内部湿度对陶粒混凝土界面区结构与收缩影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土性能主要取决于其组成、结构以及在环境影响下结构的变化。在组成一定时,混凝土的结构及其变化,主要受外部环境因素和内部水泥水化程度的影响,而这些均与混凝土内部相对湿度的变化密切相关。
     混凝土内部相对湿度变化,主要受水分扩散和水泥水化的自干燥作用影响,与内部水源和外部养护条件息息相关。陶粒具有吸返水特性,对混凝土内部相对湿度变化和界面区结构具有重要影响,因此,把具有低、中、高吸水率和不同吸返水速率的三种典型陶粒所配制的混凝土作为主要研究对象,对不同养护制度下混凝土内部相对湿度随龄期发展变化规律,以及湿度梯度对水泥石水化进程的影响,进而对混凝土微观结构和收缩变形等宏观性能的影响规律及其机理,进行了较深入系统的研究,建立混凝土收缩值与相对湿度之间的关系,为揭示混凝土收缩、开裂的实质提供理论基础和试验依据。
     对混凝土内部相对湿度测试方法的研究结果表明,与当前主要采用的预埋测试法长期固定测量相比,采用温湿度探头进行适时测量得到的试验结果更为精确可信。
     对一维干燥条件下,不同原材料组成的混凝土内部相对湿度梯度分布进行了研究,结果表明:暴露于干燥环境之前的湿养护龄期越长,混凝土内部相对湿度下降速度越缓慢,在28d龄期时,完全湿养护的普通混凝土试件较湿养护14d、7d转入一维干燥条件下的试件,由干燥面表层向中心区的相对湿度高出0.6%~5.4%,内部相对湿度保持在85%以上的位置也由外到内发生改变,陶粒混凝土也有类似的规律。在同一龄期,采用预湿陶粒、陶砂配制的混凝土内部各部位的相对湿度值高于采用普通骨料配制的混凝土,且陶粒的含水率越大、陶砂取代率越高,则混凝土内部相对湿度越高,且降低越缓慢。采用中、高含水率陶粒配制的混凝土,相对湿度≥80%的龄期比普通骨料混凝土延长1倍以上;高含水率的QF陶粒混凝土,在360d龄期时,中心部位的相对湿度仍高于80%,表层相对湿度大于80%的龄期可达到60d~90d,而普通混凝土和YC陶粒混凝土仅有24d~48d;56d以前,矿物掺合料的掺量越高,混凝土内部各部位相对湿度降低速度越缓慢,高于未掺加掺合料的混凝土,而56d以后则相反,在360d龄期时,掺加15%粉煤灰和掺加20%矿粉混凝土内部相对湿度最高;在28d以前,0.45水灰比的混凝土内部各部位相对湿度均高于0.3水灰比混凝土,而28d以后,0.45水灰比的混凝土内部相对湿度随龄期降低幅度较快,逐渐接近、甚至低于0.3水灰比混凝土。
     对不同吸水率、不同预饱水程度的陶粒混凝土界面区水泥石微观结构的研究结果表明:陶粒对低水灰比混凝土界面区水泥石结构的影响程度远高于高水灰比混凝土;骨料含水率对界面区水泥石微观结构具有显著影响,普通骨料与低吸水率的YC陶粒混凝土中,界面区水泥石孔隙率和大孔含量均高于水泥石基体,而中、高吸水率陶粒混凝土则相反,界面区水泥石钙硅比高于基体,孔结构整体上呈细化趋势,且陶粒预湿含水率越大、吸返水能力越强、表面越粗糙,界面区水泥石结构越致密,QF陶粒混凝土界面区水泥石平均孔径尺寸较普通骨料混凝土降低20.6%,50nm以下的孔含量高达近80%。距界面0~10μm范围内,经1h预湿的陶粒BY和QF界面区水泥石显微硬度较基体水泥石分别高出43%和56%,较普通骨料界面水泥石分别提高79.6%和96.3%,随饱水程度的提高,显微硬度值降低,绝干陶粒BY界面区水泥石显微硬度值最高,距界面20μm以上到基体范围内则与之相反,界面增强层厚度约为40μm~60μm。同时,从界面至陶粒内部10μm范围内产生了一个明显的内增强层。在一维干燥条件下,随着距干燥表面距离的增加,即随混凝土内部相对湿度增大,水泥石的水化程度提高,界面区和基体水泥石的显微硬度均逐渐增加,距干燥表面5cm以内,显微硬度增加幅度较明显,距干燥表面距离超过10cm时,显微硬度增长趋于稳定。
     陶粒的预饱水程度与释水能力对混凝土内部相对湿度和收缩变形性能影响显著。随陶粒预湿含水率的提高,在干燥和自干燥条件下,混凝土内部相对湿度随龄期降低速度均减慢,早期自收缩和长期干燥收缩均减小,限制收缩应力达到最大值的时间延长,自收缩、干燥收缩与相应的相对湿度降低值之间具有非常显著的相关性;低吸水率的YC陶粒混凝土,180d龄期时的总收缩较普通骨料混凝土高约3%~8%,而高吸水率、高饱水程度的陶粒混凝土,总收缩较普通骨料混凝土减小2%~15%;BY100陶粒混凝土的自收缩、干燥收缩和总收缩均低于普通混凝土,自养护减缩效率可达47.7%;陶砂对混凝土自养护的作用效率更高。
     自养护材料的减缩效果可用自养护材料颗粒水分的有效作用距离、自养护材料颗粒的表面间距来表征。当陶砂掺量为50%时,其邻近颗粒表面间距为417μm,颗粒所含水分的有效作用距离达到临界距离256μm,混凝土自收缩可减少98.2%。
     自养护材料引入的水分存在着利用率,在计算为消除混凝土自收缩所需的自养护材料质量时,应考虑自养护材料所含水分的利用率,本研究所用陶砂的水分的利用率为63.7%。
The properties of concrete depend upon composition of it and internal structure and changes of structure caused by environmental influence. When the composition of concrete is determined, internal structure and changes of it mainly affected by the outer environmental influence and internal hydration of cement, and the latter have close relations with changes of relative humidity inside concrete.
     Changes of relative humidity inside concrete mostly affected by internal water diffusion and self-desiccation caused by cement hydration, and are closely relative to internal water and outer curing conditions. Ceramsite has a characteristic of water absorbing and desorption, thus taking three types of ceramsite which has different water absorption and desorption rate as research object, systematic study was carried out on the change law of internal relative humidity with different ages and effect of humidity gradient on the progress of cement hydration and then on microstructure and macro-performance such as shrinkage deformation. And also relationship between relative humidity and shrinkage value of concrete which bring some theoretic basis and experimental foundation for unraveling the nature of shrinkage and cracking was set up.
     Investigation between different measurement methods for internal relative humidity of concrete shows that experimental results obtained by measuring whenever necessary using thermo hygrometer is more reliable than those obtained by currently used method which is pre-embedded method.
     Internal relative humidity gradient of concrete with different composition and under condition of one-way drying was studied and result shows that the longer moist curing lasts, the slower the internal relative humidity decreases. Comparing concrete under moist curing conditions for 28days with those under moist curing conditions for 14days, 7days, and the former has a bigger internal relative humidity that the latter at the same position in concrete and the difference comes up to 0.6%~5.4%. And also similar law can be applied to ceramsite concrete. In the same age the internal relative humidity of concrete with pre-wetting ceramsite is higher than that of normal concrete. The bigger the moisture content and replacement rate is the bigger the internal relative humidity of concrete is and the slower it decreases.
     Time during which the relative humidity is greater or equal to 80% for concrete with ceramsite containing high or medium amount of water is more than one times the length of that for normal concrete. At the age of 360 days relative humidity of centre part is still greater than 80% for QF ceramsite concrete and time during which the relative humidity is greater or equal to 80% can reach 60~90days, but time for normal concrete or YC ceramsite concrete is only 24~28days. Before the age of 56 days, the higher the amount of mineral admixture is, the slower the internal relative humidity decreases. But conditions are completely different after the age of 56 days. At the age of 360 days relative humidity is most high for concrete with 15% or 20% slag. Before the age of 28 days, internal relative humidity of concrete with a W/C of 0.45 is higher than that of concrete with a W/C of 0.3. However, after the age of 28 days internal relative humidity of concrete with a W/C of 0.45 decreases rapidly and is close or even lower than that of concrete with a W/C of 0.3.
     Microstructure of harden cement past in interfacial transition zone of ceramsite concrete was investigated, and results show that ceramsite has a more significant effect on microstructure of harden cement past in interfacial transition zone of concrete with low W/C than that of concrete with high W/C. Moisture content of aggregate has an apparent effect on the microstructure of harden cement past in interfacial transition zone. Amount of porosity and percent of large pore in ITZ of concrete with normal aggregate or with YC ceramsite containing low amount of moisture content are both higher than that of cement paste, but things becomes the opposite as to concrete with ceramsite containing high or medium amount of moisture. The ratio of CaO to SiO2 in the ITZ of the concrete is higher than that of cement paste and pore structure presents a trend of thinning. Moreover the bigger is pre-wetting rate of ceramsite and the stronger is water absorption and release and the rougher is the surface of ceramsite, the denser is the microstructure of ITZ. Mean pore size of ITZ in QF ceramsite concrete decreases up to 20.6% compared to that of normal aggregate concrete and the amount of pore which is smaller than 50nm accounts for about 80%. Microhardness of interfacial transition zone(0~10μm) of concrete with BY or QF ceramsite pre-wetting for 1hrs is about 43% and 56% higher than that of cement paste respectively and also 79.6% and 96.3% higher than that of concrete with normal aggregate. Microhardness of interfacial transition zone decreases with the increase of the degree of saturation with water. Microhardness of interfacial transition zone of concrete with BY ceramsite is highest. Under on-way drying condition, with the distance from the drying surface increases and internal relative humidity becomes big, the degree of hydration of cement paste and Microhardness of interfacial transition zone and cement paste is enhanced. Meanwhile this trend becomes more apparent when the distance from the surface is not more than 5cm and when the distance is more than 10cm the increase become steady.
     The degree of pre-wetting and the ability of water release of ceramsite have a significant effect on internal relative humidity and shrinkage deformation. With the moisture content of ceramsite increasing, internal relative humidity of concrete decreases slower under drying or self-desiccation conditions and autogenous shrinkage at early ages and long term drying shrinkage both decrease and the period during which restrained shrinkage stress reach its maximum value becomes long. There is apparent relativity between autogenous shrinkage at early ages or long term drying shrinkage and the decrease of internal relative humidity. At the age of 180 days the total shrinkage of normal aggregate concrete is about 3%~8% less than that of concrete made of YC ceramsite with low moisture content and 2%~15% more than that of concrete made of ceramsite with high moisture content. Autogenous shrinkage and drying shrinkage and total shrinkage of concrete made of BY100 ceramsite are all less than that of normal concrete, and shrinkage-reducing rate of internal curing comes up to 47.7%. Ceramsite sand has more efficient influence on the internal curing.
     The efficiency of shrinkage reduction of internal curing material can be characterized by two parameters, effective action distance of water in internal curing particles and distance between internal curing particles surface. When Ceramsite sand content is 50%, the distance between two particles surface is 417μm, and effective action distance of water in particles is 256μm, which reaches to the critical spacing, as a result, autogenous shrinkage of the concrete can be reduced 98.2%. The water introduced by internal curing material cannot be used completely, therefore, the water use ratio should be considered in the process of calculation the amount of internal curing material needed to compensate the autogenous shrinkage of the concrete, and the use ratio of Ceramsite sand is 63.7% in this research.
引文
1 O. Kayali. Fly ash lightweight aggregates in high performance concrete. Construction and Building Materials. 2008, 22(12):2393~2399
    2 D. W. Hughes, L. Hodgkinson, D. Cullen. Adjusted density concrete. Concrete International. 1999, 3(7): 54~58
    3 H. Al-Khaiat, M. N. Haque. Strength and durability of lightweight and normal weight concrete. ACI Materials Journal. 1999, 11(3): 231~235
    4祝叶,徐银芳,陈竣.陶粒轻骨料混凝土的应用与发展趋势.武汉城市建设学院学报. 2001, 18(2): 67~70
    5 F. H. Wittmann, P. Schwesinger. High performance concrete material properties and design.冯乃廉译.中国铁道出版社, 1998: 21~72
    6 E. Thorenfeldt. Design criteria of lightweight aggregate concrete. CEB/FIP International Symposium on Structural Lightweight Aggregate Concrete, Norway, 1995: 720~732
    7 Saito, Mitsurm. Tensile fatigue strength of lightweight concrete. The International Journal of Cement Composites and Lightweight Concrete. 1985, l6(3): 143~149
    8 A. M. Gerwick, B. C. Jr, W. Hester. Fatigue of high strength reinforced concrete. ACI Materials Journal. 1992, 89(2): 197~207
    9 P. B. Bamforth, E. Nolan. UK Strength LWAC in Construction. In: Steiner Helland, Ivar Holand, Sverre Smeplass. Proceeding 2nd International Symposium on Structrual Lightweight Aggregate Concrete, Norway, 2000: 440~452
    10岡木享久,石川雄康,栩木隆等.高性能輕量コンクリ一ト.コンクリ一ト工學. 1999, l37(4): 12~18
    11丁建彤,郭玉顺,木村薰.结构轻集料混凝土的现状与发展趋势.混凝土. 2000, 134(9): 23~26
    12 T. A. Holm, T. W. Bermner. State-of-the-art report on high-strength, high-durability strueturailow-density concrete for applications in severe marine environments. 2000: 1~7
    13 K. Kohno, T. Okamoto, Y. Isikawa. Effect of artificial lightweight aggregate on autogeneous shrinkage of concrete. Cement and Concrete Research. 1999, 29(4): 611~614
    14龚洛书.我国轻骨料生产和应用的现状与展望.第五届全国轻骨料及轻骨料混凝土学术讨论会,哈尔滨, 1997: 7~11
    15范锦忠.我国人造轻骨料及其制品生产、应用现状及发展方略.“第七届全国轻骨料及轻骨料混凝土学术讨论会”暨“第一届海峡两岸轻骨料混凝土产制与应用技术研讨会”,南京, 2004: 5~7
    16邓景文,张荫济.从国外轻骨料和轻骨料混凝土的发展看我国发展的思考.“第六届全国轻骨料及轻骨料混凝土学术讨论会”论文集,天津, 2000: 187~191
    17丁建彤,郭玉顺,余庆平.结构轻质混凝土在桥梁工程中的应用概况.“2002全国轻骨料及轻骨料混凝土生产、应用、技术研讨会”,宜昌, 2002: 95~103
    18冯江,童代伟,郝增恒,秦小平,陈平轻集料混凝土在桥梁工程中的应用及效益分析.公路交通技术. 2006, (3): 73~77
    19崔守远.高强页岩陶粒混凝土在芥园西道立交桥中的应用.铁道建筑. 2009, (4): 113~116
    20 X. S. Huo, L. U. Wong. Experimental study of early-age behavior of high performance concrete deck slabs under different curing methods. Construction and Building Materials. 2006, 20(10):1049~1056
    21 D. Cusson, Z. Lounis, L. Daigle. Benefits of internal curing on service life and life-cycle cost of high-performance concrete bridge decks– A case study. Cement and Concrete Composites. 2010, 32(5):339~350
    22陈晓芳,田晓霞.高强轻骨料混凝土在汾江大桥旧桥面铺装中的应用.公路交通科技. 2010, (3): 27~30
    23魏连雨,李海峰,李海军.高强轻集料混凝土特性及在桥面铺装中的应用.混凝土. 2009, (11): 109~110
    24覃志学.轻骨料混凝土在旧桥改造中的应用.广东交通职业技术学院学报. 2009, 8(3): 39~41
    25胡曙光.轻骨料陶粒混凝土在桥梁改造工程中的应用.公路交通科技. 2008, (11): 67~70
    26曹中杰,董营营,纪轶来,刘俊,凌天清.陶粒混凝土在旧桥加固桥面铺装中的应用研究.重庆交通大学学报(自然科学版). 2008, 27(5): 701~704
    27宋绍铭,田倩.陶粒吸水性能的讨论. 2002全国轻骨料及轻骨料混凝土生产、应用、技术研讨会,西安, 2002: 6~10
    28郑秀华.陶粒吸水返水特性及其对轻骨料混凝土结构与性能的影响.哈尔滨工业大学博士学位论文. 2005: 25~31
    29 H. J. Chen, T. Yen, T. P. Lia, Y. L. Huang. Determination of the dividing strength and its relation to the concrete strength in lightweight aggregate concrete. Cement and Concrete Composites. 1999, (1): 29~37
    30 K. Konstantin, S. Andrew, B. Arnon. Pre-soaked lightweight aggregate as additives for internal curing of high-strength concretes. Cement, Concrete and Aggregates. 2004, (26): 131~138
    31 S. L. Sarkar, S. Chandra, L. Berntsson. Interdependence of microstructure and strength of structural lightweight aggregate concrete. Cement and Concrete Composites. 1992, 14(3): 239~248
    32 E. I. Yang, M. Y. Kim, H. G. Park, S. T. Yi. Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete. Construction and Building Materials. 2010, 24(5): 758~765
    33 Y. Lo, X. F. Gao, A. P. Jeary, Microstructure of prewetted aggregate on lightweight concrete. Building and Environment. 1999, (34):759~764
    34 M. ?ahmaran, M. Lachemi, M.A. Khandaker. Hossain, V. C. Li. Internal curing of engineered cementitious composites for prevention of early age autogenous shrinkage cracking. Cement and Concrete Research. 2009, 39(10):893~901
    35 D. Cusson, T. Hoogeveen. Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking. Cement and Concrete Research.2008, 38(6):757~765
    36 M. Suzuki, M. S. Meddah, R. Sato. Use of porous ceramic waste aggregates for internal curing of high-performance concrete. Cement and Concrete Research. 2009, 39(5):373~381
    37王振军,沙爱民.水泥混凝土浆体-集料界面过渡区结构与性能试验技术.南昌大学学报(工科版). 2007, 29(2): 175~180
    38胡曙光,王发洲,丁庆军.轻骨料与水泥石的界面结构.硅酸盐学报. 2005, (6): 713~717
    39王发洲,周斌,彭艳洲,胡曙光.轻集料与水泥石界面区元素分布特征研究.武汉理工大学学报. 2005, 27(3): 30~33
    40张勇,丁庆军,王发洲,胡曙光.轻骨料混凝土的界面结构研究.混凝土. 2002, (10):29~31
    41 T. Y. Lo, H. Z. Cui. Effect of porous lightweight aggregate on strength of concrete. Materials Letters. 2004, (58): 916~919
    42 T. Y. Lo, H.Z. Cui. Spectrum analysis of the interfacial zone of lightweight aggregate concrete. Material Letters. 2004, (58): 3089~3095
    43 E. Amir, C. Menashi, O. Jan. Influence of lightweight aggregate on the microstructure and durability of mortar. Cement and Concrete Research. 2005, (7): 1368~1376
    44 T. Y. Lo, H. Z. Cui. Interfacial-zone microstructure of lightweight aggregate concrete. Materials Research Innovations. 2005, (2): 37~39
    45 T. A. Hammer, S. Smeplass. The Influence of lightweight aggregate properties on material properties of the concrete. International Symposium on Structural Lightweight Aggregate Concrete, Norway, 1995: 517~532
    46 H. J. Chen, T. Yen, C. T. Ko. Influences of properties and gradation of lightweight aggregate on the strength of lightweight aggregate concrete. International Symposium on Structural Lightweight Aggregate Concrete, Norway, 1995: 472~480
    47崔宏志,邢锋.用SEM和FT-IR研究轻骨料混凝土界面过渡区.混凝土. 2010, (1): 18~20
    48杨英姿,邓宏卫,高小建,张爱莲.粉煤灰陶粒混凝土的抗盐冻性.材料科学与工艺. 2009, 17(2): 239~243
    49 S. Weber, H. W. Reinhardt. A new generation of high performance concrete: concrete with autogenous curing. Advanced Cement Based Materials. 1997, (6): 59~68
    50王晴,李琳,王宇,隋智通.高强页岩轻集料混凝土的力学性能.沈阳建筑大学学报. 2009, 25(3): 517~520
    51葛勇,孔丽娟,张宝生,袁杰.陶粒对混凝土结构及毛细吸水性能的影响.硅酸盐学报. 2008, 36(7): 934~938
    52 M. H. ZHANG, O. E. Gjorv. Penetration of cement paste into lightweight aggregate. Cement and Concrete Research. 1992, 22(1): 47~55
    53 Y. LO, X. F. GAO, A. P. Jeary. Microstructure of pre-wetted aggregate on lightweight concrete. Build Environ. 1999, (34): 759~764
    54 H. Al-Khaiat, M.N. Haque. Effect of initial curing on early strength and physical properties of a lightweight concrete. Cement and Concrete Research. 1998, (6): 859~866
    55谭克锋.轻集料及高性能轻集料混凝土的性能研究.同济大学学报(自然科学版). 2006, 34(4): 472~475
    56 D. S. Babu, K. G. Babu, T. H. Wee. Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. Cement and Concrete Composites. 2006, 28(6):520~527
    57李秋义,王志伟,李云霞,田砾.海泥陶粒制备高性能轻集料混凝土的试验研究.材料科学与工艺. 2008, 16(4): 547~550
    58王树和,甄飞,熊小群,孙庆丰.高强轻集料混凝土力学性能影响因素研究.武汉理工大学学报. 2007, 29(9): 104~107
    59张宝生,孔丽娟,葛勇.轻骨料预湿程度对混合骨料混凝土力学性能的影响.混凝土. 2006, (10): 24~26 - 106 -
    60 T. Y. Lo, H.Z. Cui, Z. G. Li. Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Management. 2004, (4): 333~338
    61 D. P. Bentz. Influence of internal curing using lightweight aggregates on interfacial transition zone percolation and chloride ingress in mortars. Cement and Concrete Composites. 2009, 31(5):285~289
    62朱春生,刘巽伯.粉煤灰陶粒混凝土的抗渗性.第四届全国轻集料及轻集料混凝土学术讨论会,山东, 1994: 117~122
    63崔宏志,邢锋.轻骨料混凝土渗透性研究.混凝土. 2009, (12): 5~7
    64王发洲,胡曙光,丁庆军.高强轻集料混凝土的抗渗性能研究.新型高性能混凝土耐久性的研究与工程应用.中国建材出版社, 2004: 499~503
    65吴芳,谭盐宾,杨长辉,叶建雄.高强轻集料混凝土抗氯离子渗透性能试验研究.重庆建筑大学学报. 2007, 29(6): 117~120
    66 M. H. Zhang, E. O. Gjorv. Permeability of high-strength lightweight concrete. ACI. Materials Journal. 1991, 88(5): 463~469
    67杨正宏,李平江,计亦奇.轻集料混凝土的微观性能及耐海水侵蚀性的研究.粉煤灰. 2005, 17(1): 13~16
    68李北星,张国志,李进辉.高性能轻集料混凝土的耐久性.建筑材料学报. 2009, 12(5): 533~538
    69翟红侠,廖绍锋.高强轻混凝土高强机理分析.粉煤灰. 1999, (5): 19~24
    70谭克锋,袁伟.高性能轻集料混凝土在氯盐环境中的耐久性预测.西南科技大学学报. 2008, 23(3): 19~22
    71郭玉顺,木村薰.高强高耐久性轻集料混凝土的性能.混凝土. 2002, 132(10): 8~14
    72蒋明,谭克峰,范付忠.高性能轻集料混凝土的力学性能及耐久性的研究.西南工学院学报. 2002, 17(2): 31~33
    73唐世海,刘巽伯.粉煤灰陶粒混凝土抗冻性.第四届全国轻集料及轻集料混凝土学术讨论会,济南, 1994: 123~124
    74 K. K. M. Fujii, H. Edahiro. Mixture proportions of high-strength and high fluidity lightweight concrete. Concrete International. 1998: 150~179
    75田耀刚,胡曙光,王发州,吴静,丁庆军.高强轻集料混凝土的抗冻性能研究.混凝土与水泥制品. 2006, (2): 15~17
    76孔丽娟.陶粒混合骨料混凝土结构与性能研究.哈尔滨工业大学博士学位论文. 2008: 100~122
    77 A. A. S. Saleh, Z. A. Z. Rajeh. Effects of drying conditions, admixtures andspecimen size on shrinkage strains. Cement and Concrete Research. 2006, 36(10):1985~1991
    78 L. Mauricio, F. Lawrence. Kahn, E. K. Kimberly. Characterization of elastic and time-dependent deformations in high performance lightweight concrete by image analysis. Cement and Concrete Research. 2009, 39(7):610~619
    79 O.S.B. Al-Amoudi, M. Maslehuddin, M. Shameem, M. Ibrahim. Shrinkage of plain and silica fume cement concrete under hot weather. Cement and Concrete Composites. 2007, 29(9):690-699
    80 J. H. Moon, J. Weiss. Estimating residual stress in the restrained ring test under circumferential drying. Cement and Concrete Composites. 2006, 28(5): 486~496
    81安明喆,朱金铨,覃维祖.高性能混凝土自收缩的抑制措施.混凝土. 2001, (5): 37~41
    82 H. Ryan, J. Castro, D. Bentz, Tommy Nantung, Jason Weiss. Water absorption in internally cured mortar made with water-filled lightweight aggregate. Cement and Concrete Research. 2009, 39(10):883-892
    83 M. Geso?lu, T. ?zturan, E. Güneyisi. Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes. Cement and Concrete Composites. 2006, 28(7):598~605
    84 W.C. Tang, Y. Lo, A. Nadeem. Mechanical and drying shrinkage properties of structural-graded polystyrene aggregate concrete. Cement and Concrete Composites. 2008, 30(5):403~409
    85 M. H. Zhang, L. Li, P. Paramasivam. Shrinkage of high-strength lightweight aggregate concrete exposed to dry environment. ACI Materials Journal. 2005, 102(2):86~92
    86 D. H. Alejandro, P. C. Aitcin, N. Petrov. Effect of saturated lightweight sand substitution on shrinkage in 0.35 w/b concrete, ACI Materials Journal. 2007, 104(1):48~52
    87 H. Ryan, D. Bentz, T. Nantung, J. Weiss. Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions. Cement and Concrete Composites. 2009, 31(7):427~437
    88宋培晶,丁建彤,郭玉顺.高强轻骨料混凝土的收缩及其影响因素的研究.建筑材料学报. 2004, 7(2): 138~144
    89王发洲,丁庆军,陈友治,任飞,胡曙光.影响高强轻集料混凝土收缩的若干因素.建筑材料学报. 2003, 6(4): 431~435
    90刘巽伯.粉煤灰陶粒混凝土的收缩和徐变.粉煤灰. 1999, (4): 5~11
    91刘巽伯,计亦奇,池建业.复合骨料对高强混凝土改性的机理分析——高强低自收缩复合骨料混凝土的研究之四.混凝土. 2006, (7): 17~20
    92刘立,赵顺增,曹淑萍,吴勇.采用内约束法评价轻集料混凝土的干燥收缩开裂.膨胀剂与膨胀混凝土. 2009, (3): 14~19
    93孙海林,叶列平,丁建彤,郭玉顺.高强轻骨料混凝土收缩和徐变试验.清华大学学报. 2007, 47(6): 765~767
    94计亦奇,刘巽伯,池建业.复合骨料对高强高性能混凝土自收缩的影响.第六届全国轻集料及轻集料混凝土学术讨论会.,天津, 2000: 297~302
    95张宝生,孔丽娟,葛勇,袁杰,郭永智.混合骨料混凝土早期收缩开裂性能的研究.混凝土工程耐久性研究和应用研讨会.,成都, 2006: 307~312
    96 B. V. Baroghel, M. Mainguy, L. T. Abatere. Characterization and identification of equilibrium and transfer moisture properties for ordinary and highperformance cementitious materials. Cement and Concrete Research. 1999, 29(8): 1225~1230
    97 T. Ayano, F. H. Wittmann. Moisture distribution and shrinkage of cement-based materials. Materials and Structures. 2002, (35): 134~140
    98 D. P. Bentz, M. H. Phillip, A. S. Grader, G. W. Proderts. Water movement during internal curing direct observation using X-ray microtomo graphy. Concrete International. 2006, (10): 39~46
    99 J. K. Kim, C. S. Lee. Moisture diffusion of concrete considering self-desiccation at early ages. Cement and Concrete Research. 1999, 29(12):1921~1927
    100 A.S. El-Dieb. Self-curing concrete: Water retention, hydration and moisture transport. Construction and Building Materials. 2007, 21(6):1282~1287
    101 J. Selih, A. C. M. Sousa, T. W. Bremner. Moisture and heat flow in concrete wall exposed to fire. Journal of Engineerng Mechan-ics. 1994, (120): 2028~2041
    102 D. H. HUANG, G. T. LIU. Experimental study on surface cracking of early-age concrete. Journal of Basic Science and Engineering. 2002, (4): 395~404
    103刘光廷,黄达海.混凝土温湿耦合研究.建筑材料学报. 2003, 6(2): 173~181
    104 C. Andrade, J. A. Sarría, C. Alonso. Relative humidity in the interior of concrete exposed to natural and artificial weathering. Cement and Concrete Research. 1999, (29): 1249~1259
    105 N. Ashley, S. Mohamed, P. Romine. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors. Construction and Building Materials. 2008, 22(2):111~120
    106 L. J. Parrott. Some effects of cement and curing upon carbonation and reinforcement corrosion in concrete. Materials and Structures. 1996, (29): 164~173
    107 L. O. Nilsson. Long-term moisture transport in high performance concrete.Materials and Structures. 2002, (35): 641~649
    108 Z. C. Grasley, D. A. Lange, M. D. D’Ambrosia. Internal relative humidity and drying stress gradients in concrete. Materials and Structures. 2006, (39): 901~909
    109 Z. C. Grasley , D. A. Lange. Thermal dilation and internal relative humidity of hardened cement paste. Materials and Structures. 2007, (40): 311~317
    110黄瑜,祁锟,张君.早龄期混凝土内部湿度发展特征.清华大学学报(自然科学版). 2007, 47(3): 309~312
    111张智博,张君.混凝土收缩与环境湿度的关系研究.建筑材料学报. 2006, (6): 720~723
    112焦修刚,刘光廷.混凝土热湿耦合数值计算中的参数拟合.清华大学学报(自然科学版). 2005, 45(3): 319~321
    113 J. J. Ye, S. G. Hu, F. Z. Wang, Y. F. Zhou, Z. C. Liu. Effect of prewetted light weight aggregate on internal relative humidity and autogenous shrinkage of concrete. Journal of Wuhan University of Technology. 2006, (3): 134~137
    114 Z. W. Jiang, Z. P. Sun, P. M. Wang. Internal relative humidity distribution in high performance cement paste due to moisture diffusion and self-desiccation. Cement and Concrete Research. 2006, (36): 320~325
    115蒋正武,孙振平,王培铭.高性能混凝土自身相对湿度变化的研究.硅酸盐学报. 2003, 31(8): 770~773
    116 Q. B. Yang. Inner relative humidity and degree of saturation in high performance concrete stored in water or salt solution for 2 years. Cement and Concrete Research. 1999, (29): 45~53
    117孙南屏.混凝土体积稳定性的若干问题.混凝土. 2001, 145 (11): 61~69
    118康志茹,李小婷.不同湿度测量方法的比较.计量技术. 2006, (6): 40~41
    119 N. G. Zoldners. Thermal properties of concrete under sustained elevated temperatures. ACI Special Publication. 1971, 25(1): 1~27
    120郝光宗,邢丽缘,梁强威.饱和盐水溶液湿度固定点(1)——原理及制备.传感器技术. 1999, (1): 1~4
    121 S. Mindess, J. F. Young, D. Darwin.混凝土.吴科如,张雄,姚武,张东译.化学工业出版社, 2005: 370
    122马一平.提高水泥石-集料界面粘结强度的研究.建筑材料学报. 1999, 2(1): 29~32
    123陈惠苏,孙伟, S. Piet.水泥基复合材料界面对材料宏观性能的影响.建筑材料学报. 2005, 8(1): 51~62
    124周明凯,王稷良,关爱军.辉绿岩混凝土的强度与界面特征研究.武汉理工大学学报. 2004, 26(3): 40~43
    125 K. K. Sagoe-Crentsil, T. Brown, A. H. Taylor. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement and Concrete Research. 2001, (5):707~712
    126 M. Geiker. Studies of portland cement hydration: Measurements of chemical shrinkage and a systematic evaluation of hydration curves by means of the dispersion model. Technical University of Denmark. Ph. D. Thesis. 1983: 46~57
    127 A. Cwirzen, V. Penttala, Aggregate–cement paste transition zone properties affecting the salt–frost damage of high-performance concretes. Cement and Concrete Research. 2005, (35): 671~679
    128金南国,金贤玉,郭剑飞.混凝土孔结构与强度关系模型研究.浙江大学学报(工学版). 2005, 39(11): 1681~1684
    129 D. P. Bentz, E. J. Garboczi. Percolation of phases in a three-dimensional cement paste microstructural model. Cement and Concrete Research. 1991, (21): 324~344
    130 K. W. Meeks, N. J. Carino. Curing of high-performance concrete: report of the state-of-the-art. Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg. 1999: 42~49
    131 R. Kumar, B. Bhattacharjee. Porosity pore size distribution and in situ strength of concrete. Cement and Concrete Research. 2003, (33): 155~164
    132 B. Pradhana, M. Nageshb, B. Bhattacharjee. Prediction of the hydraulic diffusivity from pore size distribution of concrete. Cement and Concrete Research. 2005, (35): 1724~1733
    133 A. B. E. Koenders, K. V. Breugel. Modelling dimensional changes in low water/cement ratio pastes, Self-desiccation and its importance in concrete technology. Proceedings of the First International Research Seminar. 1997: 158~163
    134陈惠苏,孙伟, S. Piet.水泥基复合材料界面过渡区体积分数的定量计算.复合材料学报. 2006, 23(2): 135~142
    135 T. Numao, K. Fukuzawa. Influence of additives and admixtures on shrinkage, moisture migration and water loss hardened cement paste. High performance concrete: Material properties and design, Freiburg, 1995: 43~52
    136 J. A. Rossignolo. Effect of silica fume and SBR latex on the paste-aggregate interfacial transition zone. Materials Research. 2007, 10(1): 83~86
    137 H. F. W. Taylor, D. E. Newbury. An electron microprobe study of a mature cement paste. Cement and Concrete Research. 1984, 14(4): 565~573
    138 R. S. Gollop, H. F. W. Taylor. Microstructural and microanalytical studies ofsulfate attack. IV. Reactions of a slag cement paste with sodium and magnesium sulfate solutions. Cement and Concrete Research. 1996, 26(7): 1013~1028
    139 H. F. W. Taylor. Cement Chemistry. 2nd Edition. London: Thomas Telford, 1997: 232~235
    140祁玲.混凝土中界面的某些力学特证.广西工学院学报. 1996, 7(1): 26~30
    141马新伟,史寿国,张印成.高性能混凝土自由收缩与限制收缩.低温建筑技术. 2004, (3): 14~15
    142黄利频,刘海峰.高性能混凝土的自收缩及测试方法探讨.青海大学学报(自然科学版). 2007, 25(2): 52~56
    143缪昌文,田倩,刘加平等.基于毛细管负压技术测试混凝土最早期的自干燥效应.硅酸盐学报. 2007, 35(4): 509~516
    144 T. A. Hammer. Is there a relationship between pore water pressure and autogenous shrinkage before and during setting. Proceedings of the Third International Seminar on Self-desiccation and Its Importance in Concrete Technology, Lund, 2002:67~88
    145 N. Burlion, F. Bourgeois, J. F. Shao. Effects of desiccation on mechanical behaviour of concrete. Cement and Concrete Composites. 2005, 27( 3): 367~379
    146田倩,孙伟,缪昌文等.高性能混凝土自收缩测试方法探讨.建筑材料学报. 2005, 8(1): 82~89
    147黄国兴,惠荣炎.混凝土的收缩.北京,中国铁道出版社, 1990: 325~330
    148 A. B. Hossain, J. Weiss. Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement and Concrete Composites. 2004, 26(5): 531~540
    149 D. Cusson, T. Hoogeveen. An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage. Cement and Concrete Research. 2007, 37(2): 200~209
    150 C. de Sa, F. Benboudjema, M. Thiery, J. Sicard. Analysis of microcracking induced by differential drying shrinkage. Cement and Concrete Composites.2008, 30(10): 947~956
    151 H. T. SEE, E. K. Attiogbe, M. A. Miltenberger. Shrinkage cracking characteristics of concrete using ring specimens. ACI Materials Journal. 2003, 100(3): 239~245
    152马新伟,李学英,朱卫中,钮长仁.部分约束条件下中低水灰比混凝土开裂的预测.建筑材料学报. 2006, (5): 98~103
    153 X. W. Ma, L. X. Cao, R. D. Hooton, H. Lam, C. R. Niu. Time-dependent Early-age Behaviors of Concrete under Restrained Condition. Journal of Wuhan University of technology, Materials Science. 2007, 22(2): 350~353
    154丁庆军.高强次轻混凝土的研究与应用.武汉理工大学博士学位论文. 2006: 11~18
    155 A. Bentur, S. Igarashi, K. Kovler. Prevention of autogenous shrinkage in high strength concrete by internal curing using wet lightweight aggregates. Cement and Concrete Research. 2001, 31 (11): 1587~1591
    156 S. Zhutovsky, K. Kovler, A. Bentur. Efficiency of lightweight aggregate for internal curing of high strength concrete to eliminate autogenous shrinkage. Material and Structures/ Materiauxet Constructions. 2002, 35 (246): 97~101
    157 S. I. Igarashil. Autogenous shrinkage and induced restraining stresses in high strength concretes. Cement and Concrete Research. 2000, (30): 1701~1707
    158 J. Y. Li, Y. Yao. A study on creep and drying shrinkage of high performance concrete. Cement and Concrete Research. 2001, (31): 1203~1206
    159 P. K. Mehta. The relation between micro-structure and performance in hardened cement paste. Collected edition of the eighth international cement conference. 1987: 243~246
    160 A. Loukili. A new aproach to determine autogenous shrinkage of mortar at an early age considering temperature history. Cement and Concrete Research. 2000, (30): 915~922
    161 E. E. Holt. Early age autogenous shrinkage of concrete. A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy University of Washington. 2001:56~71
    162谢丽,吴胜兴.水灰比对混凝土早期收缩影响的研究.建筑科学. 2007, 23(1):
    54~57
    163李运江,徐波,彭辉,李宏阶.页岩陶粒混凝土制品导热系数及线胀系数测定.三峡大学学报(自然科学版). 2005, 28(1): 51~53
    164姜英波.页岩陶粒混凝土材料性能的试验研究.实验技术与管理. 2009, 26(6): 20~30
    165 P. Lura, O. M. Jensen, S. I. Igarashi. Experimental observation of internal water curing of concrete. Materials and Structures. 2007, 40(2):211~220
    166 E. E. Holt. Early Age Autogenous Shrinkage of Concrete. VTT Publication 446. Technical Research Center of Finland, Espoo, 2001, 194
    167刘巽伯,李平江,计亦奇.陶粒有效弹性模量及其预估.混凝土. 2005, (3): 35~38
    168宋小软,张燕坤.粉煤灰陶粒混凝土的弹性模量计算.工业建筑. 2006, 36(2): 61~63
    169 E. I Tazawa. Autogenous Shrinkage of Concrete. E & FN SPON and Routledge, New York, 1999: 428
    170 A. Balogh. New Admixture Combats Concrete Shrinkage. Concrete International. 1996, (7): 142~146
    171 P. K. Mehta.硬化水泥浆体的微结构与其性能的关系.第八届国际水泥会议,巴西, 1987: 243~246
    172 W. David, Mokarem. Development of concrete shrinkage performance specifications. Virginia Transportation Research Council. 2002:34~41
    173 C. Hua, P. Acker, A. Ehracher. Analyses and models of the autogeneous shrinkage of hardening cement paste. Cement and Concrete Research. 1995, 25(7): 1457~1468
    174马新伟,王臣,朱卫中,钮长仁.高性能混凝土在环形约束条件下的力学分析.中国硅酸盐学会混凝土水泥制品分会第七届理事会议暨学术交流大会,北京, 2005: 47~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700