轻质高强粉煤灰陶粒的制备及其混凝土性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻骨料混凝土具有轻质、造价低、高抗震性、高抗裂性、高耐久性、高耐火性、保温隔热等特点。轻骨料混凝土应用于建筑工程中在满足强度及其它性能要求的同时可大幅度减轻结构物的自重,这一特性使轻骨料混凝土有非常重要的应用价值。随着保护环境、实现可持续发展的国策不断深入以及建筑节能需求愈来愈高,利用各种工业废弃物生产人造轻骨料以及利用轻骨料配制的高性能的轻集料混凝土理论与应用技术具有重要的研究价值和现实指导意义。
     本文首先采用粉煤灰为主要原材料,掺入不同比例的助胀剂和助熔剂,在实验室内利用可控式电热炉,进行了高强粉煤灰烧胀陶粒制备的试验研究,结果表明,在焙烧温度区间为1200~1280℃;,焙烧时间在5~10min时烧制粉煤灰陶粒过程中,随着助胀剂掺量的增加,粉煤灰烧胀陶粒的体积密度、表观密度和24h吸水率而逐渐减小;助熔剂掺入后可显著提高陶粒的颗粒强度,降低其吸水率,改善陶粒内部的孔形结构。粉煤灰陶粒配料的酸碱系数Pk与粉煤灰陶粒的孔隙率、颗粒强度有很好的线性关系。获得符合轻质高强粉煤灰陶粒的要求三个密度等级(600级, 700级, 800级)的粉煤灰陶粒最佳配合比。随后在三个工厂进行了工业化生产中试试验,获得了烧制出轻质高强粉煤灰陶粒生产工艺路线。
     利用流变仪研究矿物掺合料种类与掺量对水泥浆体流变学参数影响规律,提出了单掺矿渣、粉煤灰、沸石粉和硅灰以及以不同比例复掺后水泥浆体的屈服强度和塑性粘度变化规律,获得了使粉煤灰陶粒混凝土获得良好的工作性能且陶粒在混凝土中分布得很均匀单掺和复掺矿物掺合料的最佳比例。为配制出高性能轻集料混凝土奠定了理论基础。
     通过对不同矿物掺合料的粉煤灰陶粒混凝土和普通同强度混凝土试件的单轴受压试验,得到了粉煤灰陶粒混凝土棱柱体强度与立方体强度的关系,并与普通混凝土的峰值应变、弹性模量、泊松比与立方体强度进行了比较。试验结果表明粉煤灰陶粒混凝土应力应变全曲线与普通混凝土相似,可以采用现行的规范进行设计。
     针对我国三北地区桥面铺装中大量应用轻骨料混凝土这一现状,利用欧盟推荐标准混凝土抗盐冻试验(CDF)对比研究了粉煤灰陶粒混凝土与普通混凝土的抗冻性。掺加矿物掺合料的粉煤灰陶粒混凝土的单面抗冻性大大优于普通混凝土的单面抗冻融性。单掺矿物掺合料的56次的耐单面抗冻顺序是:硅灰>粉煤灰>矿渣。复掺矿物掺合料的56次的耐单面抗冻顺序是:硅灰+矿渣>硅灰+粉煤灰>矿渣+粉煤灰。复掺矿物掺合料混凝土的单面抗冻性均大大优于单掺矿物掺合料混凝土的单面抗冻性。通过SEM-EDXA的分析,轻集料与水泥石之间的界面过渡区的范围约为5~20um,远远小于普通混凝土界面过渡区范围。界面区过渡区越小,混凝土的力学性能与耐久性越优良。
     研制开发了荷载下混凝土渗透性测试装置,可实现对承受0~70%抗压或抗拉强度的压应力或拉应力持续作用的混凝土试件的渗透性进行自动测量,混凝土渗透性以ASTM C 1202方法中的电通量表征。无论承受荷载作用或非荷载作用下,同强度等级的轻集料混凝土的电通量小于普通集料混凝土;当所受应力大于某一阈值时,混凝土的渗透性明显增大。以电通量评价混凝土的氯离子渗透性时,混凝土电通量Q与所受压(或拉)应力f间关系可用二次函数关系表示:Q = Af2 + Bf + C(A、B、C为常数)。
Lightweight aggregate concrete is characterized with a lightweight, low-cost, high-seismic resistance, high crack resistance, high durability and high fire resistance, heat insulation and so on. Lightweight aggregate concrete used in construction projects not only meet the strength and other performance requirements but also substantially relieve the weight of the structure, which are of some very important value. With the national policy of environment protection and sustainable development of economic and society, as well as the rising demand for energy-saving construction, the theory and application Technology using a variety of industrial waste to produce man-made lightweight aggregate and high-performance lightweight aggregate concrete plays an important research value and of practical significance.
     This paper firstly discussed the preparation of high-strength lightweight aggregate using fly ash in laboratory and in factory. Fly ash used as the main raw materials, incorporated with sintering additive and Ca(OH)2 in different ratio, was sintered a high-strength lightweight aggregate of fly ash(Lytag)in the laboratory-controlled electric furnace. The results show that in the sintering temperature range of 1200 to 1280℃, retaining time of 5 min ~ 10min, the bulk density and the apparent density and 24 h water absorption of Lytag decreased with the increase of sintering additive and the decrease of the amount of fly ash. The addition of Ca(OH)2 can significantly enhance the compressive strength of Lytag pellets, reduces its water absorption at 24h and improve internal pore-shape of inner structure. The coefficient of burnability Pk kept a good linear relationship with porosity and particle strength of Lytag. The optimal mix proportion to meet requirements of high-strength Lytag density of the three grades (600, 700, 800) Lytag was obtained. Three test pilots in QiQihar, Hulan and Daqing were performed and the optimal production process and technology was promoted.
     Rheometer used to examine the effect of the type and amount of mineral admixture on the rheological parameters of cement slurry. The development rule of Yield strength and plastic viscosity of the cement slurry with single-doped slag, fly ash, silica fume and zeolite powder, as well as the different multiple-doping proportion were obtained. Then the optimal single-doped or multiple-doped ratio of various mineral admixture were attained in order that the fresh Lytag concrete can arrive better workability and Lytag gain in a very uniform distribution in concrete. These have laid a theoretical foundation for preparation of a high-performance lightweight aggregate concrete.
     The uniaxial compression tests have been used to examine Lytag concrete with the different mineral admixture and normal concrete. The relationship between the compressive strength of prism specimens and cube specimens was set up. Peak strain, elastic modulus, Poisson's ratio and the cube compressive strength of these two concrete were compared. The results showed that the whole stress-strain curves of Lytag concrete and ordinary concrete were similar and the existing norms can meet the design requirement of Lytag concrete.
     In view of the bridge deck applied a large number of lightweight aggregate concrete in cold region, the European Union recommended standard (CDF) about frost resistance of concrete test was adopted in this paper to do a comparative study on frost resistance of Lytag concrete and ordinary concrete. The frost resistance of Lytag concrete adding mineral admixture is better than that of ordinary concrete. The order of frost resistance for single-doped mineral admixture after 56 cycles is: silica fume> fly ash> slag. The order of frost resistance for multiple-doped mineral admixture after 56 cycles is: silica fume +slag > silica fume+ fly ash > slag+ fly ash. The frost resistance of concrete for multiple-doped mineral admixture was much better than that of concrete with single-doped mineral admixture. The SEM-EDXA analysis indicated that the interface transition zone of lightweight aggregate and cement is about 5 ~ 20um, far less than the interface transition zone of ordinary concrete. The smaller the interface transition zone, the better mechanical properties and durability of concrete.
     A new testing device on concrete permeability under load was developed, which can make the concrete specimens bear the tensile stress or compressive stress of 0 to 70% and continue to examine the permeability of concrete specimens. The test method for permeability of concrete was conformed to ASTM C 1202 method of Cumulative electrical value. Regardless of loaded or unloaded, the permeability for the same level of intensity of the lightweight aggregate concrete was better than that of ordinary concrete aggregate. When the stress is greater than a certain threshold, the permeability of concrete increased significantly. In this test for permeability of concrete, the quadratic function relationship between concrete electric flux Q and the pressure (or pull) f stress can be demonstrated: Q = Af2 + Bf + C (A, B, C is a constant).
引文
1龚洛文.我国轻骨料生产和应用的现状与展望.中国硅酸盐学会轻骨料及其制品专业委员会,中国建筑学会轻骨料及轻骨料混凝土专业委员会,第五届全国轻骨料及轻骨料混凝土学术讨论会论文本.哈尔滨, 1997, 7~11
    2李建华.国外轻骨料混凝土应用.北京:中国建筑工业出版社, 1982:416~425
    3 (法) P.果尔蒙,苏锡楠(译).今日混凝土.北京:中国建筑工业出版社, 1984: 29~64
    4朱清江.国内外高强高性能混凝土的开发及应用.建筑技术开发, 1997, 24(3): 43~46
    5龚洛书,丁威.我国高强陶粒和洋陶粒性能的实验研究[J].房材与应用,2000,(5):13-16
    6高振华,郭玉顺,木村薰,丁建彤,董介宝,黄明君.高性能轻骨料的生产、性能及其成因剖析[J].混凝土,2001,(2):3~5
    7龚洛书,我国人造轻集料工业发展的回顾与思考,新型建筑材料,1996.
    8黄兆龙,洪盟峰,萧江碧,水库淤泥的性质对烧结轻质骨材之影响,第七届全国轻骨料及轻骨料混凝土学术讨论会,2004(11):97-104
    9吴丽芳,钱慧丽,刘娟红.高强粉煤灰轻骨料的研制[J].粉煤灰综合利用,2002,(5):34~35
    10 Su-Chen Huang, Fang-Chih Chang, et al. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash [J]. Journal of Hazardous Materials, 2006,(27):1~7
    11 Gunduz L. Use of quartet blends containing fly ash, scoria, perlitic pumice and cement to produce cellular hollow lightweight masonry blocks for non-load bearing walls. Construction and Building Materials, 2007,35(6):1235~1238
    12高礼雄,丁庆军,王发洲.粉煤灰陶粒的研制.河南建材,2002(1):3~4
    13陈烈芳.烧胀粉煤灰陶粒的膨胀机理研究.砖瓦, 2005(11):7~9
    14雍本.特种混凝土设计与施工.中国建筑工业出版社, 1983, 9
    15 S.Mindess, J.F.Young. Concrete. In: Prentile-Hall INC, Englewood Cliffs, New Jersey, 2002
    16 P.C.Aitcin, A.M.Nenile. High Performance Concrete Demystified. In: Concrete International, 2003
    17吴中伟.高性能混凝土(HPC)的发展趋势与问题.建筑技术, 1998,1(29): 8~13
    18姚燕,田培.高性能混凝土的研究和进展.中国土木工程学会混凝土及预应力混凝土学会混凝土外加剂专业委员会.第八届全国混凝土外加剂学术交流会论文集. 1999, 128~137
    19 TACHIBANAD, IMAIM, OKADAT. Qualities of high-strength lightweight concrete used for construction of arctic offshore platform[J]. Journal of Offshore Mechanics and Arctic Engineering, 2002, 112(1): 27~34
    20 MELBY K, JORDET E A, HANSVOLD C. Long-span bridges in Norway constructed in high-strength LWA concrete[J]. Engineering Structures, 1996, 18(11): 845~849
    21 ALDUAIJJ, ALSHALEH K M, NASEER H M N, et al. Lightweight concrete in hot coastal areas[J]. Cement&Concrete Composites, 2004, (21): 453~458
    22 HAUG A K, FJELD S. A float concrete platform hull made of lightweight aggregate concrete[J]. Engineering Structures, 2003,18(11): 831~836
    23 D.C.L. Teo, M.A. Mannan, V.J. Kurian, C. Ganapathy. Lightweight concrete made from oil palm shell (OPS): Structural bond and durability properties. Building and Environment, 2007,42:2614~2621
    24 Ing-Jia Chiou, Kuen-Sheng Wang, Ching-Ho Chen. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Management, 2006, 26:1453~1461
    25 Su-Chen Huang, Fang-Chih Chang, Shang-Lien Lo. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials, 2006,23:1325~1329
    26丁庆军,邹定华,王发洲,胡曙光.次轻混凝土匀质性影响因素研究.混凝土, 2005,190(8):57~61
    27 Pioro L.S., I.L. Pioro. Production of expanded-clay aggregate for lightweight concrete from non-selfbloating clays. Cement & Concrete Composites, 2004, 26:639~643
    28 Moulia M., H. Khelafi. Performance characteristics of lightweight aggregate concrete containing natural pozzolan. Building and Environment,2006,38(11):1~6
    29宋玉普,赵国藩,彭放,胡倍雷.多轴应力下多种混凝土材料的通用破坏准则[J].土木工程学报. 1996, 29(1): 25–32
    30陈鸣,舒西霖.集中荷载作用下钢筋轻骨料混凝土连续梁内力塑性重分布的试验研究[J] .浙江大学学报,1991,25(6):659-663
    31甄广益,周静海.钢筋轻骨料混凝土双向偏压长柱的试验研究[J].沈阳建筑工程学院学报,1991,7(3):286-291
    32郑建岚,郑作樵.陶粒混凝土框架顶层边节点抗震性能试验研究[J].福州大学学报,1996,24(3):25-34
    33王艳晗,王福明.轻骨料混凝土剪力墙抗震性能的理论研究[J].工业建筑,2001,31(1):20-22.
    34邓宗才.轻骨料高强度钢纤维混凝土的力学特性[J].山东建材学院学报,1997,11(1):55-58.
    35温颂中,王家谟.钢纤维增强轻骨料混凝土的力学性能[J].市政工程,1991(4):42-50
    36张晓峰.钢纤维对轻骨料混凝土剪力墙抗震性能的影响[J].建筑技术开发,1998,25(6):32-35.
    37 Altun F, Haktanir T. Flexural behavior of composite reinforced concrete elements[J]. Journal of Materials in Civil Engineering ASCE, 2001,13 (4) :255– 259
    38 Zhutovsky S, Kovler K, Bentur A. Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage[J]. Materials and Structures, 2002, 34(246) :97– 101
    39 Kobayashi K. Characteristics of self- compacting concrete in fresh state with artificial light- weight aggregate[J]. Journal of the Society of Materials Science, 2001, 50(9) :1 021 - 1 027
    40 Balaguru P, Poden A. Properties of fiber reinforced structural lightweight concrete[J]. ACI Structural Journal, 1996,93 ( 1 ) :62 - 78
    41丁庆军,张勇,王发洲,胡曙光,叶家军,黄志刚.泵送高强轻集料混凝土的研究.武汉理工大学学报, 2001,23,(9):4~6
    42丁庆军,时建刚,姜从盛,王发洲.高强轻集料混凝土工作性能优化的试验研究.混凝土,2007,207(1):34~36
    43胡曙光,王发洲,丁庆军.轻集料与水泥石的界面结构.硅酸盐学报. 2005, (6)
    44王振宇,丁建彤,郭玉顺.结构轻骨料混凝土的应力-应变全曲线.混凝土. 2005, (3): 39-42
    45孙敏,朱聘儒.轻骨料混凝土抗剪性能研究.混凝土与水泥制品, 2002, (6):15-17
    46柯国军,郭长青,胡绍全等.轻骨料混凝土阻尼比研究.混凝土. 2002, (10): 34-37
    47 Cheeseman C.R., A. Makinde, S. Bethanis. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash. Resources, Conservationand Recycling. 2005, 43:147~162
    48 Byung-wan Jo, Seung-kook Park, Jong-bin Park. Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA). Cement & Concrete Composites, 2006,35:1235~1243
    49 Cheeseman C.R., G.S. Virdi. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling. 2005, 45:18~30
    50 Haque M.N., H. Al-Khaiat, O. Kayali. Strength and durability of lightweight concrete. Cement & Concrete Composites, 2004, 26:307~314
    51 Tommy Y. Lo, H.Z. Cui. Spectrum analysis of the interfacial zone of lightweight aggregate concrete. Materials Letters, 2004, 58:3089~3095
    52 Tommy Y. Lo, H.Z. Cui. The effect of aggregate absorption on pore area at interfacial zone of lightweight concrete. Construction and Building Materials, 2006,23(5):1263~1275
    53 Gunduz L.. The effects of pumice aggregate/cement ratios on the low-strength concrete properties. Construction and Building Materials, 2007,36(5):1242~1242
    54 Metin Husem. The effects of bond strengths between lightweight and ordinary aggregate-mortar, aggregate cement paste on the mechanical properties of concrete. Materials Science and Engineering, 2003,36: 152~158
    55 Tommy Y. Lo, H.Z. Cui, Abid Nadeem, Z.G. Li. The effects of air content on permeability of lightweight concrete. Cement and Concrete Research, 2006,36:1874~1878
    56王发洲,丁庆军,胡曙光等.轻集料混凝土的抗渗性能研究.华中科技大学学报(城市科学版). 2005, 22(2): 36-38
    57田耀刚,胡曙光,丁庆军等.轻集料混凝土的抗硫酸盐侵蚀性能研究.新型建筑材料. 2006, (5): 61-63
    58王发洲,丁庆军,陈友治等.影响高强轻集料混凝土收缩的若干因素.建筑材料学报. 2003, 6(4): 431-435
    59邹宏霞.轻骨料混凝土耐久性研究.低温建筑技术,2003,13(3):3~4
    60 Khandaker M. Anwar Hossain. Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research, 2004, 34,283~291
    61刘娟红,宋少民.粉煤灰和磨细矿渣对高强轻骨料抗渗及抗冻性能的影响.硅酸盐学报,2005,33(4):528~532
    62 Ing-Jia Chiou, Kuen-Sheng Wang, Ching-Ho Chen, Ya-Ting Lin. Lightweight aggregate made from sewage sludge and incinerated ash [J]. Waste Management2006 (26):1453~1461
    63郭玉顺,木村薰2李民伟,丁建彤,黄明君.高强高耐久性轻骨料混凝土的性能.混凝土,2000,132(10):8~13
    64 Daria Jozwiak-Niedzwiedzka. Scaling resistance of high performance concretes containing a small portion of pre-wetted lightweight fine aggregate. Cement & Concrete Composites. 2005:27: 709~715
    65张燕坤,宋玉普,衣伟.掺硅灰的陶粒混凝土的强度和抗冻性试验[J].混凝土与水泥制品. 1998, (5): 23~25
    66 Amir Elsharief, Menashi D. Cohenb, Jan Olekb. Influence of lightweight aggregate on the microstructure and durability of mortar. Cement and Concrete Research , 2005, 35:1368~1376
    67 Ramamurthy K., K.I. Harikrishnan. Influence of binders on properties of sintered fly ash aggregate. Cement & Concrete Composites, 2006, 28:33~38
    68 T.Y. Lo, H.Z. Cui, Z.G. Li. Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Management, 2004, 24: 333~338
    69 Chao-Lung Hwang, Meng-Feng Hung. Durability design and performance of self-consolidating lightweight concrete. Construction and Building Materials, 2005, 19: 619~626
    70 Fragoulis D., Stamatakis M.G., Chaniotakis E., Columbus G.. Characterization of lightweight aggregates produced with clayey diatomite rocks originating from Greece. Materials Characterization, 2004, 53:307~ 316
    71 Harikrishnan K.I., Ramamurthy K.. Influence of pelletization process on the properties of fly ash aggregates. Waste Management, 2006, 26:846~852
    72 Ta-Peng Chang , Huang-Chin Lin, Wen-Tse Chang, Ju-Fang Hsiao. Engineering properties of lightweight aggregate concrete assessed by stress wave propagation methods. Cement & Concrete Composites, 2006, 28:57~68
    73 Fakhfakh E., W. Hajjaji, M. Medhioub. Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science. 2007,35:228~237
    74潘雨,巴恒静.商品混凝土流变特性的测定.混凝土. 2002(7): 28~30
    75 Tattersall G. H.. Relationships between the British Standard Test for Workablility and Two-Point Test. Magazine of Concrete Research. 2003, 25: 169~174
    76 Duval R., E.H. Kadri. Influence of Silica Fume on the Workability and the Compressive Strength of High-Performance Concrete. Cement and Concrete Research. 1998, 28(4): 533~547
    77 Morgan D. R.. New Developments in Shotcrete of Repair and Rehabilitation. Advances in Concrete Technology. CANMET. Ottawa, 2004: 675~720
    78 Hayakawa M., Y. Matsuoka. Application of Superworkable Concrete in the Construction of a 70-story Building in Japan. Advances in Concrete Technology. American Concrete Institute. Farmington Hills, 1995:381~398
    79 Fukute T., A. Moriwaka. Development of Superworkable Concrete for Multi-functional Structures. Ibid:335~356
    80翁友法,张东.超细矿渣掺量对高强混凝土力学性能的影响.港口工程, 2002(12): 23~26
    81郭晓燕,王福川.高掺量粉煤灰高性能混凝土的试验研究.全国高强高性能混凝土专题研讨会论文集.九江, 1997
    82 ZHANG Minhong, GJORV O E. Microstructure of the interfacial zone between LWA and cement paste[J]. Cem Concr Res, 2002, 20 (4): 613 ~614
    83 Wishchers. Application of Effects of Compressive Loads on Concrete, Beton-technishce Berichte, No.2 and 3, Duesseldorf. Germany, 2004
    84 Liu X B, Ge L. An Investigation on the Modules of Elasticity of the Lightweight Aggregate. Proceedings of the 2nd Beijing Int. Sym. On Cement&Concrete, 1989
    85过镇海,张秀琴.单调荷载下混凝土的应力-应变全曲线的试验研究.清华大学抗震抗爆工程研究室科学研究报告集(第3集).清华大学出版社, 1981年: 1~8
    86李益进,周士琼,尹健,高英力.掺超细粉煤灰高性能混凝土应力-应变全曲线试验研究.长沙铁道学院学报. 2003(9):31~33
    87赵霄龙.寒冷地区高性能混凝土耐久性及其评价方法研究[D].哈尔滨工业大学学位论文.
    88 SABIR B B. Mechanical properties and frost resistance of silica fume concrete[J]. Cement and Concrete Composites, 1997, (19): 284~294
    89张国强,覃维祖.掺粉煤灰混凝土抗盐冻剥蚀性能研究[J].低温建筑技术. 2000, (4): 3~4
    90 Setzer M.J., Auberg R. Frost Resistance of Concrete. Proceeding of the International RILEM Workshop on Resistance of Concrete to Freezing and Thawing with or without De-Icing Chemicals. New York, 1997
    91黄士元.混凝土结构抗冻融(包括盐冻)侵蚀耐久性设计的建议.混凝土结构耐久性及耐久性设计会议.北京, 2002
    92杨英姿,赵亚丁,巴恒静.关于混凝土抗冻性试验方法的讨论.低温建筑技术. 2006(5):21~26
    93 Setzer M J. Modeling and testing the freeze-thaw attack by micro-ice-lens model and CDF/CIF-test[R]. Hokk-WS, 2004
    94 ASTM C 672, Standard resistance of concrete surfaces exposed to deicing chemicals[S].
    95王中平,吴科如,阮世光.单轴压缩作用对混凝土气体渗透性的影响.建筑材料学报. 2001, 4(2):127~131.
    96方永浩,李志清,张亦涛.持续压荷载作用下混凝土的渗透性.硅酸盐学报. 2005, 33(10): 1281~1286
    97巴恒静,张武满,高小建.水灰比与应力水平对混凝土氯离子渗透性影响.武汉理工大学学报. 2006, 28(5):45~47
    98赵铁军.混凝土渗透性.北京:科学出版社, 2006:114~118
    99 Wang Kejin, Jansen D C, Shah S P, et al. Permeability study of cracked concrete. Cement and Concrete Research. 1997, 27(3):381~393
    100 Aldea C M, Shah S P, Karr A. Permeability of cracked concrete. Materials and Structures. 1999, 32(5):370~376
    101邢锋,冷发光,冯乃谦.长期持续荷载对素混凝土氯离子渗透性的影响.混凝土. 2004, (5):3~8
    102 Mehmet Gesoglu, Turan Ozturan , Erhan Gu neyisi. Effects of fly ash properties on characteristics of cold-bonded fly ash lightweight aggregates. Construction and Building Materials,2006,26:56~58
    103 M.F.M. Zain, M. Safiudin, K.M. Yusof. A Study on the Properties of Freshly Mixed High Performance Concrete. Cement and Concrete Research. 1999, 29:1427~1432
    104黄智山,巴恒静.大坍落度高性能轻骨料混凝土的研究.新型建筑材料, 2002(2):26~29
    105吴芳,吴岳新.大流动性轻集料混凝土研究.重庆建筑大学学报,2002,24(3):91~95
    106 Zelic J., Rusic D, Veza D., Krstulovic R.. The Role of Silica Fume in the Kenetics and Mechanisms During the Early Stage of Cement Hydration. Cement and Concrete Research. 2000, 30(10):1655~1662
    107龙广成,王新友,肖瑞敏.混凝土矿物掺合料的强度效.硅酸盐学报, 2002,30(2):140~143
    108吴中伟.高性能混凝土及其矿物细掺料.建筑技术,1999,30(3):160~163
    109过镇海.钢筋混凝土原理.北京:清华大学出版社, 1999
    110 P.Barnes.水泥的结构和性能.吴兆琦,汪瑞芬等.中国建筑工业出版社,1991:338~345
    111 T.Y. Lo, H.Z. Cui. Effect of porous lightweight aggregate on strength of concrete. Materials Letters, 2004,58:916~ 919
    112 Daneti Saradhi Babu, K. Ganesh Babu, Wee Tiong-Huan. Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. Cement & Concrete Composites, 2006, 28: 520~527
    113 Aitcin P.C.. Cements of Yesterday and Today: Concrete of Tomorrow. Cement and Concrete Research. 2000, 30(9):1349~1359
    114 Vision 2030: A Vision for the U.S. Concrete Industry. Concrete International. 2001, 23(3):27~34
    115 Mehta P.K. Durability—Critical Issues for the Future. Concrete International. 1997, 19(7):27~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700