某砂岩铀矿地浸采铀及水冶工艺的室内试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过对北方某砂岩铀矿的岩芯样品分析测试以及静态浸出和动态浸出的综合研究,了解不同条件下该铀矿岩芯中铀的浸出效果,确定该铀矿采冶的浸出剂、氧化剂类型和浸出方法,了解不同矿层对铀浸出效果的影响程度,优选浸出剂及配方,提出合理的地质工艺参数,结合浸出液的实际浓度,选用成熟的离子交换分离富集水冶技术,获得水冶工艺的相关参数,为制定现场条件试验浸出方案和铀回收工艺提供依据。
     研究发现:该矿床中的铀资源,采用混合碱法(碳酸钠和碳酸氢钠)或地层水和二氧化碳为浸出剂,氧气为氧化剂的条件下,浸出效果较好,浸出溶液采用201×7树脂、密实固定床的吸附方式,氢氧化钠沉淀的水冶工艺能够将采冶出的铀有效回收,采冶工艺还具有可观的经济效益和社会效益。
Through comprehensive studies including analytical test, static leaching exper-iments and dynamic leaching experiments to finding out the leaching efficiency ofthe drill cores of the uranium in various conditions, we determined the kind of l-eaching agent and oxidant and the methods of leaching, which were satisfactoryfor the hydrometallurgy of the uranium deposit. In our report, it was gave a deta-iled description that the influence degree of seam distribution and the optimum l-eaching agent formulation on the leaching efficiency of the drill cores, and the r-easonable geological technical parameters were issued. Based on the actual conce-ntration of the leachate, we got the related parameters of hydrometallurgical proc-ess by adopting pre-concentration and separation via ion exchange resin method.This may provide references for the design of leaching program and uranium rec-overy technics in the field.
     The studies found that the uranium was leached efficiently by adopting mixed alkali(sodium carbonate plus sodium bicarbonate) or stratum water in which carbon dioxidedissolved as a leaching agent, oxygen as a oxidant. The leachate was pass through packedfixed bed with201×7resin, and the effluent was precipitated using sodium hydroxide.By using the above mentioned process, the beneficial result of economy and society waswell got, while the satisfactory recovery rate was got.
引文
[1]李洪嫔,杨永刚.中国能源形势和政策浅析[J],资源与产业,2006,8(3):10-14.
    [2]樊明武.发展核电保护环境[J],太原理工大学学报,2010,41(5):460-462.
    [3]李开文.论我国铀资源优势及其发展核电工业的对策[J],中国矿业,2001,8(5):1-2.
    [4]门可佩.“九五”中国能源形势分析与预测[J],国际石油经济,1996,4(1):16-18.
    [5]郭星渠.21世纪的中国能源预测和核能发展途径分析[J],中国核科技报告,1988,1-4.
    [6]马飞,张书成,潘燕等译.酸法地浸采铀工艺手册[M].北京:原子能出版社,2003.
    [7]李开文.中国铀矿开采技术特点及发展水平[J].中国矿业,2002(1):23-27.
    [8]王鉴.中国铀矿开采[M].北京:原子能出版社,1993.
    [9]阙为民,王海峰,牛玉清,张飞凤,谷万成.中国铀矿采冶技术发展与展望[J].中国工程科学.2008,10(3):44-45.
    [10]邓佐卿.我国铀水冶技术的现状和展望[J],铀矿冶,1992,11(1):9.
    [11]曾毅君,牛玉清,张飞凤等.中国铀矿冶生产技术进展综述[J].铀矿冶,2003(1):24-27.
    [12]全爱国,欧阳建功.我国原地爆破浸出开采及其发展前景[J].铀矿冶,2001(1):1-4.
    [13]阙为民,王海峰,田时丰等.我国地浸采铀研究现状与发展[J].铀矿冶,2005(3):113-117.
    [14]王海峰,阙为民,钟平汝等.原地浸出采铀技术与实践[M].北京:原子能出版社,1998:164-170.
    [15]邓佐卿,庄海兴,黄伦光.我国天然铀纯化技术研究的发展与现状[J].铀矿冶,1998(4):231-236.
    [16]古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.
    [17]程明高,简晓飞.512矿床地浸砂岩型铀矿床地质特征和远景评价[J].铀矿地质,1995,11(1):1-17.
    [18]张振强.地浸采铀技术与工艺[J].资源调查与环境,2002,3:200-204.
    [19]张晓文,周耀辉,刘耀池等.我国铀矿冶工业与技术进步[J].中国矿业,2003,12(12):4-6.
    [20]史维浚,孙占学.应用水文地球化学[M].北京:原子能出版社,2005.
    [21]阙为民,谭亚辉,曾毅君等.原地浸出采铀反应动力学和物质运移[M].北京:原子能出版社,2002.
    [22]姚益轩,阙为民,苏学斌等.地浸采铀工程技术经济分析[J].铀矿冶,1999,18(4):230-237.
    [23]阳奕汉,刘忠位.原地浸出新技术在伊宁铀矿512矿床的应用[J].铀矿冶,1999,18(4):222-229.
    [24]阳奕汉,龙红福.负载树脂饱和再吸附的生产实践[J].铀矿冶,2007,26(2):105-109.
    [25]王海峰,武伟等.新疆某铀矿床地浸开采水文地质试验[J].铀矿冶,2005,24(2):66-70.
    [26]核工业第六研究所.地浸采铀手册[M].2000,1.
    [27]王西文.原地浸出采矿研究[M].1987,5.
    [28]王昌汉.溶浸采铀(矿)[M].北京:原子能出版社,1998.125-148.
    [29]阙为民,陈祥标.硝酸盐作为酸法地浸氧化剂的研究[J].铀矿冶,2000(1):24-31.
    [30] HR切斯诺夫.强化地浸的方法[M].核工业第六研究所译,1985.
    [31]赵致和,孙圭,韩德仁等,论我国北西部铀矿勘查关键技术[J].铀矿地质,1995,11(2):65-69.
    [32]彭丁茂.张红军,王树德,原地浸出采铀的水岩作用研究[J],华东地质学院学报,2001,24(1):4l-44.
    [33]阙为民,谭亚辉,曾毅君等.原地浸出采铀反应动力学和物质运移[M].北京:原子能出版社,2002.
    [34]张景廉.铀矿物-溶液平衡[M].北京:原子能出版社,2005.121-124.
    [35]刘正义,戚大能.512矿床可地浸砂岩铀矿成矿环境模拟实验[J].铀矿地质,2000,16(6):232-274.
    [36]姚益轩,葛加明,苏学斌等.新疆某矿床酸法地浸采铀现场试验[J].铀矿冶,2004,3(6):119-124.
    [37]王德荫,傅水全.铀矿物学[M].北京:原子能出版社,1981.
    [38]王清良,史文革,万利平等.新疆某铀矿床矿石碱法地浸室内试验研究[J].铀矿冶,2004,23(1):25-30.
    [39]李尚远.铀、金、铜矿石堆浸原理与实践[M].北京:原子能出版社,1997.
    [40]周爱民.中国金属矿采矿技术的发展与评价[J].莫斯科矿业大学学报,2000,(2):61-64.
    [41]胡军,王肇国,迟仁清等.用SL406阳离子交换树脂从氯化物含量较高的硫酸浸出液中提取铀[J].铀矿冶,1994,13(4):228-234.
    [42]阿布杜尔马诺夫. N T等.地浸工艺和设施[M].莫斯科矿产出版社,1992,222-49.
    [43]哥斯哥尔达, K M等.强化地浸的方法[M].莫斯科原子能出版社,1988,169-172.
    [44] Tweeton D R, Peterson K A. Selection of lixiviants for in situ leach mining[M]. In Situ MiningResearch, Denver,1981.
    [45] Dahlkamp Franz J. Uranium Deposits[M], Springer Verlag,1993.
    [46] Uranium1999: Resources, Production and Demand, Nuclear Energy Agency Organization forEconomic Cooperation and Develcpment,2000.
    [47] Crawlry Richard A, Sendstone Uranium Depcsits in the United States: A Review of the History.Distribution,Genesis, Mining Areas and Outlook, U.S.Department of the Energy AssistantSecretary for Nuclear Energy Grand Junction Area Office, Colorado, March1983.
    [48] IAEA, Guidebook on environmental impact assessment for in situ leach mining projects[M].Vienna: IAEA--TECDOC—1428,2005:36-38.
    [49] Suberoj, Ning Z, et al. Effect of interface energy on the impact strength of aglomerates [J].Powder Technology,1999,(105):66.
    [50] Hroosen A, Hausner. Techniques for agglomeration control during wet-hemical powder syn-thesis [J]. Advanced Ceramic Materials,1988,3(2):131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700