EGF与重性抑郁障碍的相关性研究及其作用机制的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重性抑郁障碍(major depressive disorder, MDD)是一种病因尚未阐明的多基因复杂性状疾病,因其具有高患病率(16.2%)和高自杀率(3.4%)的特点,给家庭和社会带来了沉重的负担。
     一直以来,研究者们普遍认为5-羟色胺和多巴胺等单胺类神经递质的异常是导致MDD发生的主要原因,但难以解释通过增加单胺类递质水平发挥抗抑郁效果的一些经典抗抑郁药起效时间延迟,以及部分患者经抗抑郁药治疗后无法获得理想疗效的现象。近年来,大量基础及临床研究发现MDD的发生可能在结构及分子水平上存在神经可塑性的改变,进而提出了MDD的神经营养假说。神经营养因子在海马神经发生和突触可塑性方面具有重要作用。因此,神经营养因子功能障碍可能参与了部分MDD的发生。
     在本课题组的前期工作中,在小样本中系统的筛查了以NMDA受体为基础的LTP通路上相关基因与MDD患者认知功能障碍的关系,发现表皮生长因子(epidermal growth factor, EGF)与MDD患者的认知功能损害相关。
     基于MDD的神经营养假说以及本课题组的前期工作,我们系统研究了EGF与MDD的关系。首先,在463例MDD患者和413例对照中,筛查了EGF基因的功能SNPs,采用病例-对照研究方法分析了EGF基因与MDD的相关性。其次,在120例患者中,进一步验证EGF与MDD患者认知功能障碍的关系。随后,采用ELISA的方法检测了210例患者和223例对照血浆中EGF的含量,并比较了二者的差异。最后,在体外细胞水平研究了功能SNP对EGF表达量的影响。
     最终发现,EGF rs11569017T/T基因型与MDD相关(X2=11.07,p=0.0039,corrected p=0.03),随后我们以rs11569017为条件SNP,分析了该位点与其它SNPs的顺式相互作用,发现rs11569017-rs11569126的相互作用与MDD显著相关(χ2=13.08, p=0.0003, corrected p=0.0027),其中T-A构成的单倍型是MDD的危险因素(χ2=6.17, OR=1.73, p=0.01, corrected p=0.04)。EGF基因多态性位点rs2250724、rs11568943和rs11569126的基因型与WAIS-RC的言语分和操作分强相关,进一步验证了EGF基因与MDD患者的认知功能障碍相关。在蛋白质水平,我们发现MDD患者血浆中EGF含量(66.75±4.86pg/ml)显著低于对照组(114.50±6.28pg/ml,p<0.0001)。并且在患者中rs11569017T/T基因型携带者血浆中EGF含量显著低于A/A和A/T基因型携带者(global p=0.001)。体外细胞学研究发现,EGFrs11569017T突变型质粒转染的HEK293T细胞上清EGF含量显著低于EGFWT质粒转染的细胞(p=0.001)。
     在本工作中,我们从基因、蛋白质和细胞三个层面上系统地研究了EGF与MDD的关系。综合三个层面的研究结果发现,EGF中rs11569017的变异可能通过影响EGF的表达量,从而增加MDD的易感性。并且这种改变可以在患者血浆中反映出来。在未来,血浆中EGF水平可能作为一个生物标志物用于重性精神疾病的辅助诊断。
Major depressive disorder (MDD) is a common psychiatric disease, and its precise mechanism is poorly understood. Epidemiological studies have shown that the lifetime prevalence of the disease is~16.2%and the suicide rate in patients with MDD is~3.4%. Therefore, MDD has contributed to heavy worldwide social burdens.
     It has long been noted that abnormalities of monoamine transmitters, such as serotonin (5-HT) and dopamine (DA), are very likely to be involved in the development of MDD. However, these hypotheses failed to explain why the therapeutic responses to antidepressant drugs delay, even partially to be remitted. In recent years, a number of basic and clinical studies have found that the occurrence of MDD may result from the changes in neuronal plasticity at structural and molecular levels. Based on these findings, the neurotrophin hypothesis of MDD was proposed. Neurotrophic factors play an important role in neurogenesis and neuronal plasticity, suggesting that the aberrant function of neurotrophic factors may involve in the pathophysiology of MDD.
     In a previous study, we took the cognitive function as the endophenotype and carried out the study of the predisposing genes related to the NMDAR-LTP pathway. The results showed that EGF (epidermal growth factor) gene was associated with cognitive impairments in MDD patients.
     In combination of the neurotrophic mechanism of MDD and our preliminary work, we carried out the study on the relationship between EGF and MDD systematically.
     At the beginning, in case-control study, eight single nucleotide polymorphisms (SNPs) in the functional regions of EGF gene were genotyped in463patients with MDD and413control subjects, of which210patients and223controls underwent determination of plasma EGF levels using the enzyme-linked immunosorbent assay (ELISA). Further more, in order to verify the relationship between EGF and cognitive impairments in MDD patients, we used the association study in120MDD patients with fully clinical data. Finally, to test the effects of functional SNPs on EGF expression in vitro, EGF levels in the supernatants of cultured HEK293T cells were measured.
     In case-control study, none of the SNPs in EGF gene showed allelic association with MDD, but the TT genotype of rs11569017showed significant genotypic association with MDD (x2=11.07, p=0.0039, corrected p=0.03). Following this, we found that the cis-phase interaction between rs11569017and rs11569126was strongly associated with the illness (x2=13.08,p=0.0003, corrected p=0.0027), and the T-A haplotype was an risk factor to MDD (x2=6.17, OR=1.73, p=0.01, corrected p=0.04). The genotype of rs2250724, rs11568943and rs11569126were associated with the Verbal Scale Score and Performance Scale Score of WAIS-RC significantly, confirmed the relationship between EGF and cognitive impairments in MDD patients. The EGF levels in plasma were significantly lower in the patients group than the control group (p<0.0001). The EGF levels were also significantly lower in patients with the rs11569017-TT genotype than those with either the AA genotype or the AT genotype (global p=0.001). The rs11569017T allele affected the expression of EGF gene significantly (p=0.0004).
     In our works, we analyzed the relationship between EGF and MDD at genetic, proteinic and cellular levels. In combination of these studies, we found that rs11569017in EGF gene may influence the expression of EGF, then contribute to the etiology of MDD. Besides, the quantity changes could be reflected in the plasma of MDD patients. So the plasma EGF level may be a useful bio-marker for auxiliary diagnosis of major psychiatric disorders in future.
引文
[1]沈渔邨.精神病学(第五版)[M].北京:人民卫生出版社,2009.
    [2]KESSLER R C, BERGLUND P, DEMLER O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R) [J]. Jama,2003,289(23):3095-105.
    [3]BLAIR-WEST G W, CANTOR C H, MELLSOP G W, et al. Lifetime suicide risk in major depression: sex and age determinants [J]. Journal of affective disorders,1999,55(2-3):171-8.
    [4]MUELLER T I, LEON A C, KELLER M B, et al. Recurrence after recovery from major depressive disorder during 15 years of observational follow-up [J]. Am J Psychiatry,1999,156(7):1000-6.
    [5]DISORDER D A B. Depression and bipolar disorder:Stahl's essential psychopharmacology [J]. Cambridge University press,2008.
    [6]KENDLER K S, KARKOWSKI-SHUMAN L. Stressful life events and genetic liability to major depression:genetic control of exposure to the environment? [J]. Psychological medicine,1997,27(3): 539-47.
    [7]SULLIVAN P F, NEALE M C, KENDLER K S. Genetic epidemiology of major depression:review and meta-analysis [J]. The American journal of psychiatry,2000,157(10):1552-62.
    [8]GERSHON E S, HAMOVIT J, GUROFF J J, et al. A family study of schizoaffective, bipolar I, bipolar Ⅱ, unipolar, and normal control probands [J]. Archives of general psychiatry,1982,39(10):1157-67.
    [9]MAIER W, LICHTERMANN D, MINGES J, et al. Continuity and discontinuity of affective disorders and schizophrenia. Results of a controlled family study [J]. Archives of general psychiatry,1993,50(11): 871-83.
    [10]KENDLER K S, GARDNER C O, PRESCOTT C A. Clinical characteristics of major depression that predict risk of depression in relatives [J]. Archives of general psychiatry,1999,56(4):322-7.
    [11]MARAZITA M L, NEISWANGER K, COOPER M, et al. Genetic segregation analysis of early-onset recurrent unipolar depression [J]. American journal of human genetics,1997,61(6):1370-8.
    [12]MCGUFFIN P, KATZ R, WATKINS S, et al. A hospital-based twin register of the heritability of DSM-IV unipolar depression [J]. Archives of general psychiatry,1996,53(2):129-36.
    [13]WENDER P H, KETY S S, ROSENTHAL D, et al. Psychiatric disorders in the biological and adoptive families of adopted individuals with affective disorders [J]. Archives of general psychiatry,1986, 43(10):923-9.
    [14]CADORET R J. Evidence for genetic inheritance of primary affective disorder in adoptees [J]. The American journal of psychiatry,1978,135(4):463-6.
    [15]KENDLER K S, GATZ M, GARDNER C O, et al. A Swedish national twin study of lifetime major depression [J]. The American journal of psychiatry,2006,163(1):109-14.
    [16]MITCHELL S J, RONZIO C R. Violence and Other Stressful Life Events as Triggers of Depression and Anxiety:What Psychosocial Resources Protect African American Mothers? [J]. Matern Child Health J, 2010.
    [17]KENDLER K S, GARDNER C O. Dependent stressful life events and prior depressive episodes in the prediction of major depression:the problem of causal inference in psychiatric epidemiology [J]. Arch Gen Psychiatry,2010,67(11):1120-7.
    [18]RITSHER J E, WARNER V, JOHNSON J G, et al. Inter-generational longitudinal study of social class and depression:a test of social causation and social selection models [J]. Br J Psychiatry,2001,178 (Suppl. 40):s84-s90.
    [19]LEE J. Pathways from Education to Depression [J]. J Cross Cult Gerontol,2011,26:121-35.
    [20]CHANG-QUAN H, ZHENG-RONG W, YONG-HONG L, et al. Education and risk for late life depression:a meta-analysis of published literature [J]. Int J Psychiatry Med,2010,40(1):109-24.
    [21]EVANS D L, STAAB J P, PETITTO J M, et al. Depression in the medical setting:biopsychological interactions and treatment considerations [J]. J Clin Psychiatry,1999,60 Suppl 4(40-55); discussion 6.
    [22]MUSSELMAN D L, EVANS D L, NEMEROFF C B. The relationship of depression to cardiovascular disease:epidemiology, biology, and treatment [J]. Arch Gen Psychiatry,1998,55(7):580-92.
    [23]SOKAL J, MESSIAS E, DICKERSON F B, et al. Comorbidity of medical illnesses among adults with serious mental illness who are receiving community psychiatric services [J]. J Nerv Ment Dis,2004,192(6): 421-7.
    [24]LANOUE M, GRAEBER D, DE HERNANDEZ B U, et al. Direct and Indirect Effects of Childhood Adversity on Adult Depression [J]. Community Ment Health J,2010.
    [25]HAZEL N A, HAMMEN C, BRENNAN P A, et al. Early childhood adversity and adolescent depression:the mediating role of continued stress [J]. Psychol Med,2008,38(4):581-9.
    [26]ROCHA ARAUJO D M, VILARIM M M, NARDI A E. What is the effectiveness of the use of polyunsaturated fatty acid omega-3 in the treatment of depression? [J]. Expert review of neurotherapeutics, 2010,10(7):1117-29.
    [27]MAES M, CHRISTOPHE A, DELANGHE J, et al. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients [J]. Psychiatry research,1999,85(3): 275-91.
    [28]EDWARDS R, PEET M, SHAY J, et al. Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients [J]. Journal of affective disorders,1998,48(2-3):149-55.
    [29]SCHILDKRAUT J J. The catecholamine hypothesis of affective disorders:a review of supporting evidence [J]. The American journal of psychiatry,1965,122(5):509-22.
    [30]BUNNEY W E, JR., DAVIS J M. Norepinephrine in depressive reactions. A review [J]. Archives of general psychiatry,1965,13(6):483-94.
    [31]RUHE H G, MASON N S, SCHENE A H. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans:a meta-analysis of monoamine depletion studies [J]. Molecular psychiatry, 2007,12(4):331-59.
    [32]LOPEZ-FIGUEROA A L, NORTON C S, LOPEZ-FIGUEROA M O, et al. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia [J]. Biological psychiatry,2004,55(3):225-33.
    [33]NISHI K, KANEMARU K, HASEGAWA S, et al. Both acute and chronic buspirone treatments have different effects on regional 5-HT synthesis in Flinders Sensitive Line rats (a rat model of depression) than in control rats [J]. Neurochemistry international,2009,54(3-4):205-14.
    [34]PRANGE A J, JR., WILSON I C, LYNN C W, et al. L-tryptophan in mania. Contribution to a permissive hypothesis of affective disorders [J]. Archives of general psychiatry,1974,30(1):56-62.
    [35]BERMAN R M, NARASIMHAN M, MILLER H L, et al. Transient depressive relapse induced by catecholamine depletion:potential phenotypic vulnerability marker? [J]. Archives of general psychiatry, 1999,56(5):395-403.
    [36]BRUNELLO N, BLIER P, JUDD L L, et al. Noradrenaline in mood and anxiety disorders:basic and clinical studies [J]. International clinical psychopharmacology,2003,18(4):191-202.
    [37]WILLNER P. Dopamine and depression:a review of recent evidence. I. Empirical studies [J]. Brain research,1983,287(3):211-24.
    [38]SALOMON R M, KENNEDY J S, JOHNSON B W, et al. Treatment enhances ultradian rhythms of CSF monoamine metabolites in patients with major depressive episodes [J]. Neuropsychopharmacology, 2005,30(11):2082-91.
    [39]CHOUDARY P V, MOLNAR M, EVANS S J, et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(43):15653-8.
    [40]HASLER G, VAN DER VEEN J W, TUMONIS T, et al. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy [J]. Archives of general psychiatry,2007,64(2):193-200.
    [41]ZARATE C A, JR., SINGH J B, CARLSON P J, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression [J]. Archives of general psychiatry,2006,63(8):856-64.
    [42]FEYISSA A M, WOOLVERTON W L, MIGUEL-HIDALGO J J, et al. Elevated level of metabotropic glutamate receptor 2/3 in the prefrontal cortex in major depression [J]. Progress in neuro-psychopharmacology & biological psychiatry,2010,34(2):279-83.
    [43]YOSHIMIZU T, SHIMAZAKI T,ITO A, et al. An mGluR2/3 antagonist, MGS0039, exerts antidepressant and anxiolytic effects in behavioral models in rats [J]. Psychopharmacology,2006,186(4): 587-93.
    [44]BRAMBILLA P, PEREZ J, BARALE F, et al. GABAergic dysfunction in mood disorders [J]. Molecular psychiatry,2003,8(8):721-37.
    [45]BHAGWAGAR Z, WYLEZINSKA M, JEZZARD P, et al. Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects [J]. Biological psychiatry,2007,61(6):806-12.
    [46]RAJKOWSKA G, O'DWYER G, TELEKI Z, et al. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression [J]. Neuropsychopharmacology, 2007,32(2):471-82.
    [47]BURKE H M, DAVIS M C, OTTE C, et al. Depression and cortisol responses to psychological stress: a meta-analysis [J]. Psychoneuroendocrinology,2005,30(9):846-56.
    [48]MERALI Z, DU L, HRDINA P, et al. Dysregulation in the suicide brain:mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region [J]. J Neurosci,2004,24(6):1478-85.
    [49]BOYLE M P, BREWER J A, FUNATSU M, et al. Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(2):473-8.
    [50]MACQUEEN G M, CAMPBELL S, MCEWEN B S, et al. Course of illness, hippocampal function, and hippocampal volume in major depression [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(3):1387-92.
    [51]RAJKOWSKA G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells [J]. Biological psychiatry,2000,48(8):766-77.
    [52]CHECKLEY S A, WIECK A, MARKS M, et al. Neuroendocrine studies of the aetiology of puerperal psychosis [J]. Clinical neuropharmacology,1992,15 Suppl I Pt A:212A-3A.
    [53]CHECKLEY S. Neuroendocrine mechanisms and the precipitation of depression by life events [J]. The British journal of psychiatry,1992, (15):7-17.
    [54]BROWN E S, VARGHESE F P, MCEWEN B S. Association of depression with medical illness:does cortisol play a role? [J]. Biological psychiatry,2004,55(1):1-9.
    [55]MAES M, VANDOOLAEGHE E, RANJAN R, et al. Increased serum interleukin -1- receptor -antagonist concentrations in major depression [J]. Journal of affective disorders,1995,36(1-2):29-36.
    [56]KIM Y K, NA K S, SHIN K H, et al. Cytokine imbalance in the pathophysiology of major depressive disorder [J]. Progress in neuro-psychopharmacology & biological psychiatry,2007,31(5):1044-53.
    [57]ANISMAN H, MERAL1 Z, HAYLEY S. Neurotransmitter, peptide and cytokine processes in relation to depressive disorder:comorbidity between depression and neurodegenerative disorders [J]. Progress in neurobiology,2008,85(1):1-74.
    [58]LOFTIS J M, HUCKANS M, MORASCO B J. Neuroimmune mechanisms of cytokine-induced depression:current theories and novel treatment strategies [J]. Neurobiology of disease,2010,37(3): 519-33.
    [59]K.AMATA M, HIGUCHI H, YOSHIMOTO M, et al. Effect of single intracerebroventricular injection of alpha-interferon on monoamine concentrations in the rat brain [J]. Eur Neuropsychopharmacol,2000, 10(2):129-32.
    [60]SCHOTANUS K, MELOEN R H, PUIJK W C, et al. Effects of monoclonal antibodies to specific epitopes of rat interleukin-1 beta (IL-1 beta) on IL-1 beta-induced ACTH, corticosterone and IL-6 responses in rats [J]. Journal of neuroendocrinology,1995,7(4):255-62.
    [61]SAPOLSKY R M. The possibility of neurotoxicity in the hippocampus in major depression:a primer on neuron death [J]. Biological psychiatry,2000,48(8):755-65.
    [62]SHEN H Y, CHEN J F. Adenosine A(2A) receptors in psychopharmacology:modulators of behavior, mood and cognition [J]. Current neuropharmacology,2009,7(3):195-206.
    [63]DOWLATSHAHI D, MACQUEEN G M, WANG J F, et al. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression [J]. Lancet,1998,352(9142):1754-5.
    [64]DOWLATSHAHI D, MACQUEEN G M, WANG J F, et al. G Protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders:effects of diagnosis, suicide, and treatment at the time of death [J]. Journal of neurochemistry,1999,73(3):1121-6.
    [65]COWBURN R F, MARCUSSON J O, ERIKSSON A, et al. Adenylyl cyclase activity and G-protein subunit levels in postmortem frontal cortex of suicide victims [J]. Brain research,1994,633(1-2):297-304.
    [66]MIZRAHI C, STOJANOVIC A, URBINA M, et al. Differential cAMP levels and serotonin effects in blood peripheral mononuclear cells and lymphocytes from major depression patients [J]. International immunopharmacology,2004,4(8):1125-33.
    [67]SHELTON R C, MAINER D H, SULSER F. cAMP-dependent protein kinase activity in major depression [J]. The American journal of psychiatry,1996,153(8):1037-42.
    [68]ZHU J, MIX E, WINBLAD B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system [J]. CNS drug reviews,2001,7(4):387-98.
    [69]COUPLAND N J, OGILVIE C J, HEGADOREN K M, et al. Decreased prefrontal Myo-inositol in major depressive disorder [J]. Biological psychiatry,2005,57(12):1526-34.
    [70]BLENDY J A. The role of CREB in depression and antidepressant treatment [J]. Biological psychiatry, 2006,59(12):1144-50.
    [71]RUSH A J, TRIVEDI M H, WISNIEWSKI S R, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps:a STAR*D report [J]. The American journal of psychiatry,2006,163(11):1905-17.
    [72]SCHMIDT H D, DUMAN R S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior [J]. Behavioural pharmacology, 2007,18(5-6):391-18.
    [73]DUMAN R S, MONTEGGIA L M. A neurotrophic model for stress-related mood disorders [J]. Biological psychiatry,2006,59(12):1116-27.
    [74]MONTEGGIA L M, BARROT M, POWELL C M, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(29):10827-32.
    [75]HUANG E J, REICHARDT L F. Neurotrophins:roles in neuronal development and function [J]. Annual review of neuroscience,2001,24:677-36.
    [76]HUNSBERGER J G, NEWTON S S, BENNETT A H, et al. Antidepressant actions of the exercise-regulated gene VGF [J]. Nature medicine,2007,13(12):1476-82.
    [77]NESTLER E J, BARROT M, DILEONE R J, et al. Neurobiology of depression [J]. Neuron,2002, 34(1):13-25.
    [78]DUMAN R S. Pathophysiology of depression:the concept of synaptic plasticity [J]. Eur Psychiatry, 2002,17(Suppl 3):306-10.
    [79]ARANCIBIA S, LECOMTE A, SILHOL M, et al. In vivo brain-derived neurotrophic factor release and tyrosine kinase B receptor expression in the supraoptic nucleus after osmotic stress stimulus in rats [J]. Neuroscience,2007,146(2):864-73.
    [80]PITTENGER C, DUMAN R S. Stress, depression, and neuroplasticity:a convergence of mechanisms [J]. Neuropsychopharmacology,2008,33(1):88-109.
    [81]DUMAN R S, MALBERG J, THOME J. Neural plasticity to stress and antidepressant treatment [J]. Biological psychiatry,1999,46(9):1181-91.
    [82]MANJI H K, QUIROZ J A, SPORN J, et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression [J]. Biological psychiatry,2003, 53(8):707-42.
    [83]FEINGOLD E. Methods for linkage analysis of quantitative trait loci in humans [J]. Theoretical population biology,2001,60(3):167-80.
    [84]BALCIUNIENE J, YUAN Q P, ENGSTROM C, et al. Linkage analysis of candidate loci in families with recurrent major depression [J]. Molecular psychiatry,1998,3(2):162-8.
    [85]ZUBENKO G S, HUGHES H B,3RD, MAHER B S, et al. Genetic linkage of region containing the CREB1 gene to depressive disorders in women from families with recurrent, early-onset, major depression [J]. American journal of medical genetics,2002,114(8):980-7.
    [86]ZUBENKO G S, HUGHES H B,3RD, STIFFLER J S, et al. Sequence variations in CREB1 cosegregate with depressive disorders in women [J]. Molecular psychiatry,2003,8(6):611-8.
    [87]MAHER B S, HUGHES H B,3RD, ZUBENKO W N, et al. Genetic linkage of region containing the CREB1 gene to depressive disorders in families with recurrent, early-onset, major depression:a re-analysis and confirmation of sex-specific effect [J]. Am J Med Genet B Neuropsychiatr Genet,2010,153B(1):10-6.
    [88]ZUBENKO G S, MAHER B, HUGHES H B,3RD, et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression [J]. Am J Med Genet B Neuropsychiatr Genet,2003,123B(1):1-18.
    [89]ABKEVICH V, CAMP N J, HENSEL C H, et al. Predisposition locus for major depression at chromosome 12q22-12q23.2 [J]. American journal of human genetics,2003,73(6):1271-81.
    [90]CAMP N J, LOWRY M R, RICHARDS R L, et al. Genome-wide linkage analyses of extended Utah pedigrees identifies loci that influence recurrent, early-onset major depression and anxiety disorders [J]. Am J Med Genet B Neuropsychiatr Genet,2005,135B(1):85-93.
    [91]HOLMANS P, ZUBENKO G S, CROWE R R, et al. Genomewide significant linkage to recurrent, early-onset major depressive disorder on chromosome 15q [J]. American journal of human genetics,2004, 74(6):1154-67.
    [92]HOLMANS P, WEISSMAN M M, ZUBENKO G S, et al. Genetics of recurrent early-onset major depression (GenRED):final genome scan report [J]. The American journal of psychiatry,2007,164(2): 248-58.
    [93]WIGG K, FENG Y, GOMEZ L, et al. Genome scan in sibling pairs with juvenile-onset mood disorders:Evidence for linkage to 13q and Xq [J]. Am J Med Genet B Neuropsychiatr Genet,2009, 150B(5):638-46.
    [94]BOOMSMA D I, WILLEMSEN G, SULLIVAN P F, et al. Genome-wide association of major depression:description of samples for the GAIN Major Depressive Disorder Study:NTR and NESDA biobank projects [J]. Eur J Hum Genet,2008,16(3):335-42.
    [95]ALTMULLER J, PALMER L J, FISCHER G, et al. Genomewide scans of complex human diseases: true linkage is hard to find [J]. American journal of human genetics,2001,69(5):936-50.
    [96]BECKMAN G, BECKMAN L, CEDERGREN B, et al. Serum protein and red cell enzyme polymorphisms in affective disorders [J]. Human heredity,1978,28(1):41-7.
    [97]LEVINSON D F. The genetics of depression:a review [J]. Biological psychiatry,2006,60(2):84-92.
    [98]FLINT J, SHIFMAN S, MUNAFO M, et al. Genetic variants in major depression [J]. Novartis Foundation symposium,2008,289:23-32; discussion 33-42,87-93.
    [99]LOPEZ-LEON S, JANSSENS A C, GONZALEZ-ZULOETA LADD A M, et al. Meta-analyses of genetic studies on major depressive disorder [J]. Molecular psychiatry,2008,13(8):772-85.
    [100]COUZIN J, KAISER J. Genome-wide association. Closing the net on common disease genes [J]. Science,2007,316(5826):820-2.
    [101]KLEIN R J, ZEISS C, CHEW E Y, et al. Complement factor H polymorphism in age-related macular degeneration [J]. Science,2005,308(5720):385-9.
    [102]HERBERT A, GERRY N P, MCQUEEN M B, et al. A common genetic variant is associated with adult and childhood obesity [J]. Science,2006,312(5771):279-83.
    [103]SAXENA R, VOIGHT B F, LYSSENKO V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels [J]. Science,2007,316(5829):1331-6.
    [104]SAMANI N J, ERDMANN J, HALL A S, et al. Genomewide association analysis of coronary artery disease [J]. The New England journal of medicine,2007,357(5):443-53.
    [105]MUGLIA P, TOZZI F, GALWEY N W, et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts [J]. Molecular psychiatry,2010,15(6):589-601.
    [106]SULLIVAN P F, DE GEUS E J, WILLEMSEN G, et al. Genome-wide association for major depressive disorder:a possible role for the presynaptic protein piccolo [J]. Molecular psychiatry,2009, 14(4):359-75.
    [107]SHYN S I, SHI J, KRAFT J B, et al. Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies [J]. Molecular psychiatry,2011,16(2):202-15.
    [108]SHI J, POTASH J B, KNOWLES J A, et al. Genome-wide association study of recurrent early-onset major depressive disorder [J]. Molecular psychiatry,2011,16(2):193-201.
    [109]SHRINER D, VAUGHAN L K, PADILLA M A, et al. Problems with genome-wide association studies [J]. Science,2007,316(5833):1840-2.
    [110]MCPHERSON R, PERTSEMLIDIS A, KAVASLAR N, et al. A common allele on chromosome 9 associated with coronary heart disease [J]. Science,2007,316(5830):1488-91.
    [111]SCHUSTER S C. Next-generation sequencing transforms today's biology [J]. Nature methods,2008, 5(1):16-8.
    [112]DONG C, WONG M L, LICINIO J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2:association with major depression and antidepressant response in Mexican-Americans [J]. Molecular psychiatry,2009,14(12):1105-18.
    [113]SOBREIRA N L, CIRULLI E T, AVRAMOPOULOS D, et al. Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene [J]. PLoS genetics,2010,6(6): e1000991.
    [114]CHANOCK S J, MANOLIO T, BOEHNKE M, et al. Replicating genotype-phenotype associations [J]. Nature,2007,447(7145):655-60.
    [115]TERWILLIGER J D, WEISS K M. Linkage disequilibrium mapping of complex disease:fantasy or reality? [J]. Current opinion in biotechnology,1998,9(6):578-94.
    [116]THORNTON-WELLS T A, MOORE J H, HAINES J L. Genetics, statistics and human disease: analytical retooling for complexity [J]. Trends Genet,2004,20(12):640-7.
    [117]MANOLIO T A, COLLINS F S, COX N J, et al. Finding the missing heritability of complex diseases [J]. Nature,2009,461(7265):747-53.
    [118]COLLINS F S, GUYER M S, CHARKRAVARTI A. Variations on a theme:cataloging human DNA sequence variation [J]. Science,1997,278(5343):1580-1.
    [119]LANDER E S. The new genomics:global views of biology [J]. Science,1996,274(5287):536-9.
    [120]FRAZER K A, MURRAY S S, SCHORK N J, et al. Human genetic variation and its contribution to complex traits [J]. Nature reviews,2009,10(4):241-51.
    [121]BECKER K. G. The common variants/multiple disease hypothesis of common complex genetic disorders [J]. Medical hypotheses,2004,62(2):309-17.
    [122]BEARDEN C E, REUS V I, FREIMER N B. Why genetic investigation of psychiatric disorders is so difficult [J]. Current opinion in genetics & development,2004,14(3):280-6.
    [123]LI Y, VINCKENBOSCH N, TIAN G, et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants [J]. Nature genetics,2010,42(11):969-72.
    [124]MCCLELLAN J, KING M C. Genetic heterogeneity in human disease [J]. Cell,2010,141(2):210-7.
    [125]CARLBORG O, HALEY C S. Epistasis:too often neglected in complex trait studies? [J]. Nature reviews,2004,5(8):618-25.
    [126]MOORE J H. A global view of epistasis [J]. Nature genetics,2005,37(1):13-4.
    [127]HEDRICK P W. Coat variants in cats. Gametic disequilibrium between unlinked loci [J]. The Journal of heredity,1985,76(2):127-31.
    [128]LE ROUZIC A, ALVAREZ-CASTRO J M, CARLBORG O. Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits [J]. Genetics,2008,179(3): 1591-9.
    [129]ORIOL R. Genetic control of the fucosylation of ABH precursor chains. Evidence for new epistatic interactions in different cells and tissues [J]. Journal of immunogenetics,1990,17(4-5):235-45.
    [130]CHARRON S, DUONG C, MENARD A, et al. Epistasis, not numbers, regulates functions of clustered Dahl rat quantitative trait loci applicable to human hypertension [J]. Hypertension,2005,46(6): 1300-8.
    [131]BUGAWAN T L, MIREL D B, VALDES A M, et al. Association and interaction of the IL4R, IL4, and IL13 loci with type 1 diabetes among Filipinos [J]. American journal of human genetics,2003,72(6): 1505-14.
    [132]NEWMAN W G, ZHANG Q, LIU X, et al. Rheumatoid arthritis association with the FCRL3-169C polymorphism is restricted to PTPN22 1858T-homozygous individuals in a Canadian population [J]. Arthritis and rheumatism,2006,54(12):3820-7.
    [133]PEZAWAS L, MEYER-LINDENBERG A, GOLDMAN A L, et al. Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression [J]. Molecular psychiatry,2008,13(7): 709-16.
    [134]WANG Y, HU Y, FANG Y, et al. Evidence of epistasis between the catechol-O-methyltransferase and aldehyde dehydrogenase 3B1 genes in paranoid schizophrenia [J]. Biological psychiatry,2009,65(12): 1048-54.
    [135]KNIGHT J C. Regulatory polymorphisms underlying complex disease traits [J]. Journal of molecular medicine,2005,83(2):97-109.
    [136]WRAY G A. The evolutionary significance of cis-regulatory mutations [J]. Nature reviews,2007, 8(3):206-16.
    [137]WITTKOPP P J, VACCARO K, CARROLL S B. Evolution of yellow gene regulation and pigmentation in Drosophila [J]. Curr Biol,2002,12(18):1547-56.
    [138]SHAPIRO M D, MARKS M E, PEICHEL C L, et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks [J]. Nature,2004,428(6984):717-23.
    [139]ROCKMAN M V, HAHN M W, SORANZO N, et al. Ancient and recent positive selection transformed opioid cis-regulation in humans [J]. PLoS biology,2005,3(12):e387.
    [140]HAMBLIN M T, DI RIENZO A. Detection of the signature of natural selection in humans:evidence from the Duffy blood group locus [J]. American journal of human genetics,2000,66(5):1669-79.
    [141]OLDS L C, SIBLEY E. Lactase persistence DNA variant enhances lactase promoter activity in vitro: functional role as a cis regulatory element [J]. Human molecular genetics,2003,12(18):2333-40.
    [142]MOFFATT M F, KABESCH M, LIANG L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma [J]. Nature,2007,448(7152):470-3.
    [143]MEYER K B, MAI A A T, O'REILLY M, et al. Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer [J]. PLoS biology,2008,6(5):e108.
    [144]MAHR S, BURMESTER G R, HILKE D, et al. Cis-and trans-acting gene regulation is associated with osteoarthritis [J]. American journal of human genetics,2006,78(5):793-803.
    [145]ZHANG J, CHEN Y, ZHANG K, et al. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder [J]. Biological psychiatry,2010,68(9):795-800.
    [146]KENNEDY G C, GERMAN M S, RUTTER W J. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription [J]. Nature genetics,1995,9(3):293-8.
    [147]ROCKMAN M V, WRAY G A. Abundant raw material for cis-regulatory evolution in humans [J]. Molecular biology and evolution,2002,19(11):1991-2004.
    [148]WITTKOPP P J. Genomic sources of regulatory variation in cis and in trans [J]. Cell Mol Life Sci, 2005,62(16):1779-83.
    [149]ROESKE D, LUDWIG K U, NEUHOFF N, et al. First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children [J]. Molecular psychiatry,2011,16(1):97-107.
    [150]ROBBINS T W. Cognition:the ultimate brain function [J]. Neuropsychopharmacology,2011,36(1): 1-2.
    [151]姜乾金.医学心理学[M].人民卫生出版社,2001.
    [152]FUNAHASHI S. Neuronal mechanisms of executive control by the prefrontal cortex [J]. Neuroscience research,2001,39(2):147-65.
    [153]CARTER C S, MACDONALD A M, BOTVINICK M, et al. Parsing executive processes:strategic vs. evaluative functions of the anterior cingulate cortex [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(4):1944-8.
    [154]ELLIOTT R. Executive functions and their disorders [J]. British medical bulletin,2003,65:49-59.
    [155]CUTSURIDIS V, WENNEKERS T. Hippocampus, microcircuits and associative memory [J]. Neural Netw,2009,22(8):1120-8.
    [156]NORMAN K A. How hippocampus and cortex contribute to recognition memory:revisiting the complementary learning systems model [J]. Hippocampus,2010,20(11):1217-27.
    [157]NADEL L, HARDT O.Update on memory systems and processes [J]. Neuropsychopharmacology, 2010,36(1):251-73.
    [158]POSNER M I, PETERSEN S E. The attention system of the human brain [J]. Annual review of neuroscience,1990,13:25-42.
    [159]KANAI R, REES G. The structural basis of inter-individual differences in human behaviour and cognition [J]. Nature reviews,2011,12(4):231-42.
    [160]SARTER M, GIVENS B, BRUNO J P. The cognitive neuroscience of sustained attention:where top-down meets bottom-up [J]. Brain research,2001,35(2):146-60.
    [161]CICCONETTI P, RIOLO N, PRIAMI C, et al. Risk factors for cognitive impairment [J]. Recenti progressi in medicina,2004,95(11):535-45.
    [162]TERVO S, KIVIPELTO M, HANNINEN T, et al. Incidence and risk factors for mild cognitive impairment:a population-based three-year follow-up study of cognitively healthy elderly subjects [J]. Dementia and geriatric cognitive disorders,2004,17(3):196-203.
    [163]PETERSEN R C, SMITH G E, WARING S C, et al. Mild cognitive impairment:clinical characterization and outcome [J]. Archives of neurology,1999,56(3):303-8.
    [164]ARTERO S, ANCELIN M L, PORTET F, et al. Risk profiles for mild cognitive impairment and progression to dementia are gender specific [J]. Journal of neurology, neurosurgery, and psychiatry,2008, 79(9):979-84.
    [165]BEINHOFF U, TUMANI H, BRETTSCHNEIDER J, et al. Gender-specificities in Alzheimer's disease and mild cognitive impairment [J]. Journal of neurology,2008,255(1):117-22.
    [166]ANSTEY K J, VON SANDEN C, SALIM A, et al. Smoking as a risk factor for dementia and cognitive decline:a meta-analysis of prospective studies [J]. American journal of epidemiology,2007, 166(4):367-78.
    [167]ANSTEY K J, MACK H A, CHERBUIN N. Alcohol consumption as a risk factor for dementia and cognitive decline:meta-analysis of prospective studies [J]. Am J Geriatr Psychiatry,2009,17(7):542-55.
    [168]MEJIA S, GUTIERREZ L M, VILLA A R, et al. Cognition, functional status, education, and the diagnosis of dementia and mild cognitive impairment in Spanish-speaking elderly [J]. Applied neuropsychology,2004,11(4):196-203.
    [169]ROBERTS R O, KNOPMAN D S, GEDA Y E, et al. Coronary heart disease is associated with non-amnestic mild cognitive impairment [J]. Neurobiology of aging,2010,31(11):1894-902.
    [170]EGAN M F, GOLDBERG T E, KOLACHANA B S, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(12):6917-22.
    [171]MARTINEZ M F, MARTIN X E, ALCELAY L G, et al. The COMT Val158 Met polymorphism as an associated risk factor for Alzheimer disease and mild cognitive impairment in APOE 4 carriers [J]. BMC neuroscience,2009,10:125.
    [172]RIEPE M W, KARL J, TUMANI H, et al. Tau-proteins as gender-specific state markers in amnestic mild cognitive impairment [J]. Dementia and geriatric cognitive disorders,2010,30(2):93-100.
    [173]YAGI S, AKAIKE M, AIHARA K, et al. High plasma aldosterone concentration is a novel risk factor of cognitive impairment in patients with hypertension [J]. Hypertens Res,2011,34(1):74-8.
    [174]TAKECHI H. [Hypertension as a risk factor of dementia and cognitive decline in the elderly] [J]. Nippon Ronen Igakkai zasshi,2007,44(4):433-6.
    [175]ANSTEY K J, LIPNICKI D M, LOW L F. Cholesterol as a risk factor for dementia and cognitive decline:a systematic review of prospective studies with meta-analysis [J]. Am J Geriatr Psychiatry,2008, 16(5):343-54.
    [176]MAGGI S, LIMONGI F, NOALE M, et al. Diabetes as a risk factor for cognitive decline in older patients [J]. Dementia and geriatric cognitive disorders,2009,27(1):24-33.
    [177]ROSLER F, SUTTON S, JOHNSON R, JR., et al. Endogenous ERP components and cognitive constructs. A review [J]. Electroencephalography and clinical neurophysiology,1986,38:51-92.
    [178]POLDRACK R A, GABRIELI J D. Memory and the brain:what's right and what's left? [J]. Cell, 1998,93(7):1091-3.
    [179]HEINRICHS R W, ZAKZANIS K K. Neurocognitive deficit in schizophrenia:a quantitative review of the evidence [J]. Neuropsychology,1998,12(3):426-45.
    [180]CIRILLO M A, SEIDMAN L J. Verbal declarative memory dysfunction in schizophrenia:from clinical assessment to genetics and brain mechanisms [J]. Neuropsychology review,2003,13(2):43-77.
    [181]ANDREWS J, WANG L, CSERNANSKY J G, et al. Abnormalities of thalamic activation and cognition in schizophrenia [J]. The American journal of psychiatry,2006,163(3):463-9.
    [182]CONKLIN H M, CURTIS C E, KATSANIS J, et al. Verbal working memory impairment in schizophrenia patients and their first-degree relatives:evidence from the digit span task [J]. The American journal of psychiatry,2000,157(2):275-7.
    [183]BORA E, YUCEL M, PANTELIS C. Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses:meta-analytic study [J]. Br J Psychiatry,2009,195(6):475-82.
    [184]FUCETOLA R, SEIDMAN L J, K.REMEN W S, et al. Age and neuropsychologic function in schizophrenia:a decline in executive abilities beyond that observed in healthy volunteers [J]. Biological psychiatry,2000,48(2):137-46.
    [185]GOODING D C, MATTS C W, ROLLMANN E A. Sustained attention deficits in relation to psychometrically identified schizotypy:evaluating a potential endophenotypic marker [J]. Schizophrenia research,2006,82(1):27-37.
    [186]LAURENT A, BILOA-TANG M, BOUGEROL T, et al. Executive/attentional performance and measures of schizotypy in patients with schizophrenia and in their nonpsychotic first-degree relatives [J]. Schizophrenia research,2000,46(2-3):269-83.
    [187]HAMMAR A, ARDAL G. Cognitive functioning in major depression--a summary [J]. Frontiers in human neuroscience,2009,3.
    [188]ROGERS M A, KASAI K, KOJI M, et al. Executive and prefrontal dysfunction in unipolar depression:a review of neuropsychological and imaging evidence [J]. Neuroscience research,2004,50(1): 1-11.
    [189]HARVEY P O, LE BASTARD G, POCHON J B, et al. Executive functions and updating of the contents of working memory in unipolar depression [J]. Journal of psychiatric research,2004,38(6): 567-76.
    [190]PAPAKOSTAS G I, PETERSEN T, MAHAL Y, et al. Quality of life assessments in major depressive disorder:a review of the literature [J]. Gen Hosp Psychiatry,2004,26(1):13-7.
    [191]FOSSAT1 P, ERGIS A M, ALLILAIRE J F. Problem-solving abilities in unipolar depressed patients: comparison of performance on the modified version of the Wisconsin and the California sorting tests [J]. Psychiatry research,2001,104(2):145-56.
    [192]FRODL T, SCHAUB A, BANAC S, et al. Reduced hippocampal volume correlates with executive dysfunctioning in major depression [J]. J Psychiatry Neurosci,2006,31(5):316-23.
    [193]O'BRIEN J T, LLOYD A, MCKEITH 1, et al. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects [J]. The American journal of psychiatry,2004,161(11): 2081-90.
    [194]SIEGLE G J, THOMPSON W, CARTER C S, et al. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression:related and independent features [J]. Biological psychiatry,2007,61(2):198-209.
    [195]FOSSATI P, ERGIS A M, ALLILAIRE J F. Executive functioning in unipolar depression:a review [J]. L'Encephale,2002,28(2):97-107.
    [196]REISCHIES F M, NEU P. Comorbidity of mild cognitive disorder and depression--a neuropsychological analysis [J]. European archives of psychiatry and clinical neuroscience,2000,250(4): 186-93.
    [197]FOSSATI P, COYETTE F, ERGIS A M, et al. Influence of age and executive functioning on verbal memory of inpatients with depression [J]. Journal of affective disorders,2002,68(2-3):261-71.
    [198]KOETSIER G C, VOLKERS A C, TULEN J H, et al. CPT performance in major depressive disorder before and after treatment with imipramine or fluvoxamine [J]. Journal of psychiatric research,2002,36(6):
    [199]ROBINSON L J, THOMPSON J M, GALLAGHER P, et al. A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder [J]. Journal of affective disorders,2006,93(1-3):105-15.
    [200]TORRES I J, BOUDREAU V G, YATHAM L N. Neuropsychological functioning in euthymic bipolar disorder:a meta-analysis [J]. Acta psychiatrica Scandinavica,2007,116(Suppl 434):17-26.
    [201]ANTILA M, PARTONEN T, KIESEPPA T, et al. Cognitive functioning of bipolar I patients and relatives from families with or without schizophrenia or schizoaffective disorder [J]. Journal of affective disorders,2009,116(1-2):70-9.
    [202]VERTE S, GEURTS H M, ROEYERS H, et al. Executive functioning in children with an Autism Spectrum Disorder:can we differentiate within the spectrum? [J]. Journal of autism and developmental disorders,2006,36(3):351-72.
    [203]HILL E L. Executive dysfunction in autism [J]. Trends in cognitive sciences,2004,8(1):26-32.
    [204]PELLICANO E. Links between theory of mind and executive function in young children with autism: clues to developmental primacy [J]. Developmental psychology,2007,43(4):974-90.
    [205]ALMASY L, BLANGERO J. Endophenotypes as quantitative risk factors for psychiatric disease: rationale and study design [J]. American journal of medical genetics,2001,105(1):42-4.
    [206]GOTTESMAN, Ⅱ, GOULD T D. The endophenotype concept in psychiatry:etymology and strategic intentions [J]. The American journal of psychiatry,2003,160(4):636-45.
    [207]GOULD T D, GOTTESMAN, Ⅱ. Psychiatric endophenotypes and the development of valid animal models [J]. Genes, brain, and behavior,2006,5(2):113-9.
    [208]HASLER G, DREVETS W C, MANJI H K, et al. Discovering endophenotypes for major depression [J]. Neuropsychopharmacology,2004,29(10):1765-81.
    [209]RIETSCHEL M, MATTHEISEN M, FRANK J, et al. Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression [J]. Biological psychiatry, 2010,68(6):578-85.
    [210]MURER M G, YAN Q, RAISMAN-VOZARI R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease [J]. Progress in neurobiology,2001,63(1):
    [211]LAUTERBORN J C,ISACKSON P J, GALL C M. Cellular localization of NGF and NT-3 mRNAs in postnatal rat forebrain [J]. Molecular and cellular neurosciences,1994,5(1):46-62.
    [212]KAR S, CHABOT J G, QUIRION R. Quantitative autoradiographic localization of [1251] insulin-like growth factor Ⅰ, [1251] insulin-like growth factor Ⅱ, and [1251] insulin receptor binding sites in developing and adult rat brain [J]. The Journal of comparative neurology,1993,333(3):375-97.
    [213]YANG S Z, ZHANG L M, HUANG Y L, et al. Distribution of Flk-1 and Flt-1 receptors in neonatal and adult rat brains [J]. The anatomical record,2003,274(1):851-6.
    [214]CHADASHVILI T, PETERSON D A. Cytoarchitecture of fibroblast growth factor receptor 2 (FGFR-2) immunoreactivity in astrocytes of neurogenic and non-neurogenic regions of the young adult and aged rat brain [J]. The Journal of comparative neurology,2006,498(1):1-15.
    [215]STOCKMEIER C A, MAHAJAN G J, KONiCK L C, et al. Cellular changes in the postmortem hippocampus in major depression [J]. Biological psychiatry,2004,56(9):640-50.
    [216]BEYER J L, KRISHNAN K R. Volumetric brain imaging findings in mood disorders [J]. Bipolar disorders,2002,4(2):89-104.
    [217]SHELINE Y I, GADO M H, KRAEMER H C. Untreated depression and hippocampal volume loss [J]. The American journal of psychiatry,2003,160(8):1516-8.
    [218]SAPOLSKY R M. Depression, antidepressants, and the shrinking hippocampus [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(22):12320-2.
    [219]SAIRANEN M, LUCAS G, ERNFORS P, et al. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus [J]. J Neurosci,2005,25(5):1089-94.
    [220]EGAN M F, KOJIMA M, CALLICOTT J H, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function [J]. Cell,2003, 112(2):257-69.
    [221]SCHULE C, ZILL P, BAGHAI T C, et al. Brain-derived neurotrophic factor Val 66 Met polymorphism and dexamethasone/CRH test results in depressed patients [J]. Psychoneuroendocrinology, 2006,31(8):1019-25.
    [222]FRODL T, SCHULE C, SCHMITT G, et al. Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression [J]. Archives of general psychiatry,2007,64(4):410-6.
    [223]SCHUMACHER J, JAMRA R A, BECKER T, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression [J]. Biological psychiatry,2005,58(4):307-14.
    [224]COHEN S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal [J]. The Journal of biological chemistry,1962,237:1555-62.
    [225]YAMADA M,IKEUCHI T, HATANAKA H. The neurotrophic action and signalling of epidermal growth factor [J]. Progress in neurobiology,1997,51(1):19-37.
    [226]TONG A H, LESAGE G, BADER G D, et al. Global mapping of the yeast genetic interaction network [J]. Science (New York, NY,2004,303(5659):808-13.
    [227]SCHAUDIES R P, CHRISTIAN E L, SAVAGE C R, JR. Epidermal growth factor immunoreactive material in the rat brain. Localization and identification of multiple species [J]. The Journal of biological chemistry,1989,264(18):10447-50.
    [228]LAZAR L M, BLUM M. Regional distribution and developmental expression of epidermal growth factor and transforming growth factor-alpha mRNA in mouse brain by a quantitative nuclease protection assay [J]. J Neurosci,1992,12(5):1688-97.
    [229]GROENESTEGE W M, THEBAULT S, VAN DER WIJST J, et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia [J]. The Journal of clinical investigation,2007, 117(8):2260-7.
    [230]MAHANTHAPPA N K, SCHWARTING G A. Peptide growth factor control of olfactory neurogenesis and neuron survival in vitro:roles of EGF and TGF-beta s [J]. Neuron,1993,10(2):293-305.
    [231]CASPER D, MYTILINEOU C, BLUM M. EGF enhances the survival of dopamine neurons in rat embryonic mesencephalon primary cell culture [J]. Journal of neuroscience research,1991,30(2):372-81.
    [232]FERRARI G, TOFFANO G, SKAPER S D. Epidermal growth factor exerts neuronotrophic effects on dopaminergic and GABAergic CNS neurons:comparison with basic fibroblast growth factor [J]. Journal of neuroscience research,1991,30(3):493-7.
    [233]REYNOLDS B A, TETZLAFF W, WEISS S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes [J]. J Neurosci,1992,12(11):4565-74.
    [234]GONZALEZ-PEREZ O, ALVAREZ-BUYLLA A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor [J]. Brain research reviews,2011,
    [235]SUNG J Y, LEE S Y, MIN D S, et al. Differential activation of phospholipases by mitogenic EGF and neurogenic PDGF in immortalized hippocampal stem cell lines [J]. Journal of neurochemistry,2001,78(5): 1044-53.
    [236]REPRESA A, SHIMAZAKI T, SIMMONDS M, et al. EGF-responsive neural stem cells are a transient population in the developing mouse spinal cord [J]. The European journal of neuroscience,2001, 14(3):452-62.
    [237]CAMERON H A, HAZEL T G, MCKAY R D. Regulation of neurogenesis by growth factors and neurotransmitters [J]. Journal of neurobiology,1998,36(2):287-306.
    [238]O'KEEFFE G C, TYERS P, AARSLAND D, et al. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF [J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(21):8754-9.
    [239]WONG R W, GUILLAUD L. The role of epidermal growth factor and its receptors in mammalian CNS [J]. Cytokine & growth factor reviews,2004,15(2-3):147-56.
    [240]MOGI M, HARADA M, KONDO T, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients [J]. Neuroscience letters,1994,180(2):147-50.
    [241]JANKOWSKY J L, PATTERSON P H. Cytokine and growth factor involvement in long-term potentiation [J]. Molecular and cellular neurosciences,1999,14(4-5):273-86.
    [242]NAWA H, TAKAHASHI M, PATTERSON P H. Cytokine and growth factor involvement in schizophrenia--support for the developmental model [J]. Molecular psychiatry,2000,5(6):594-603.
    [243]XIAN C J, ZHOU X F. Roles of transforming growth factor-alpha and related molecules in the nervous system [J]. Molecular neurobiology,1999,20(2-3):157-83.
    [244]TERLAU H, SEIFERT W. Influence of epidermal growth factor on long-term potentiation in the hippocampal slice [J]. Brain research,1989,484(1-2):352-6.
    [245]ISHIYAMA J, SAITO H, ABE K. Epidermal growth factor and basic fibroblast growth factor promote the generation of long-term potentiation in the dentate gyrus of anaesthetized rats [J]. Neuroscience research,1991,12(3):403-11.
    [246]ABE K, ISHIYAMA J, SAITO H. Effects of epidermal growth factor and basic fibroblast growth factor on generation of long-term potentiation in the dentate gyrus of fimbria-fornix-lesioned rats [J]. Brain research,1992,593(2):335-8.
    [247]ZADRAN S, JOURDI H, ROSTAMIANI K, et al. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation [J]. J Neurosci,2010,30(3):1089-95.
    [248]SHAHBAZI M, PRAVICA V, NASREEN N, et al. Association between functional polymorphism in EGF gene and malignant melanoma [J]. Lancet,2002,359(9304):397-401.
    [249]BAO G, WANG M, GUO S, et al. Association between epidermal growth factor +61 G/A polymorphism and glioma risk in a Chinese Han population [J]. The Journal of international medical research,2010,38(5):1645-52.
    [250]COSTA B M, FERREIRA P, COSTA S, et al. Association between functional EGF+61 polymorphism and glioma risk [J]. Clin Cancer Res,2007,13(9):2621-6.
    [251]CHEN K, WEI Y, YANG H, et al. Epidermal Growth Factor +61 G/A Polymorphism and the Risk of Hepatocellular Carcinoma in a Chinese Population [J]. Genetic testing and molecular biomarkers,2010.
    [252]ARAUJO A P, COSTA B M, PINTO-CORREIA A L, et al. Association between EGF +61A/G polymorphism and gastric cancer in Caucasians [J]. World J Gastroenterol,2010,17(4):488-92.
    [253]PUTTONEN S, KELTIKANGAS-JARVINEN L, ELOVAINIO M, et al. Temperamental activity and epidermal growth factor A61G polymorphism in Finnish adults [J]. Neuropsychobiology,2007,56(4): 208-12.
    [254]ANTTILA S, ILLI A, KAMPMAN O, et al. Association of EGF polymorphism with schizophrenia in Finnish men [J]. Neuroreport,2004,15(7):1215-8.
    [255]LEE K Y, AHN Y M, JOO E J, et al. Partial evidence of an association between epidermal growth factor A61G polymorphism and age at onset in male schizophrenia [J]. Neuroscience research,2006,56(4): 356-62.
    [256]HANNINEN K, KATILA H, ANTTILA S, et al. Epidermal growth factor a61g polymorphism is associated with the age of onset of schizophrenia in male patients [J]. Journal of psychiatric research,2007, 41(1-2):8-14.
    [257]WATANABE Y, FUKUI N, MURATAKE T, et al. No association of EGF polymorphism with schizophrenia in a Japanese population [J]. Neuroreport,2005,16(4):403-5.
    [258]龚耀先.修订韦氏成人智力量表手册[M].长沙:湖南医科大学出版社,1981.
    [259]龚耀先,江达威,邓君林.修订韦氏记忆量表于册[M].长沙:湖南医科大学出版社,1981.
    [260]ADAMSON E D, MEEK J. The ontogeny of epidermal growth factor receptors during mouse development [J]. Developmental biology,1984,103(1):62-70.
    [261]GOMEZ-PINILLA F, KNAUER D J, NIETO-SAMPEDRO M. Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization [J]. Brain research,1988,438(1-2):
    [262]WERNER M H, NANNEY L B, STOSCHECK C M, et al. Localization of immunoreactive epidermal growth factor receptors in human nervous system [J]. J Histochem Cytochem,1988,36(1):81-6.
    [263]BENOIT B O, SAVARESE T, JOLY M, et al. Neurotrophin channeling of neural progenitor cell differentiation [J]. Journal of neurobiology,2001,46(4):265-80.
    [264]FRICKER-GATES R A, WINKLER C, K.IRIK D, et al. EGF infusion stimulates the proliferation and migration of embryonic progenitor cells transplanted in the adult rat striatum [J]. Experimental neurology, 2000,165(2):237-47.
    [265]WINNER B, COUILLARD-DESPRES S, GEYER M, et al. Dopaminergic lesion enhances growth factor-induced striatal neuroblast migration [J]. Journal of neuropathology and experimental neurology, 2008,67(2):105-16.
    [266]YU Z Q, ZHA J H, LIU H M, et al. Effect of intranigral injection of GDNF and EGF on the survival and possible differentiation fate of progenitors and immature neurons in 6-OHDA-lesioned rats [J]. Neurochem Res,2009,34(12):2089-101.
    [267]VENTRELLA L L. Effect of intracerebroventricular infusion of epidermal growth factor in rats hemitransected in the nigro-striatal pathway [J]. Journal of neurosurgical sciences,1993,37(1):1-8.
    [268]VON BOHLEN UND HALBACH O, UNSICKER K. Neurotrophic support of midbrain dopaminergic neurons [J]. Advances in experimental medicine and biology,2009,651:73-80.
    [269]PARK S K, NGUYEN M D, FISCHER A, et al. Par-4 links dopamine signaling and depression [J]. Cell,2005,122(2):275-87.
    [270]FUTAMURA T, KAKITA A, TOHMI M, et al. Neonatal perturbation of neurotrophic signaling results in abnormal sensorimotor gating and social interaction in adults:implication for epidermal growth factor in cognitive development [J]. Molecular psychiatry,2003,8(1):19-29.
    [271]MARIC D, MARIC I, CHANG Y H, et al. Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation [J]. J Neurosci,2003,23(1):240-51.
    [272]SANALKUMAR R, VIDYANAND S, LALITHA INDULEKHA C, et al. Neuronal vs. glial fate of embryonic stem cell-derived neural progenitors (ES-NPs) is determined by FGF2/EGF during proliferation [J]. J Mol Neurosci,2010,42(1):17-27.
    [273]FIORE M, TRIACA V, AMENDOLA T, et al. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice [J]. Physiology& behavior, 2002,77(2-3):437-43.
    [274]GOULD E, TANAPAT P. Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat [J]. Neuroscience,1997,80(2):427-36.
    [275]NAWA H, FUTAMURA T, MIZUNO M, et al. Contribution of neurotrophic factors and cytokines to schizophrenia [J]. Nippon rinsho,2003,61(3):521-8.
    [276]MAGARINOS A M, LI C J, TOTH J G, et al. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons [J]. Hippocampus,2011,21(3), 253-264.
    [277]NAMBA H, ZHENG Y, ABE Y, et al. Epidermal growth factor administered in the periphery influences excitatory synaptic inputs onto midbrain dopaminergic neurons in postnatal mice [J]. Neuroscience,2009,158(4):1731-41.
    [278]ZADRAN S, JOURDI H, ROSTAMIANI K, et al. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation [J]. J Neurosci,2010,30(3):1086-95.
    [279]TSA1 N P, TSUI Y C, PINTAR J E, et al. Kappa opioid receptor contributes to EGF-stimulated neurite extension in development [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(7):3216-21.
    [280]ZADRAN S, JOURDI H, ROSTAMIANI K, et al. Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation [J]. J Neurosci,2010,30(3):1086-95.
    [281]SAPOLSKY R M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders [J]. Archives of general psychiatry,2000,57(10):925-35.
    [282]BIEBER A J, SUWANSRINON K, KERKVLIET J, et al. Allelic variation in the Tyk2 and EGF genes as potential genetic determinants of CNS repair [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(2):792-7.
    [283]KNAPP P E, ADAMS M H. Epidermal growth factor promotes oligodendrocyte process formation and regrowth after injury [J]. Experimental cell research,2004,296(2):135-44.
    [284]AGUIRRE A, DUPREE J L, MANGIN J M, et al. A functional role for EGFR signaling in myelination and remyelination [J]. Nature neuroscience,2007,10(8):990-1002.
    [285]XIONG L, CATOIRE H, DION P, et al. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels [J]. Human molecular genetics,2009,18(6): 1065-74.
    [286]MYOUZEN K, KOCHI Y, SHIMANE K, et al. Regulatory polymorphisms in EGR2 are associated with susceptibility to systemic lupus erythematosus [J]. Human molecular genetics,2010,19(11):2313-20.
    [287]LYNCH K W, WEISS A. A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer [J]. The Journal of biological chemistry,2001,276(26):24341-7.
    [288]ZITO F, LOWE G D, RUMLEY A, et al. Association of the factor XII 46C>T polymorphism with risk of coronary heart disease (CHD) in the WOSCOPS study [J]. Atherosclerosis,2002,165(1):153-8.
    [289]KANAJI T, OKAMURA T, OSAKI K, et al. A common genetic polymorphism (46 C to T substitution) in the 5'-untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level [J]. Blood,1998,91(6):2010-4.
    [290]HENNAH W, THOMSON P, MCQUILLIN A, et al. DISCI association, heterogeneity and interplay in schizophrenia and bipolar disorder [J]. Molecular psychiatry,2009,14(9):865-73.
    [291]KILPIVAARA O, MUKHERJEE S, SCHRAM A M, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms [J]. Nature genetics,2009,41(4):455-9.
    [292]KAREGE F, BONDOLFI G, GERVASONI N, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity [J]. Biological psychiatry,2005,57(9):1068-72.
    [293]WARNER-SCHMIDT J L, DUMAN R S. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(11):4647-52.
    [294]DWIVEDI Y, RIZAVI H S, CONLEY R R, et al. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects [J]. Archives of general psychiatry,2003,60(8):804-15.
    [295]BRUNONI A R, LOPES M, FREGNI F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels:implications for the role of neuroplasticity in depression [J]. Int J Neuropsychopharmacol,2008,11(8):1169-80.
    [296]KIM Y K, LEE H P, WON S D, et al. Low plasma BDNF is associated with suicidal behavior in major depression [J]. Prog Neuropsychopharmacol Biol Psychiatry,2007,31(1):78-85.
    [297]LEE B H, KIM H, PARK S H, et al. Decreased plasma BDNF level in depressive patients [J]. J Affect Disord,2007,101(1-3):239-44.
    [298]SEN S, DUMAN R, SANACORA G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications:meta-analyses and implications [J]. Biological psychiatry,2008,64(6):527-32.
    [299]EVANS S J, CHOUDARY P V, NEAL C R, et al. Dysregulation of the fibroblast growth factor system in major depression [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(43):15506-11.
    [300]UEYAMA T, KAWAI Y, NEMOTO K, et al. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain [J]. Neuroscience research,1997,28(2):103-10.
    [301]MAO Q Q, ZHONG X M, LI Z Y, et al. Herbal formula SYJN increases neurotrophin-3 and nerve growth factor expression in brain regions of rats exposed to chronic unpredictable stress [J]. Journal of ethnopharmacology,2010,131(1):182-6.
    [302]HEINE V M, ZARENO J, MASLAM S, et al. Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression [J]. The European journal of neuroscience,2005,21(5):1304-14.
    [303]PAN W, KASTIN A J. Entry of EGF into brain is rapid and saturable [J]. Peptides,1999,20(9): 1091-8.
    [304]FUTAMURA T, TOYOOKA K, IRITANI S, et al. Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients [J]. Mol Psychiatry,2002,7(7): 673-82.
    [305]IKEDA Y, YAHATA N, ITO I, et al. Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia [J]. Schizophrenia research,2008,101(1-3): 58-66.
    [306]SUZUKI K, HASHIMOTO K, IWATA Y, et al. Decreased serum levels of epidermal growth factor in adult subjects with high-functioning autism [J]. Biological psychiatry,2007,62(3):267-9.
    [307]XIANG Z, KREISEL F, CAIN J, et al. Neoplasia driven by mutant c-KIT is mediated by intracellular, not plasma membrane, receptor signaling [J]. Molecular and cellular biology,2007,27(1):267-82.
    [308]ISHIDA Y, KOMARU K, ITO M, et al. Tissue-nonspecific alkaline phosphatase with an Asp(289)-->Val mutation fails to reach the cell surface and undergoes proteasome-mediated degradation [J]. Journal of biochemistry,2003,134(1):63-70.
    [309]BRENNAN S O, WYATT J M, MAY S, et al. Hypofibrinogenemia due to novel 316 Asp--> Tyr substitution in the fibrinogen Bbeta chain [J]. Thrombosis and haemostasis,2001,85(3):450-3.
    [310]ROTHWELL D G, HANG B, GORMAN M A, et al. Substitution of Asp-210 in HAP1 (APE/Ref-1) eliminates endonuclease activity but stabilises substrate binding [J]. Nucleic acids research,2000,28(11): 2207-13.
    [311]SHIBUYA M, KOMI E, WANG R, et al. Measurement and comparison of serum neuregulin 1 immunoreactivity in control subjects and patients with schizophrenia:an influence of its genetic polymorphism [J]. J Neural Transm,2010,117(7):887-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700