. C. EDS Coal Liquefaction Process Update. EXXON Research and Engineering CO. 1985, 1~19
    [53] Final Report Texaco INC. Montebello Research Laboratory. Gasification of Residual Materials from Coal Liquefaction. 1984. 1~21
    [54] 神华集团煤液化技术部.关于油渣制氢技术选择的说明.内部资料.2003,1~9
    [55] 北京煤化工分院.神华集团公司煤炭液化残渣炼焦试验研究报告.2003,4
    [56] Matsuhashi H, Nakamura H, Arata K. et al. Catalytic Activities of Metal Oxides Containing Iron for Hydrocracking Coal Model Compounds and Taiheiyo Coal. Fuel, 1997, 76(10): 913-918
    [57] Zaczepinski. S Fliud. Coking of Coal Liquefaction Residues. Report for the Fourth Residue. EXXON Research and Engineering CO., Bayton, TX. Bayton Research and Development Div. 1979, 1~73
    [58] 北京煤化工分院.神华集团公司煤炭液化残渣干馏实验报告.2003.4
    [59] 北京煤化工分院.神华集团公司煤炭液化残渣炼焦试验补充研究报告.2003.5
    [60] 北京煤化工分院.神华集团公司煤炭液化残渣热态进料炼焦试验研究报告.2003.7
    [61] 崔洪.煤液化残渣的物化性质及其反应性研究:[博士学位论文].山西:中国科学院山西煤化所.2001,68~89
    [62] Lexa G. F, Towle D. P., Smith D. A. EDS Coal Liquefaction Process Development: Phase Ⅴ, Interim Report. Volume Ⅳ. EDS Bottoms Combustion Evaluation and Burner Development EDS Hybrid Boiler Development Program. Combustion Engineering. Inc. 1984, 1~164
    [63] 张永发.神府煤的结构及其在甲醇碱催化剂(BCII)体系中的解聚反应性:[博士学位论文].山西:太原理工大学.1999
    [64] James G Speight. Chemical and physical studies of petroleum asphaltenes. Asphaltenes and alsphalts, 1. Developments in Petroleum Science, 1995, 40
    [65] Speight, J. G.,Wernick, D. L.,Gouid, K. A.,Overfield, R. E., Rao, B. M. L. and Savage, D. W., Rev. Inst. Fr. Pet.,1983, 40: 51
    [66] Speight, J. G., Moschopedis, S. E. Asphaltene molecular weights by a cryoscopic method. Fuel, 1977, 56: 344
    [67] Baker E. W., in: G. Eglinton M, T, J, Murphy(Editor), Organic Geochemistry. Springer-Verlag. New York, N, Y.: 464. 1969
    [68] 吴瑾光.近代傅立叶变换红外光谱技术及应用.北京:科学技术文献出版社.1994.63~85
    [69] 李润卿等.有机结构波谱分析.天津大学出版社.2002.48~155
    [70] 罗殒飞.煤的大分子结构研究——煤中惰质组结构研究及煤中氧的赋存形态研究:[硕士学位论文].北京:煤炭科学研究总院.2002
    [71] 北京大学化学系仪器分析教学组.仪器分析教程.北京大学出版社.1996
    [72] Roy M. M. Fuel, 1957, 35, 926
    [73] Paul C. Paint et al. Concerning the 1600cm~(-1) region in the i. r. spectrum of coal. Fuel, 1983. 62: 742~744
    [74] 王宗贤,刘雁来,阮竹,秦匡宗.用红外光谱表征干酪根和煤的芳碳量.石油大学学报.1992,16(4):66~71
    [75] J.A.迪安(Jone A.Dean)主编,常文保等译.分析化学手册.第六章:红外光谱法与拉曼光谱法.2003
    [76] [日]柘植新,大谷肇.高分辨裂解色谱原理与高分子裂解谱图集.1992
    [77] Philp R P, Bakel Aet al. A comparison of organosulphur compounds produced by pyrolysis of asphaltene and those present in related crude oils and tar sands. Org. Geochem. 1988, 13: 915~926
    [78] Latter S. R., Douglas A. G.,.Pyrolysis methods in organic geochemistry: an overview. J. Anal. Appl. Pyrol. 1982, 4: 1~19
    [79] del Rio J C, Martin F, Gonzalea-Vila F J et al. Chemcal structure investigation of asphaltens and kerogens by pyrolysis-methylation. Org. Geochem. 1995, 23: 1009~1022
    [80] 秦匡宗,郭绍辉.石油沥青质.北京:石油工业出版社。2002
    [81] Matthew Neurock, Michael T. Klein. 2000. Monte carlo simulation of asphaltene structure, reactivity and reaction pathways. Asphaltenes and asphalts 40B: 59~102.
    [82] 程能林,胡声闻.溶剂手册(上).北京:化学工业出版社.1986
    [83] Retcofsky H L. Fuel, 1968, 47(6): 487
    [84] 徐秀峰 张蓬洲.用~(13)C-NMR及DEPT技术分析气煤加氢产物中沥青烯段分的组成结构.燃料化学学报,1995,23(4)
    [85] 李春年.渣油加工工艺.北京:中国石化出版社.2002
    [86] 韩秀雯.二维核磁共振试验.河南分析测试中心和中科院大连化物所编印,1990。
    [87] Glberte Dosseh at al. ldentification of aromatic molecules in intermediate boiling crude oil fractions by 2D n. m. r, spectroscopy. Fuel, 1991, 70(5): 641-646
    [88] B. T. Doan at al. Analysis of polyaromatics in crude gas oil mixture: a new strategy using ~1H 2D n. m. r. Fuel, 1995, 74(12): 1806-1811
    [89] 林西生,应凤祥,郑乃萱.《X射线衍射分析技术及其地质应用》.北京:石油工业出版社.1990.11第一版
    [90] 郭劫蘅,杨建丽,刘振宇.原位担载型煤直接液化催化剂的表征.催化学报,2000.3,21(2)
    [91] 韩德馨编著.中国煤岩学.中国矿业大学出版社.1996
    [92] 王丽,张蓬洲,煤显微组分结构的X-射线实验研究.分析测试通报:1991,10(3)
    [93] 田承盛,曾凡桂.镜煤与丝炭结构德X射线衍射初步分析.太原理工大学学报:2001,32(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700