抗草甘膦转基因大豆生物测定方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因大豆的种植,极大地提高了农田除草效率,取得了巨大的经济效益和社会效益。但是随着研究的不断深入,转基因大豆的生态安全性、抗性基因的流向和由此引发的食品安全性问题则引起了越来越多的争议,甚至在一定程度上阻碍了转基因技术的发展。因此,建立完善的转基因大豆检测方法对于我国的大豆育种研究、环境安全性和食品安全性等有重要的意义。
     目前关于抗草甘膦转基因大豆的检测方法主要集中在分子检测法和田间(温室)整株鉴定法。前者由于仪器、试剂要求精确,成本较高,专一性强,且只是针对靶标基因进行检测,并不能验证靶标基因的表达与否;后者虽然直观准确,但所需时间比较长、工作量大,且易受季节影响。
     本研究针对目前的的研究现状,利用除草剂生物测定技术,构建了抗草甘膦转基因大豆生物生化测定方法;并且对检测指标、该方法适用的不同培养条件、温度等进行了深入的研究,同时辅以田间表型鉴定和分子检测手段对方法进行了验证。
     主要研究结果如下:
     一、抗草甘膦转基因大豆生物测定方法的建立
     1、在26℃、持续黑暗培养72 h,以大豆萌发过程中草甘膦对下胚轴抑制率为检测指标,建立了检测转基因大豆的生物测定方法。研究结果表明:转基因大豆下胚轴抑制中浓度为1620.86-2269.33mg a. i./L;非转基因大豆的下胚轴抑制中浓度为78.04-97.43 mg a. i./L,二者有显著性差异。因此,为方便快速,在各自95%置信区间内,确定快速甄别剂量为100 mg a. i./L,或者2000 mg a. i./L,在此甄别剂量下可以有效区分转基因大豆和非转基因大豆。
     2、依据生物测定的方法,建立了以莽草酸积累量为指标的生物化学检测方法:即在100 mg a. i./L(非转基因大豆的抑制中浓度)下,非转基因大豆的莽草酸积累量约为1237.7 ug/g FW,转基因大豆的莽草酸积累量只有64.61ug/g FW,二者之间有显著性差异,可以有效地鉴别转基因大豆和非转基因大豆。
     3、利用生物和生化测定方法,对样本龙抗630、绥10-6047进行了检测。结果表明:龙抗630和绥10-6047为转基因大豆,确定EPSPS基因已经成功转入大豆体内,并且获得表达。田间表型鉴定表明龙抗630、绥10-6047为高抗草甘膦大豆,同时分子检测结果表明两份大豆为阳性。三种检测结果相互印证,证明生物生化测定方法可行。
     二、室内生物测定方法建立的生理生化机理研究
     1、受到草甘膦胁迫时,莽草酸途径是主要的靶标途径。转基因大豆因其转入了EPSPS基因,表现了此生理途径不受影响,莽草酸的积累量较小,从而能够在较高浓度的草甘膦水培条件下正常的萌发生长,而非转基因大豆则没有此能力。
     2、受到草甘膦胁迫时,转基因大豆和非转基因大豆的GSTS活性有显著性差异,表明GSTS参与了大豆体内的解毒代谢作用,是大豆产生抗性的“解毒代谢层次”的重要原因。后期随着浓度的增加和时间的延长活性逐渐减弱表明其解毒代谢能力是有限的。
     3、在抵抗草甘膦的胁迫过程中,转基因大豆和非转基因大豆体内SOD、POD活性虽然在最初有上升,但二者之间并无显著性差异,表明这种机制其并不是抗性产生主要原因。可能是由于大豆受到“除草剂逆境和水分逆境”的胁迫而诱发了自由基和活性氧等有害物质的产生,进而引起了SOD、POD活性的增加,是一种本能自卫反映,起到一个协同抗性的作用。
     三、检测方法的在杂交育种中的应用
     运用生物测定方法较为快捷的检测了7个杂交后代品系,结果表明其大豆品种抗性程度明显比杂交亲本提高20-30倍,鉴定为转基因抗草甘膦大豆,表明EPSPS基因转入成功,与分子检测结果相符。
The cultivation and promotion of t Genetically Modified soybean increased the efficiency of weeding observably,obtained great economic benefit。As researching deeply, the ecological security of Genetically Modified soybean.the flow of resistance genes and food security by alien genes in transgenic herbicide resistants crops has caused more and more controversies and inhibited its developing. So it has important significance to establish a perfect detect GM soybean method for China's soybean breeding research, environmental security and food safety.
     Currently the method to detect Roundup Ready soybeans mainly focused on molecular detection and field (greenhouse) whole plant identification method. As the former method,the majority of the research institutes can not carry out because of the precision of equipment, reagents ,high cost or high specificity and also only for target genes were detected, and can not verify whether the expression of target genes which although visually accurate; The latter method equired a long time, heavy workload, and vulnerability to seasonal effects even though intuitive and accurate.
     In this study,we constructed the biological and biochemical method to detect Roundup Ready soybeans combining with herbicide biometric technology for the current status of research. We discussed the detection index, the different culture conditions and temperature which is the method applicable and verified it by field testing of phenotypic and molecular mean.
     The main results are as follows:
     ⅠThe establish of biological method to detection Roundup Ready soybeans
     1. we took for soybean hypocotyl inhibition rate as an indicator to establish the biological method of detection Roundup Ready soybeans at 26℃, continuous cultured 72 h in darkness. In the method , the hypocotyl inhibition LD50 of GM soybean was1620.86-2269.33mg a. i./L while Non-GM soybean was 78.04-97.43 mg a. i./L and it has 20 times between the two soybeans. So we defined the discrimination dose as 100 mg a.i /L or 2000 mg a.i /L whlile GM soybean and Non-GM soybean can effectively distinguish in the two doses.
     2. we established the biochemical method of detection Roundup Ready soybeans for the biological method. In the concentration of 100 mg a.i /L, shikimic acid accumulation of Non-GM soybean was 1237.7 mg a.i /L and GM soybean was 175.10 mg a.i. /L. There was a significant difference between the two soybeans and can effectively identify GM soybean and Non-GM soybean.
     3.We detected the samples of Longkang630 and Suinong10-6047 based on the biological, biochemical method。The results showed that Longkang630 and Suinong10-6047 was GM soybean and EPSPS gene was transferred into soybean which obtained the resistannce. Field testing of phenotypic showed that Longkang630 and Suinong10-6047 was Roundup Ready soybean and the two samples was identified as positive by molecular mean. Three kinds of test results confirmed each other and proved biological and biochemical determination viablely creditable.
     Ⅱ.The determination of physiological and biochemical mechanism to resistance in the biological and biochemical method
     1. The shikimic acid is the main way of targe pathway with the stress of glyphosate. Because of a EPSPS gene into GM soybean,which can germination and growth normally and the shikimic acid accumulation was smaller and not affected thus to in a higher concentration of glyphosate in water culture conditions , while non-transgenic soybeans do not have this capability.
     2.The GSTS activity has significant difference between GM soybean and Non-GM soybean.with the stress of glyphosate,which shown that GSTS involved in the detoxification metabolism of soybean and the metabolizable ability of GSTs is the other important reason of herbicide resistance to glyphosate . Late activity was gradually reduced with the concentration increase and time extension and shown that the detoxification capacity is limited.
     3.Although the SOD, POD activity rised in the first in the process of glyphosate Stress between the GM soybean and Non-GM soybean in vivo, but both no significant difference between them and shown that this mechanism is not the main reason of their resistance. Maybe the free radicals and active oxygen and other harmful substances was induced by the herbicide stress and water stress ,which caused the SOD, POD activity increased,. It was an instinct of self-defense, played a synergistic resistance Role.
     Ⅲ.Application of biological, biochemical method in the Hybridization
     We detected the the offspring 06-698,1568, HF1, HF9, Sui BC1F6006, in as J9331, H04-7-11 efficiently by the method,which shown that the resistance extent to glyphosate significantly higher due to EPSPS gene transfer into successful and increased 20-30 times than their than hybrid parents。So we identified them as Roundup Ready soybeans and the results are consistent with the molecule detection.
引文
陈新,朱成松,顾和平等. 2002.抗草甘膦大豆的遗传研究[J]·江苏农业科学, 6: 21~23
    成功. 2002.大豆~转基因与生物多样性的焦点.大豆通报[J] 4: 26~27
    程焉平. 2003.抗除草剂转基因作物的研究及其安全性[J].吉林农业科学, 28: 23~28
    丁伟,陶波,程茁等. 2005.甜菜对豆磺隆敏感性与质膜过氧化关系的研究[J].东北农业大学学报, 36(5): 556~560
    董菊芳,徐茂军.2003.基因植物食品产业化所面临的社会问题及其对策[J].科技进步与对策,(3):70~72
    董英山,庄炳昌,赵丽梅等. 2000.中国野生大豆遗传多样性中心[J].作物学报, 5: 521~527
    董钻,谢甫绨. 1995.土壤水分胁迫对大豆体内酶活性和膜透性的影响[J].大豆科学, 14(4): 290~298
    古同照. 1997.草甘膦性质与衍生物[J].贵州化工, (4):10~12
    贾士荣. l997.转基因植物的环境及食品安全性[J].生物工程进展,17(6): 37~4
    贾世荣. 1999.转基因作物的安全性争论及其对策[J].生物技术通报,1999,(6):1~7.
    李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗保护酶系统活性的影响[J].河北农业大学, 1994, 17(3): 52~56
    刘延. 2008.田旋花和打碗花度对草甘膦的耐药性研究[D].博士学位论文,中国农业科学院.12
    刘延,崔海兰,黄红娟等. 2008.抗草甘膦杂草及其抗性机制研究进展[J].农药学学报, 10(1) 10~14
    娄远来,邓渊钰,沈晋良等. 2005.甲磺隆和草甘膦对空心莲子草乙酰乳酸合酶活性和莽草酸含量的影响[J].植物保护学报, 32:185~188
    吕山花,常汝镇,陶波等. 2003.抗草甘膦转基因大豆PCR检测方法的建立与应用[J].中国农业科学, 36(8):883~887
    马红,关成宏,陶波. 2008.不同叶龄鸭跖草对咪唑乙烟酸耐药性[J].植物保护学报, 36(5):450~454
    马红,陶波. 2009.不同叶龄鸭跖草耐咪唑乙烟酸能力差异的生理生化基础[J].植物生理学通讯, 44(6):1079~1081
    莽克强.1998.农业生物工程[M].北京:化学工业出版杜:1-l3
    彭学岗,王金信,吴翠霞等. 2008.麦田猪殃殃对苯磺隆抗药性的快速检测[J].农药学学报,10(3): 311~314
    浦惠明. 2003.转基因抗除草剂油菜及其生态安全性[J].中国油料作物学报, 2: 89~93
    邱丽娟,常汝镇,孙建英等. 2000.中国大豆品种资源的评价与利用前景[J].中国农业科技导报, 5: 24~27
    苏少泉. 1989.除草剂概论[M].科学出版社.279~298
    苏少泉.2005.草甘膦述评[J].农药,44(4):145~149
    苏少泉. 2003.转基因抗除草剂作物中抗性基因的逃逸污染[J].世界农业, 5: 41~49
    陶波,蒋凌雪,沈晓峰等. 2011a.抗草甘膦转基因大豆对根际和非根际土壤可培养菌的影响[J].东北农业大学学报,42(1):12~16
    陶波,蒋凌雪,沈晓峰等. 2011b.抗草甘膦转基因大豆对根际和非根际土壤酶活性的影响,作物杂志, 1:45~49
    陶波,苏少泉,刘金宇. 1994.农作物对磺酰脲类除草剂耐药性的研究[J].东北农业大学学报, 26(2):105~110
    陶波,苏少泉. 1995.广灭灵生测方法的研究[J].农药科学与管理,(3): 8~10
    陶波,张洪岩,张庆贺等.2010.非转基因抗除草剂作物研究现状与展望[J].植物保护学报, (3):277~281
    王育花,赵森,陈芬等.2007.利用实时荧光定量PCR法检测转基因水稻外源基因拷贝数的研究[J].生命科学研究,11(4):301~305
    王忠华,叶庆富,舒庆尧等. 2002.转基因植物根系分泌物对土壤微生态的影响[J].应用生态学报, 3: 373~375
    吴进才,刘井兰,沈迎春等. 2002.农药对不同水稻品种SOD活性的影响[J].中国农业科学, 35(4): 451~456
    吴俊,李旭锋,李琳. 1999.油菜诸葛菜属植物杂交亲和性研究[J].西南农业大学学报, 21: 412~416
    谢杰,余沛涛,王全喜. 2006.转基因植物的安全性问题及其对策[J].上海农业报,22(1):80~84
    杨彩宏,董立尧,李俊等2007.油菜田日本看麦娘对高效氟吡甲禾灵抗药性的研究[J].中国农业科学, 40(12): 2759~2765
    原向阳,郭平毅,张丽光等.2008c.第三复叶期喷施草甘膦对转基因大豆和普通大豆生理指标的影响[J].中国农业科学, 41(11):3886~3892
    原向阳,张丽光,郭平毅等.2008a.第一复叶期喷施农达41%水剂对大豆生理指标的影响[J].中国生态农业学报, 16(2):401~404
    原向阳,张丽光,郭平毅等.2008b.第二复叶期喷施草甘膦对抗草甘膦大豆生理指标及产量构成的影响[J].核农学报, 22(1):88~92
    张洪岩,张庆贺,张利斌等. 2010.抗氯嘧磺隆黑曲霉乙酰乳酸合成酶(ALS)酶学特性研究.中国油料作物学报, 32(4):563~566
    张清哲,马锦花,陈新建等.2010.大豆GmCOL4基因的克隆与分析[J].作物学报, 36(4): 539~548
    张庆贺,王斌,蒋凌雪等.2010.抗草甘膦转基因大豆生物测定方法的研究[J].作物杂志, (3):20~23
    张沙艳,高成华. 2006.玉米超氧化物岐化酶(SOD)的分离及纯化[J].沈阳师范大学学报, 24(2): 231~233
    张伟,王进军,高立明等. 2006.草甘膦在水~土壤系统中的环境行为及研究进展[J].农药,45(10):649~654
    周青,高金芬,刘金荣,等. 2005.玉米田杂草马唐对阿特拉津、乙阿合剂的抗药性试验简报[J].杂粮作物, 25(4) 274
    朱玉,于中连,林敏. 2003.草甘膦生物抗性和生物降解及其转基因研究[J]·分子植物育种, 4: 435~441
    Ahmed S I., Giles N H. 1969. Organization of enzymes in the common aromatic synthetic pathway: evidence for aggregation in Fungi. J Bacteriol[J], 99(1):231~237
    Amrhein N, Schab J, Steinrucken H C. 1980.The mode of action of the herbicide glyphosate. Natur wissenschaften[J]. 67(7):356~357
    Baerson S R.,Rodiguez D J,Tran M. Glyphosate~resistant goosegrass identification of a mutation in the target enzyme 5~enolpyruvylshikimate~3~phosphate synthase.Plant Physiology[J]. 2002,129(3):1265~1275.
    Bentley R. 1990. The Shikimate Pathway: a metabolic tree with many branches[J]. Crit Rev Biochem Mol Biol. 25(5): 307~384
    Berlyn M B, Giles N H. 1969. Organization of enzymes in the Polyaromatic Synthetic Pathway: Separability in Bacteria[J]. J Bacteriol. 99(1):222~230
    Berlyn M B, Ahmed S I, Giles N H. 1970. Organization of polyaromatic biosynthetic enzymes in a variety of photosynthetic organisms[J]. J Bacteriol. 104(2):768~774
    Bresnahan G A, Manthey F A, Howatt K A, et al. 2003. Glyphosate applied preharvest induces shikimic acid accumulation in hard red spring wheat (Triticum aestivum) [J].J.Agric. Food Chem. 51(14): 4004~4007
    Buehring N W, Massey J H , Reynolds D B. 2007. Shikimic acid accumulation in field grown corn (Zea mays) following simulated glyphosate drift[J]. J. Agric. Food Chem. 55(3): 819~824
    Castle L A,Siehl D L,Gorton R,et al. 2004. Diseovery and direeted evolution of a glyphosate tolerance gene[J]. Science, 304(5674):1151~1154
    Cromartie T H. Polge N D. 2000. An improved assay for shikimic acid and its use as a monitor forthe activity of sulfosate. Weed Science Society of America, 40:291.
    Culpepper A S, Grey T L, Vencill W K,et al. 2006. Glyphosate~resistant palmer amaranth (Amaranthus palmeri) confirmed in georgia[J]. Weed Science, 54(4): 620~626
    Darmency H, Fleury A. 2000. Mating system in Hirschfeldia incana and hy~bridization to oilseed rape[J]. Weed Research, 40(2): 231~238
    Kearney P C., Kaufman D D. 1988. Herbicides:chemistry,degradation, and mode of action[M]. Marcel Dekker Inc, New York: 1~70
    Escorial M C , Sixto H , Gracia~Baudin J M, et al. 2001. A rapid method to determine cereal plant response to glyphosat[J]e.Weed Technol. 15(4): 697~702
    Farmer P. Glyphosate weed Killer benefits soil Fungus[J]. Enviornmental Impacts, 2001, 1: 3
    Feng P C ,Chiu T ,Sammons R D . 2003. Glyphosate efficacy is contributed by its tissue concentration and sensitivity in Velvetleaf(Abutilon theophrasti)[J]. Pesticide BiochemistyPhysiology ,77(3): 83~91.
    Feng P C C ,Tran M ,Chiu T. 2004. Investigations into glyphosate~resistant horseweed(Conyzacanadensis): retention, uptake, translocation,and metabolism[J].Weed Science 52(4):498~505.
    Franz J E , Mao M K , Sikorski J A , et al. 1997. Glyphosate: a Unique global herbicide, American chemical society monograph[M]. An American Chemical Society Publication, Washington, DC. 189:521~615
    Gronwald J W. 1989. Influence of herbicide safeners on herbicide metabolism. In: Hatzios K K, Hoagland R E, eds. Crop safeners for herbicides[M]. New York: Academic Press, 103~128
    Haffmannt T, Schieder G C. 1994. Foreign DNA sequences are received by a wild type strain of A niger after cochlture with transgenic higher plants[J]. Curr Genet, 27: 70~76
    Haghani K , Salmanian A H, Ranjbar B , et al. 2008. Comparative Studies of Wild type Escherichia coli 5~enolpyruvylshikimate 3~phosphate synthase with Three Glyphosate~insensitive mutated forms: activity, stability and structural characterization[J]. Biochimica Biophysica Acta.1784(9) :1167~1175
    Haney R L, Senseman S A, Hons F M, et al. 2003. Effect of glyphosate on soilmicrobial activity and biomass[J]. Weed Science, 48(1): 89~93
    Harring T, Streibig J C, Husted S. 1998.Accumulation of shikimic acid: a technique for screening glyphosate efficacy[J]. J. Agric. Food Chem. 46(10): 4406~4412
    Haslam E. 1993. Shikimic acid: metabolism and metabolites[M]. John Wiley. Chichester. UK. 387
    Henry W B , Shaner D L , West M S. 2007. Spectrophotometric assessment of glyphosate rainfastness with various surfactant levels on velvetleaf (Abutilon theophrasti) and Soybean (Glycine max L.) [J] . Proceedings 2007 Weed Science Society of America Annual Meeting. p. 22
    Hernandez A , Garcia~Plazzola J I , Becerril J M. 1999. Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merr.) [J]. J. Agric. Food Chem. 47(7): 2920~2925
    Hilheck A.Baumgartner M.Fried PM. et a1.1998. Effects of trark fed~prey on mortality and development time of immature Chrysoperla carnea (Neuroptera:Chrysopidae) [J].Environ Entomol, 27: 480~487
    Heap I. 2003.International survey of herbicide resistant weeds. Herbicide Resistance Action Committee, North American Herbicide Resistance Action Committee, and Weed Science. Society. American.
    Malik J , Barry G , Kishore G. 1989. The herbicide glyphosate[J]. Biofactors 2 (1):17–25
    Pratley J, Baines P, Eberbach R, et al.1996. Glyphosate resistance in annual ryegrass[J]. In: Proc. 11th Annual Conf. Grasslands Soc. of New South Wales, Wagga Wagga, Australia, p. 126.
    Franz J E, Mao M K , Sikorski J A .1997.Glyphosate: a unique global herbicide[J]. ACS
    Monograph No. 189, American Chemical Society, Washington, DC, pp. 617–642.
    James C. 2009. Global status of commercialized biotech/GM crops[J]. ISAAA Brief, No. 41. ISAAA: Ithaca, NY
    Kishore G M., Shah D M. 1988. Amino Acid Biosynthesis Inhibitors as Herbicides. Annu[J]. Rev. Biochem. 57:627~663
    Koger C.H., Reddy K.N. 2005. Role of Absorption and Translocation in the Mechanism of Glyphosate Resistance in Horseweed (Conyza canadensis) [J]. Weed Sci. 53: 84~89
    Bradshaw L D, Padgette S R , Kimball S L, et al. 1997. Perspectiveson glyphosate resistance[J]. Weed Technol, 11 :189–198.
    Liu C M,Melean P A,Sookdeo C et al. 1991. Degradation of the herbicide glyphophsate by members of the family rhizobiaeeae[J].Appl Environm Microbiol. 57(6):1799~1804
    Lorraine~colwill D F,Powles S B, Hawkes T.R. 2003.Investigations into the mechanism of glyphosate resistance in Lolium rigidum[J]. Pesticide Biochemistry Physiology,74:62~72.
    Lydon J, Duke S O, 1988. Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants[J]. J.Agric.Food Chem,36:813~818
    Mikkelsen T R. 1996.The risk of crop transgene Spread. Nature, 380:31
    Myers O J,Schmidt D, Lightfoot V, et al. 1999. Interaction between application of Roundup Ultra to Round up Ready Soybean and ubsequent response to sudden death syndrome(SDS) [J]. Crop Science, 38:472~478
    Nandula V K , Reddy K N , Rimando A M , et al. 2007. Glyphosate Resistant and Susceptible Soybean (Glycine max) and Canola (Brassica napus) Dose Response and Metabolism Relationships with Glyphosate[J]. J. Agric. Food Chem,(55):3540~3545
    NG C.H.,Wickneswary R.,Salmihah S.,Teng Y.T.,Ismail B.S..Gene polymorphisms in glyphosate~resistant and~susceptible biotypes of Eleusine indica from Malaysia[J].Weed Research 2003,43:108~115.
    NG C H ,Wickneswary R ,Salmihah S . 2004. Glyphosate resistant in Eleusine indica(L.) Gaertn from different origins and polymerase chain reaction amplification of specific Alleles[J]. Australian Journal of Agricultural Research, 55:407~414
    Oger P, Petit A, Dessaux Y. 1997. Genetically engineered plants producing opines alter the iribiological environment[J]. Nature Biotechnol 4: 369~372
    Padgette S R, Re D B, Lavalee B Jet al. 1995. Safety, compositional and nutrition aspects of glyphosate tolerant soybeans: eonclusion based on studies and information evaluated according to FDA’seonsultations Proeess.PP.1~107.Monsanto Company line[J]. Crop Scienee 35:1451~461.
    Penaloza~Vazquez A,Mena G L,Herrera~Estrella L et al. 1995. Cloning and sequeneing of the genes involved in glyphosate utilization by Pseudomons Pseudomamallei[J]. Appl Environm Microbiol, 61(2):538~543
    Pline W A, Wilcut J.W, Duke S O, et al.2002. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate~resistant and non~resistant cotton (Gossypium hirsutum L) [J]. J. Agric. Food Chem,50:506~512
    Reinemer P, Prade L, Hof P, et al. 1996. Three~dimensional structure of glutathione S~transferase from Arabidopsis thaliana at 2.2 ? resolution structural characterization of herbicide~conjugating plant glutathione S~transferases and a novel active site architecture[J]. The Molecular Biology, 255: 289~309
    Gronwald J W. 1989. Influence of herbicide safeners on herbicide metabolism. In: Hatzios K K, Hoagland R E, eds. Crop safeners for herbicides[J]. New York: Academic Press, 103~128
    Powles S B, Preston C, Bryan I B , et al.1997. Herbicide resistance: impact and management[J]. Adv. Agron,58 : 57–93.
    Powles S B , Lorraine~Colwill D F, Dellow JJ, et al.1998. Evolvedresistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia[J]. Weed Sci,46 (5): 604–607
    Padgette S R, Re D B, Barry G F, et al.1996 New weed control opportunities:development of soybeans with a Roundup Ready TM gene,in: S.O. Duke (Ed.), Herbicide~Resistant Crops. Agricultural, Environmental,Economic, Regulatory, and Technical Aspects, CRCPress, Boca Raton, FL, pp. 53–84.
    Schonbrunn E, Eschenburg S, Shuttleworth WA, et a1. 2001. Interaction of the Herbicide Glyphosate with its Target Enzyme 5~enolpyruvylshikimate 3~phosphate Synthase in Atomic Detail[J]. PNAS, 98(4):1376~1380
    Shaner D L, Hassar~Nadler T, Henry W B, et al.2005. A Rapid in vivo epsps Assay with Excised Leaf Discs[J].Weed Sci,53:769~774
    Singh BK, Shaner D L.1998. Rapid Determination of Glyphosate Injury to Plants and Identification of Glyphosate~resistant Plants[J].Weed Technol, 12:527~530
    Steinruecken H C , Amrhein N. 1980.The Herbicide Glyphosate is a Potent Inhibitor of 5~enolpyruvylshikimic acid~3~phosphate Synthase[J]. Biochem.Biophys Res Commun, 94:1207~121
    Tao Bo, Su Shaoquan, Jin Yi. 1999. Tolerance of Maize (Zea mays L) to Chlorsulfuron[J]. Journal of Northeast Agricultural University , 6(2): 89~93
    Wakelin A M ,Lorraine~colwill D F , Preston C.2004.Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones[J].Weed Research, 44:453~459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700