生物可降解镁合金的模拟腐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有密度小、弹性模量小和比刚度高等特点,其综合力学性能与人体骨骼相近。同时,镁具有良好的生物相容性,镁离子是一种人体必需的营养素,因此镁合金作为生物材料具有很好的发展前景。镁合金较差的抗腐蚀性能为医学领域对可降解生物金属材料的开发提供了思路:将镁合金冠脉支架或骨钉植入人体后,镁合金会随植入部位的痊愈而降解消失。
     本文对Mg-RE-1.0Zr合金的铸态、固溶态和固溶+时效态三种状态,利用失重法在人体模拟Hank溶液中进行单、双边模拟腐蚀试验,测定腐蚀速率,分析合金的腐蚀动力学特征及其影响因素。通过SEM扫描,观察腐蚀后的微观形貌,分析腐蚀机理。另外,对生物镁合金支架的设计和加工进行了探讨。
     试验结果表明:Mg-RE-1.0Zr铸态、固溶态与固溶+时效态试样双边腐蚀的平均动态腐蚀速率分别为0.8848mg/(cm2·h)、0.1363mg/(cm2·h)和0.1445mg/(cm2·h),平均静态腐蚀速率分别为0.5841mg/(cm2·h)、0.0969mg/(cm2·h)和0.1046mg/(cm2·h)。腐蚀过程都是一个从快到慢,最后趋于平稳的过程,动态腐蚀速率要大于静态腐蚀速率,腐蚀动力学关系符合负指数特征。与支架在人体冠状动脉中情况更为相近的单边模拟腐蚀中,固溶+时效态试样的平均腐蚀速率为0.1917 mg/(cm2·h),在168h后试样的腐蚀速率趋于平稳在0.0688 mg/(cm2·h)左右,腐蚀速率大于双面腐蚀。通过扫描电镜观察,发现未经压缩的试样以晶界腐蚀为主,压缩后的固溶+时效态试样的腐蚀形态为点蚀。
     对380℃压缩变形的Mg-RE-1.0Zr固溶+时效态试样的再结晶行为进行了研究,确定Mg-RE-1.0Zr的再结晶退火温度为350℃。
Magnesium alloys have the character of low density, low modulus of elasticity and high specific stiffness, and its mechanical properties are close to the human skeleton. Magnesium has excellent biocompatibility and is an essential nutrient element for human. So it has good prospects as the biological material. Poor corrosion resistance of magnesium alloys provide a guideline for the development of biodegradable metallic materials in the medical field. As coronary stents or bone screws implanted in the human body and magnesium alloy degradably disappears with the healing of the implant site.
     The corrosion rate, corrosion kinetic characteristics and their impact factors of Mg-RE-l.OZr alloy as casting, solid solution state and solid solution+aging state are studied by single and bilateral corrosion test in simulated body Hank solution by using of weight loss method. The corrosion morphology is observed by scanning electron microscopy and the corrosion mechanism is analyzed. Moreover, the design and processing of the biological magnesium alloy stent have been disscussed.
     The results show that the average dynamic corrosion rate of Mg-RE-1.0Zr with casting state, solid solution state and solid solution+aging state specimen are 0.8848mg/(cm2·h), 0.1363mg/(cm2-h) and 0.1445mg/(cm2-h) measured by bilateral corrosion test. The average static corrosion rate are 0.5841mg/(cm2·h),0.0969mg/(cm2-h) and 0.1046mg/(cm2-h). At first, the corrosion speed obviously decreases with the corrosion time and finally tends to be stable. The dynamic corrosion rate is greater than that of the static corrosion rate. The unilateral simulation corrosion behavior is similar to that of the stent in human coronary artery and the corresponding average corrosion rate of solid solution+aging state is 0.1917 mg/(cm·h) and the corrosion rate is about 0.0688 mg/(cm2·h) after 168h corrosion. The unilateral corrosion rate is greater than that of the double-sided corrosion. The corrosion mechanism of the no-compression specimen grain is boundary corrosion and the pitting is the corrosion mechanism of the compressed specimen with solid solution+aging state.
     The recrystallization behavior of Mg-RE-1.0Zr specimens in solid solution+aging state compressed have been investigated and the recrystallization annealing temperature is determined to 350℃.
引文
[1]高家诚,李龙川,王勇.镁表面改性及其在仿生体液中的耐蚀行为[J].中国有色金属学报,2004,14(9):1508-1513.
    [2]Herein D, Braun T, SchlOgl R. On the Nature of the Socalled Iron-graphite[J]. Carbon,1997, 35:17.
    [3]林高用,彭大暑,张辉,等.AZ91D镁合金锭耐腐蚀性究[J].矿冶工程,2001,21(3):79.
    [4]虞颂庭,翁铭庆.生物医学工程的基础与临床[M].天津:天津科学技术出版社,1989.
    [5]赵兴伟,王景彦.生物材料在骨科临床中的应用[J].中国骨伤,2004,17(10):636-637.
    [6]师昌绪.材料大辞典[M].北京:化学工业出版社.1994.
    [7]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000.
    [8]周长忍.生物材料学[M].北京:中国医药科技出版社,2004.
    [9]崔福斋,冯庆玲.生物材料学[M].北京:科学出版社.2004.9.
    [10]顾汉卿,徐国风.生物医学材料学[M].天津:天津科技翻译出版公司,1993.
    [11]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000.
    [12]刘盛辉.新一代生物医用材料[J].高分子通报,2005,(6):113-117.
    [13]奚廷斐.生物医用材料现状和发展趋势[J].生物医疗器械信息,2006,12(5):1-4.
    [14]Herman Broers.The inventor of life [M].B&V Media Press.2007.
    [15]王坤.新型生物高分子材料聚乳酸[J].山东轻工业学院学报,2006,20(4):85-88.
    [16]浦素云.金属植入材料腐蚀[M].北京:航空航天大学出版社,1990.
    [17]阮建明,邹俭鹏,黄伯云.生物材料学[M].北京:科学出版社,2004.
    [18]陈锡民.外科植入物用不锈钢工艺及性能研究[J].上海钢研,2003,(2):8-18.
    [19]张恩科,李宪军,李全义.不锈钢植入物材料及其抗腐蚀性能探讨[J].医疗设备信息,2001,(11):36.
    [20]王安东,戴起勋.生物医用材料316L不锈钢的磨损腐蚀特性研究[J].金属热处理,2005,30(3):33-36.
    [21]J Thomann U I, Uggowitzer P J. Wear-corrosion Behavior of Biocompatible Austenitic Stainless Steels [J]. Wear,2000,239(1):48-58.
    [22]阎建中,吴荫顺,李久青,等.316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究[J].中国腐蚀与防护学报.2000,20(6):354.
    [23]任伊宾,杨柯,粱勇.新型生物医用金属材料的研究和进展[J].材料导报,2002,16(2):12-15.
    [24]Puleo DA, Huh WW. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells[J]. J Appl Biomater.1995,(6):109-116.
    [25]Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants[J]. J Bone Joint Surg,1998,80:268-282.
    [26]Lhotka C, Szekeres T, Steffan I, et al. Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements[J]. Orthop Res,2003,21:189-195.
    [27]Jacobs JJ. Skipor AK, Patterson LM, et al. Metal release in patients who have had a primary total hip arthroplasty[J]. J Bone Joint Surg,1998,80:1447-1458.
    [28]Jacobs JJ, Hallab NJ, Skipor AK, et al. Metal degradation products:a cause for concern in metal-metal bearings[J]. Clin Orthop Relat Res,2003,417:139-147.
    [29]Granchi D, Ciapetti G, Tea S, et al. Cytokine release in mononuclear cells of patients with Co-Cr hip prosthesis[J]. Biomaterials 1999,20:1079-1086.
    [30]Niki Y, Matsumoto H, Suda Y, et al. Metal ions induce bone-resorption cytokyne production through the redox pathway in synoviocytes and bone marrow macrophages[J]. Biomaterials, 2003,24:1447-1457.
    [31]Haynes DR, Boyle SJ, Rogers SD, et al. Variation in cytokines induced by particles from different prosthetic materials[J]. Clin Orthop Relat Res,1998,352:223-230.
    [32]Wang JY, Wicklund BH, Gustilo RB, et al. Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro[J]. Biomaterials,1996,17:2233-2240.
    [33]Bi Y, Vande Motter RR, Ragab AA, et al. Titanium particles stimulate bone resorption by inducing differentiation of murine osteoclasts[J].J Biomed Mater Res,2001,83:501-508.
    [34]Allen MJ, Myer BJ, Millet PJ, et al. The effects of particulate cobalt, chromium and cobalt-chromium alloy on human osteoblastlike cells in vitro[J]. J Bone Joint Surg,1997,79: 475-482.
    [35]Wang M L, Nesti L J, Tuli R, et al. Titanium particles suppress expression of osteoblastic phenotype in human messenchymal stem cells[J]. J Orthop Res,2002,20:1175-1184.
    [36]J.A.Disegil, L.Eschbachz. Stainless steel in bone surgery[J]. Injury,2000,31(S4):D2-D6.
    [37]Mfini, N.Nicoli Aldini, et al. A new austenitic stainless steel with negligible nickel content:an in vitro and in vivo comparative investigation [J]. Biomaterials,2003,24(27):4929-4939.
    [38]顾汉卿.生物材料的现状及发展(四)[J].中国医疗器械信息,2001,7(6):39-44.
    [39]周殿阁.骨科生物材料应用进展[J].新材料产业,2004(12):39-44.
    [40]陈孟诗,朱智敏,李宁.深冷处理对钴铬钼高熔铸造合金拉伸力学性能的影响[J].华西口腔医学杂志,2004,22(3):252-254.
    [41]赵娟,朱智敏,陈孟诗.深冷处理技术对口腔中熔铸造合金耐磨性的影响[J].华西口腔医学杂志,2003,21(3):184-188.
    [42]朱智敏,赵娟,黄旭.深冷处理技术对口腔中熔铸造合金耐腐蚀性的影响[J].华西口腔医学 杂志,2002,20(5):316-319.
    [43]冯颖芳,康浩方,张震.钛合金医用植入物材料的研究及应用[J].稀有金属,2001,25(5):349.
    [44]何宝明,王玉林,戴正宏.生物医用钛及其合金材料的开发应用进展、市场状况及问题分析[J].钛工业进展,2003,20(4-5):82-87.
    [45]闰玉华,殷湘蓉.人工关节的研究现状和发展趋势[J].生物骨科材料与临床研究,2004,1(4):39-43.
    [46]于思荣.生物医学钛合金的研究现状及发展趋势[J],材料科学与工程,2000,18(2):131-134.
    [47]张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J].生物医学工程学杂志,2000,17(2):206-208.
    [48]Long M, Rack H J. Titanium alloys in total joint replacement—a materials science perspective[J]. Biomaterials,1998,19:1621-1639.
    [49]宁聪琴,周玉.医用钛合金的发展及研究现状[J].材料科学与工艺,2002,10(1):100-106.
    [50]张新平,于思荣,夏连杰,等.钛及钛合金在牙科领域中的研究现状[J].稀有金属材料与工程,2002,31(4):246-251.
    [51]J Ninomi M, Akahofi T,T akeuehi T, et al.Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications[J]. Materials Science and Engineering:C,2005,25(3):417-425.
    [52]李佐臣,用廉,李军,等.外科植入物用第三代新型医用钛合金研究[J].钛工业进展,2003,20(415):46-48.
    [53]李军,周廉,李佐臣,等.新型医用钛合金Ti-12.5Zr-2.5Nb-2.5Ta的研究[J].稀有金属材料与工程,2008,32(5):398-400.
    [54]李佐臣,李军,周廉,等.新型医用钛合金TZNT的耐蚀性[J].稀有金属快报,2004,23(9):31-33.
    [55]Lin.Chia-Wei, Ju.Chien-Ping, Chern Lin, et al. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p.titanium, Ti-6A1-4V and Ti-13Nb-13Zr alloys[J]. Biomaterials,2005,26 (16):2899-2907.
    [56]Long.Marc, Rack H.J. Titanium alloys in total joint replacement—a materials[J]. Science perspective Biomaterials,1998,19(18):1621-1639.
    [57]Wang.J, Layrolle.P, et al. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy:physicochemical characteristics and cell attachment J]. Biomaterials,2004,25(4): 583-592.
    [58]Kojima Yo. Project of platform science and technology for advanced magnesium alloys[J]. Materials Transactions,2000,42(7):1154-1159.
    [59]Mordike B.L, Ebe H T. Magensium properties application potential[J]. Materials Science and Engineering,2001,A302:37-45.
    [60]Aghion E, Bronfin B. Magnesium Alloys Development towards the 21st Century[J]. Materials Science Forum,2000,350-351:19-28.
    [61]高波,郝胜智,董闯,等.镁合金表面处理研究的进展[J].材料保护,2003,36(10):0001.
    [62]S.Kubena, J.Durlach. Magnesium Research[J].1990,3(3):219.
    [63]贾如宝.镁与富贵病[J].金属世界,2001,(2):15.
    [64]郭学峰,魏建峰,张忠明.镁合金与超高强度镁合金[J].铸造技术,2002,23:133.
    [65]刘振东,范清宇.应力遮挡效应--寻找丢失的钥匙[J].中华创伤骨科杂志,2002,(4):62.
    [66]DeGarmo PE. Materials and processes in manufacturing[C],5th ed. New York:Collin Macmillan,1979.
    [67]Gibson L, Ashby M. Cellular solids. Structure and properties[J]. Sydney:Pergamon Press, 1988:1-41.
    [68]Gibson L, Ashby M. Cellular solids. Structure and properties[J]. Sydney:Pergamon Press, 1988:316-331.
    [69]Choi J W, Kong Y M, Kim H E, et al. Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3[J]. J Am Ceram Soc 1998,81:1743-1751.
    [70]Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials—a review[J]. Trends Biomater Artif Organs 2004,19:9-17.
    [71]黄晶晶,杨柯.镁合金的生物医用研究[J].材料导报,2007(4):67-69.
    [72]Heublein B, Rohde R, KaeseV, et al. Bioeorrosion of magnesium alloys:a new principle in cardiovascular implant technology Heart[J].2003,89(6):651-656.
    [73]Erne P, Schier M, Resink T J. The road to bioabsorbable stents:Reaching clinical reality Cardiovascular and Interventional Radiology[J].2006,29(1):11-16.
    [74]Peeters P, Bosiers M, Verbist J, et al. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. Journal of Endovascular Therapy[J].2005,12(1): 1-5.
    [75]Raimund Erbel, Carlo Di Mario, Jozef Bartunek, et al. Temporary scafiolding of coronary arteries with bioabsorbable magnesium stents:A prospective, non randomized multicentre trial[J]. The Lancet,2007,369(9576):1869-1873.
    [76]Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials,2005,26:3557.
    [77]黄晓峰,周宏,何振明.富铈稀土对镁合金起燃温度的影响[J].中国有色金属学报.2001.8:638-641.
    [78]樊昱,吴国华,高洪涛,等.La对AZ91 D镁合金力学性能和腐蚀性能的影响[J].金属学报,2006.42(1):54-59.
    [79]高锦章,龙全江,杨韬.中国稀土药物研究进展[J].西北师范大学学报:自然科学 版,2002,38(1):108-112.
    [80]倪瑾,孟祥顺,蔡建明,等.Schif碱稀土金属配合物对辐射导致肿瘤细胞DNA损伤及修复的影响[J].中华放射医学与防护杂志,200820(1):46-49.
    [81]肖白,崔明珍,杨华,等.有机稀土化合物对SOS反应的抑制作用[J].癌变·畸变·突变,1995,7(1):42-46.
    [82]唐志华.生物无机化学[M].西安:陕西科技出版社,2001.
    [83]李彦,李旭,张辉,等.稀土药物对大肠杆菌作用的初步研究[J].湖南学院学报,2008,10(4):19-22.
    [84]Larisa Kutsenko, David Fuks, Arnold Kiv, et al. Mechanism of phase transformations in Mg-based alloys subjected to plasma immersion ion implantation of Ag.AetaMater[J].2006, 54(10):2637-2643.
    [85]杨春喜,郑玉峰,顾雪楠,等.二元镁合金在细胞培养基中的耐腐蚀能力及其生物相容性[J].中国组织工程研究与临床康复,2011,(8):33-38.
    [86]李娜,刘建睿,王栓强,等.稀土在镁及镁合金中的应用[J].铸造技术,2006,27(10):1133.
    [87]范才河,陈刚,严红革,等.稀土在镁及镁合金中的作用[J].材料导报,2005,19(7):61-66.
    [88]Levesque J, Dube D, Fiset M, et al. Biocompatibility of the binary alloy magnesium[J]. Advanced Materials and Processes,2004,162(9):45.
    [89]马刚,郭胜利.稀土在镁合金中的应用[J].宁夏工程技术,2005(9):43.
    [90]李玉宝.生物医用材料[M].北京:化学工业出版社,2003.
    [91]张春怀,许鑫华,朱天兵,等.冠状动脉支架材料的研究进展[J].材料导报,2007,21(2):120-124.
    [92]李雪峰,徐晶,游陆,等.血管内支架、冠状动脉支架及药物涂层支架[J].中国组织工程研究与临床康复,2008,12(26):123-126.
    [93]李田昌,胡大一.冠状动脉内支架进展[J].中国医疗器械信息,2000,6(2):6.
    [94]庞刚,张为龙.人体血管与血管吻合临床解剖学[M].北京:人民卫生出版社,2010.
    [95]李俊杰,张照英,舒为群.镁抗动脉粥样硬化的研究进展[J].微量元素与健康研究,2003,20(2):49.
    [96]De Feyter P J, Van den Brand M, Laarman G J. A cut coronary artery occlusion during And after percutaneous transluminal coronary angioplasty[J]. Circulation,1991,83:927-936.
    [97]Simpson J B, Zimmerman J J, Selmon R M. Tanslumianl atherectomy:initial clinieal results in 27 patients[J]. Circulation,1986,74:200-203.
    [98]Serruys P W, Juilliere Y, Bertrand M E. Additional improvement of stenosis geometry in human coronary arteries by stenting after balloon dilatation[J]. Am J Cardiol,1988,61:71-76.
    [99]倪中华,易红,王跃轩,等.预防心血管再狭窄纳米颗粒载药涂层支架的研究[J].东南大学学报(自然科学版),2004,34(6):790-791.
    [100]粟爽,李万甫.三种不同材料血管内支架的生物相容性[J].中国组织工程研究与临床康复,2008,17(12):3293-3295.
    [101]宋光铃,宋诗哲.镁在人体模拟液中的腐蚀行为[J].物理化学学报,2006,22(10):1222-1226.
    [102]刘江南,董璞,王正品等.生物镁合金在人体模拟液中的腐蚀行为[J].西安工业大学学报,2009,29(2):129-133.
    [103]牟战旗,梁成浩.不同模拟体液及pH值变化对人体用金属生物材料耐腐蚀性能的影响[J].中国腐蚀与防护学报,1998,18(2):126-130.
    [104]祖秀光,刘素云,郝玉明,等.冠状动脉慢血流现象的临床意义[J].临床心血管病杂志,2007,23(12):900-902.
    [105]陈振华,许芳艳,傅定发,等.镁合金的动态再结晶[J].化工进展,2006,25(2):140-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700