基于主动红外热成像的倒装焊缺陷检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芯片互连是微电子封装的关键技术之一,而倒装焊采用凸焊点实现芯片与基底之间的机械和电气连接,因封装尺寸小、信号传输速度快等优点已逐渐成为微电子封装的主流工艺。随着倒装芯片凸点密度的提高及其间距的进一步减小,芯片的功率密度将迅速增加,芯片的散热和内部热应力失配问题更加严重,易于发生键合失效。由于凸点或焊球隐藏于芯片和基底之间,其热性能分析及缺陷检测变得更加困难。为此,本文将主动红外无损检测技术应用于微电子封装领域,结合有限元仿真对焊球热性能及缺陷检测进行了研究和分析,主要研究内容如下:
     利用解析和数值仿真方法分析了倒装芯片内部焊球的导热性能。建立了倒装焊结构的热传导数学模型,并给出了解析求解过程。将常见焊球缺陷引入倒装芯片的热传导模型,建立了倒装焊结构的纵向热阻网络;采用有限元法仿真分析了外部热激励作用下的倒装焊内部热传导状况,对比分析了缺陷焊球与参考焊球对应的温度变化。通过计算获得了存在裂纹或空洞的缺陷焊球与正常焊球各自的热阻阻值,并进一步研究了焊球热阻与缺陷尺寸之间的关系。倒装焊内部热传导分析及焊球热性能表征为主动红外缺陷检测提供了参考依据和评估指标。
     研究了主动红外热成像检测原理、方法及系统组成,并根据倒装芯片特点和检测要求,提出了一种基于主动红外热成像的倒装焊缺陷检测方法,设计并构建了实验检测平台。采用光纤耦合半导体激光器对芯片或基底表面进行非接触式加热,通过红外热像仪获得芯片表面温度分布及随时间的变化,通过热图像信号处理提取特征量,对焊球缺陷进行诊断与辨识。主动红外热成像检测系统构建及方法研究为开展倒装焊缺陷检测提供了实验平台和热图像解析的理论基础。
     利用主动红外检测实验平台,对不同尺寸焊球的缺陷检测展开实验研究。采用双面测量法对焊球直径为500μM的自制样片S1进行了缺陷检测实验,通过热图像的空间自适应滤波、边缘检测及图像分割等方法,消除了热图像噪声及焊球间隙对缺陷辨识的影响,并使用焊球的热斑面积及其温度直方图对焊球缺陷进行定量分析;采用双面测量法对焊球直径为300μm的自制样片S2进行了缺陷检测实验,通过移动平均滤波去除热图像序列中的随机噪声,构建了加热源能量分布图,并采用自参考对比法,使用焊球热斑边缘点与UBM区中心点的温差累积值对焊球状况进行判别,消除了加热不均匀性对缺陷辨识的影响,实现了焊球缺陷的有效检测;采用单面测量法对焊球直径为135μm的选购样片FA10进行了缺陷检测实验。通过自适应中值滤波及移动平均滤波算法对热图像序列进行空间和时间域上的平滑和去噪,并对热图像中各点的温度序列值按指数形式进行曲线拟合。为了减小发射率差异及加热不均匀性的影响,采用脉冲相位法,通过傅里叶变换将时域温度信息转换为频域相位信息,使用低频段的相位图进行缺陷辨识,从而实现了缺失焊球的有效检测。
     本文采用主动红外检测方法实现了缺失焊球的有效检测,并将其检测范围扩展应用于BGA、CSP等表面安装器件的焊球缺陷检测,为高密度微电子封装的可靠性评估提高了一种快速、有效的方法。
Chip interconnection is one of the key technologies for microelectronic packaging. The flip chip, which uses solder bumps to realize interconnection between chips and substrates, becomes the mainstream technics in microelectronic packaging because of its decreased package size, larger speed of signal propagation and so on. With the development of solde bumps towards higher density and finer pitch, the chip power density will increase dramatically, and the heat dissipation will become a significant problem, the thermal mismatch in the package is also getting serious, which results in solder defects and bonding failures. Defects inspection and characterization of the thermal perfermence for the solder bumps are more difficult as the bumps are hidden in flip chip package. The active infrared thermography technology was applied to defects inspection in microelctronic packaging in this thesis, and the finite element method was also adopted to investigate the heat conduction in the flip chip.
     The thermal performance of the solder bumps was investigated using the analytical and numerical methods. We constructed a mathematical model for heat transfer in the flip chip structure and provided the solving procedure. A lumped thermal resistance network was derived from the one dimension heat transfer model to which common defects were introduced. The heat conduction in the flip chip was analysed using numerical simulation. The thermal performance of the solder bumps was characterized by using the thermal resistances. The thermal resistances of the reference bump and defective bump were calculated respectively and the relationship between the thermal resistance and the defects size was also studied. The analysis of heat conduction in flip chip and the thermal characterization of the solder bump provide a criterion for package reliability evaluation and defects inspection.
     We have studied the principle and methods for the active infrared thermography. A novel approach for defects inspection of the solder bumps based on the active infrared thermography technology was proposed and the experimental setup was constructed, in which surface of the die or substrate is heated by the fiber coupled diode laser, and the temperature distribution on the top surface of the die is monitored by the thermal imager. Then the soder defects are distinguished by some characterisctic quantities derived from the thermography processing, which makes the experiments of defects inspection feasible, and offers a guideline for thermography interpretation.
     Experiments have been carried out to inspect the missing solder bumps of different diameter and pitch. The test vehicle S1 with the solder bumps of 500μm in diameter was detected in transmission way. Techniques of the adaptive filtering, the edge detection and the image segmentation were adopted to decrease the noise in thermograms and to eliminate the influence of emissivity difference between the UBM layer and gaps. The hotspot area over every solder bump and the temperature histogram are used to characterize the defects quantificationally. The test vehicle S2 with the solder bumps of 300μm in diameter was also detected in transmission way. The moving average filter was used to remove the random noise. The source distribution image was created to indicate the spatial nonuniformity of excitation. IR self reference method was proposed that temperature value of every edge point is substract from that of the central point at each time, and the temperature difference was accumulated all time. The defective solders are differentiated by the summation of the temperature difference. The specimen FA 10 with the solder bumps of 135μm in diameter was inspected in reflection way. The spacial and temporal filtering techniques were adopted to improve the signal to noise ratio. The recorded thermograms were input into an adaptive median filter, and the temperature evolution of each pixel was extracted and smoothed by the moving average operation. Then the temperature-time curve was fitted with an exponential function. To eliminate emissivity variations and heating non-uniformity, we converted the fitted temperature values in time domain to the phase information in frequency domain using fast Fourier transform. The defective solder bumps were indentified in the phase map at low frequency.
     The results demonstrate that the active infrared thermography technology is effective for identification of the missing bumps, and can also be used for inspection of solder balls in CSP and BGA packages, which provides a fast and effective method for reliability evaluation in high density packaging.
引文
[1]朱高峰,全球化时代的中国制造[M],北京,社会科学文献出版社,2003
    [2]李珂,我国IC产业制造业快速增长设计业挑战严峻[J],中国电子报,2008,第3版
    [3]雷源忠,雒建斌,丁汉,钟掘.先进电子制造中的重要科学问题,中国科学基金,2002,16(4):204-209
    [4]Tummala R R. Impottance, status and challenges in microelectronics system-level packaging[C]. Proceedings of the ISEPT,1996:6-11
    [5]毕克允等.微电子封装技术[M],合肥,中国科学技术大学出版社,2003
    [6]况延香,刘玲.微组装与芯片互连技术[C].全国第二届SMT学术研讨会论文集.1993:126-133
    [7]Kovae C. Plastic package fabrication, In Electronic Materials Handbook, ASM International, Materials Park, OH,1998(1):471-473
    [8]Sugimoto M, Yoshida T, Sumi Y, Hasegawa H, Wada K. Experimental Results for 100 μm Pitch TAB Technology[C], Proceedings Elec. Man. Tec. Symp., Neuilly sur Seine, France,1988:53-56.
    [9]Chung T, Carey D, Gardner B. Development of large high I/O flip chip technology[C]. Proceedings of NEPCON West,1994:1527-36.
    [10]Aschenbrenner R. Flip chip Assembly for consumer electronics [C], Proceedings of International Symposium on Electronic Packaging,1999.
    [11]Greathouse S. Minimal size packaging solution:a comparison[J], Microelectronics International,1996(40)
    [12]Pedder D J. Flip chip solder bonding for microelectronic applications [J], Hybrid Circuits,1988(15):4-7.
    [13]Burdett P A, Lodge K J, Pedder D J. Techniques for the inspection of flip chip solder bonded devices[J], Hybrid Circuits,1989(19):44-48.
    [14]Totta P A, et al. SLT device metallurgy and its monolithic extension[J], IBM Journal of Reasearch and Development,1969,13(3):226-238
    [15]Yamada T, Otsutani K, Sahara K, Otsuka K. Low stress design of flip chip technology for Si on Si multichip modula[C], IEPS,1985:.551-557.
    [16]Goldmann L S. Self-alignment capability of controlled-collapse chip joining[C], Proeeedings 22nd Eleetronie Components Conference,1972:332.
    [17]Tsukada Y. Surface Lamilar circuit and flip chip attach packaging[C], ECTC,1992
    [18]Nishimori T, Yanagihara H, Murayama K, Kama Y, Nakamura. Characteristics and potential application of polyimide-core-bump to flip chip[J], IEEE Trans on CPMT, 1996,19(1):18-23.
    [19]Ahmed S, Tummala R, Potts H. Packaging technology for IB Ms latest mainframe computers[C], ECTC,1991:682-688.
    [20]http://www.itrs.net/Links/2007ITRS/Home2007.htm
    [21]Tan C W, Chan Y C, Leung B, Liu H D. Effects of soft beam energy on the micro structure of Pb37Sn, Au20Sn, and Sn3.5AgO.5Cu solder joints in lensed-SM- fiber to laser-diode-affixing application[J], Opt Lasers Eng.2008,46:75-82.
    [22]Guo F. Composite lead-free electronic solders[J], Mater Sci:Mater Electron,2007(18): 129-45.
    [23]Jeannotte D A. Solder as a structural member for chip joining[C], Electronic Components Conference Proceedings,1969:334.
    [24]Fan X J, Zhou J, Zhang G Q. Multi-physics modeling in virtual prototyping of electronic packages combined thermal, thermo-mechanical and vapor pressure modeling [J], Microelectronics Reliability.2004,44:1967-1976.
    [25]Han L, Zhong J. Effect of tightening torque on transducer dynamics and bond strength in wire bonding[J], Sensors and Actuators A.2008,141:695-702
    [26]ITRS 2008 Update Overview. http://www.itrs.net/Links/2008ITRS/Home2008.htm
    [27]王立成,丁汉,熊有伦.倒装焊芯片封装中的非接触检测技术[J],机械与电子,2004,5:45-49.
    [28]Martin P L. Electronic Failure Analysis Handbook. McGraw-Hill; 1999.
    [29]Michael D. Early, accurate, high speed automated optical inspection comes of age [Z]. Teradyne, Inc
    [30]薛晓洁,叶声华,孙长库.栅状阵列器件激光视觉检测系统及共面性评价方法[J].机械工程学报,2001,37(5):78-80.
    [31]Yen H N, Tsai D M, Feng S K. Full-field 3-D flip-chip solder bumps measurement using DLP-based phase shifting technique[J], IEEE transactions on advanced packaging,2008,31(4):830-840
    [32]龙绪明BGA/CSP焊接和光学检查[J].电子工业专用设备.2003(8):68-71.
    [33]颜旭男,蔡笃铭,谢坤翰.应用准确白光相位技术检测BGA共面性[C].中国工业工程学会年会论文集(台湾),2001
    [34]Schick A, Kedziora M. Inspection and process evaluation for flip chip bumping and CSP by scanning 3D confocal microscopy [C], IEEE:8th Internatioanl Symposium on Advanced Packaging Materials.2002(7):116-119.
    [35]Sassov A, Luypaert F. X ray digital microlaminography for BGA and flip chip inspection [C]. X ray Microscopy:Proceedings of the Sixth International Conference. 2000:239-244
    [36]Kovacs R. X-Ray Inspection of Microwire Bonds. In:Proceedings of the 28th International Spring Seminar on Electronics Technology:Meeting the Challenges of Electronics Technology. Austria (Wiener Neustadt):Institute of Electrical and Electronics Engineers Computer Society,2005:448-451.
    [37]Ditali A, Ma M, Johnston M, et al. X-ray inspection-induced latent damage in DRAM. In:Proceeding of the 44th IEEE International Reliability Physics Symposium Proceedings. USA (Piscataway):IEEE,2006:266-269.
    [38]Roth H, He Z, Paul T Inspection of Miniaturised Interconnections in IC Packages with Nanofocus(?)X-Ray Tubes and NanoCT. In:Proceeding of the 10th Electronics Packaging Technology Conference. USA (Piscataway):IEEE,2008:644-649.
    [39]Pacheco M, Wang Z Y, Skoglund L, et al. Advanced Fault Isolation and Failure Analysis Techniques for Future Package Technologies[J]. Intel Technology Journal, 2005,9(4):337-352.
    [40]王亚非,袁敬闳.声显微成像[J].压电与声光,1996,18(4,8):240-243
    [41]Hoh H J, Zhang H S, Xue M. Characterization of Flip Chip Bump Failure Mode by using High Frequency 230MHz MP and CP4 Transducer. In:Proceeding of the 10th Electronics Packaging Technology Conference, USA (Piscataway):IEEE,2008:601-607.
    [42]Martin E, Larato C, Ment A C, et al. Detection of Delaminations in Sub-Wavelength Thick Multi-Layered Packages from the Local Temporal Coherence of Ultrasonic Signals. NDT&E International,2008,41:280-291
    [43]Brand S, Raum K. Signal Analysis in Scanning Acoustic Microscopy for Non-Destructive Assessment of Connective Defects in Flip-Chip BGA Devices. IEEE Ultrasonics Symposium,2007:817-820
    [44]Yang J, Ume C, Zhang L. Defect detection of flip chip solder bumps with wavelet analysis of laser ultrasound signals[J], IEEE Transactions on advanced packaging, 2010,33 (1):19-29.
    [45]Liu S, Ume C. Defects pattern recognition for flip chip solder joint quality inspection with laser u itrasound and interferometer [J]. IEEE:Electronic Components and Technology Conference.2002, (4):1491-1496.
    [46]Zhang L Z. Development of microelectronic solder joint inspection system:Modal analysis, finite element modeling and ultrasound signal processing. Ph.D Dissertation. Georgia Institute of Technology,2006
    [47]Liu S, Ume C. Digital signal processing in a novel flip chip solder joint defects inspection system[J], ASME J. Electron. Packag.,2003,125:39-43.
    [48]Traub A C. Parts inspection by laser beam heat injection[J], NDT International,1988, 21(2):63-69.
    [49]Chai TC, Brian S. Wong, Bai WM, A Novel Defect Detection Technique Using Active Transient Thermography for High Density Package and Interconnections, Electronic Components and Technology Conference,2003:920-925.
    [50]Lu J C, Trigg A, Wu J H, ChaiT C, Detecting underfill delamination and cracks in flip chip on board assemblies using infrared microscopy [J], International Journal of Microelectronics and Electronic Packaging,1998,21(3):231-235.
    [51]Carslaw H S, Jaeger J C. Conduction of Heat in Solids, Oxford Univ. Press, London 1959
    [52]Incropera; P David; DeWitt; L Theodore; Bergman; Adrienne S. Lavine. Fundamentals of Heat and Mass Transfer [M]. Wiley,2006,6th-edition.
    [53]田裕鹏.红外检测与诊断技术[M],北京,化学工业出版社,2006.
    [54]Fedasyuk D, Levus E, Petrov D. Flip-chip structure transient thermal model[J], Microelectron. Reliab.,2001 (41):1965-1970.
    [55]Fedasyuk D, Levus E, Mykhalchuk M, Petrov D. Modelling and analysis of providing thermal performance of flip chip structure[C],5th Therminic Workshop, Rome, 1999:142-146.
    [56]Gurrum S, Suman S, Joshi Y, Fedorov A. Thermal Issues in Next-Generation Integrated Circuits[J], IEEE T. Device Mat. Re.2004,4(4):709-714.
    [57]Kandasamy R, Mujumdar A S. Thermal analysis of a flip chip ceramic ball grid array (CBGA) package, Microelectron. Reliab.2008,48:261-273.
    [58]Joiner B, Montes de Oca T. Thermal performance of flip chip ball grid array packages, In:18th IEEE SEMI-THERM Symposium, San Jose (CA),2003:50-56.
    [59]Chen K M, Houng K H, Chiang K N. Thermal resistance analysis and validation of flip chip PBGA packages, Microelectron. Reliab.2006,46:440-448.
    [60]Poppe A, Zhang Y, Farkas G, Wong H, Wilson J, Szabo P. Thermal characterization of multi-die packages, Electronics Packaging Technology Conference, Singapore, 2006:500-505.
    [61]Bash C E, Blanco R L. Improving Heat Transfer from a Flip-Chip Package, Hewlett-Packard Journal, August 1997
    [62]Jiang L, Kolluri S, Rubin B, et al. Thermal modeling of on-chip interconnects and 3D packaging using EM tools, Electrical Performance of Electronic Packaging, Singapore, 2008:279-282.
    [63]Sham M L, Kim J K, Park J H. Thermal performance of flip chip packages:Numerical study of thermo-mechanical interactions [J], Comp. Mater. Sci.2008,43:469-80.
    [64]Krishnamoorthi S, Zhu W, Wang C, Tan H B, Sun A. Thermal Evaluation of Two Die Stacked FBGA Packages, Electronics Packaging Technology Conference, Singapore, 2007:278-284.
    [65]Joo Goh T, Seetharamu K, Quadir G, Zainal Z, Jeevan Ganeshmoorthy K. Thermal investigation of microelectronics chip with non-uniform power distribution: temperature prediction and thermal placement design optimization [J], Microelectron. Int,2004:29-43.
    [66]Lu X N, Shi T L, Xia Q, Liao G L. Thermal conduction analysis and characterization of solder bumps in flip chip package[J], Applied Thermal Engineering,2012 (36):181-187.
    [67]Liu L, Yi S, Ongc L S, Chian K S. Finite element analysis for microwave cure of underfill in flip chip packaging, Thin Solid Films,2004:436-445.
    [68]Hsiao H Y, Liang S W, Ku M F, Chen C, Yao D J. Direct measurement of hot-spot temperature in flip-chip solder joints under current stressing using infrared microscopy[J], J. Appl. Phys.2008,104(033708)1-6.
    [69]Osiander R, Spicer J W M, Murphy J C, Analysis Methods for Full-Field Time-Resolved Infrared Radiometry, in Thermosense XVIII:An International Conference on Thermal Sensing and Imaging Diagnostic Applications, Proc. SPIE,1996(2766):218-227.
    [70]Murphy J C, Aamodt L C, Maclachian Spicer J W. Principles of Photothermal Detection in Solids, Principles & Perspectives of Photothermal & Photoacoustic Phenomena, edited by A.Mandelis, pp.41-94, Elsevier Science Publishing, New York, 1992.
    [71]Milton A F, Barone F R, Kruer M R. Influence of Nonuniformity on Infrared Focal Plane Array Performance, SPIT Opt. Eng.,1985,24(5):855-65
    [72]Schulze M J, Caldwell L V, Nonuniformity correction and correctability of infrared focal plane arrays, SPIE,1995(2470):200-211
    [73]胡晓梅.红外焦平面探测器的非均匀性与校准方法研究[J],红外与激光工程,1999,28(3):9-12.
    [74]吕中产,田裕鹏,周克印.红外无损检测中热激励研究,无损探伤,2005,29(6):44-45.
    [75]Ibarra-Castanedo C, Gonzalez D, Klein M, Pilla M, Vallerand S, Maldague X. Infrared image processing and data analysis[J], Infrared Physics & Technology,2004 (46):75-83
    [76]Vozar L. Two data reduction methods for evaluation of thermal diffusivity from step- heating measurements[J], Int. J. Heat Mass Transfer,1997,40(7):1647-1655.
    [77]Bittle R, Taylor R, Step-heating technique for thermal diffusivity measurements of large-grained heterogeneous materials, J. Am. Ceram. Soc,1984 (67):186-190.
    [78]Osiander R, Spicer J. Time resolved infrared radiometry with step heating. A review[J], Revue Generale de Thermique,1998(37):680-692
    [79]Shepard S M, Ahmed T, Lhota J R. Experimental considerations in vibrothermography, Proc. SPIE 2004 (5405):332-35
    [80]Piau J M, Bendada A, Maldague X, Legoux J G. Nondestructive inspection of open micro-cracks in thermally sprayed coatings using ultrasound excited vibrothermography, Proc. SPIE,2007 (6541) 654112
    [81]Mendioroz A, Salazar A, Alonso F, Ocariz I. Crack Characterization in metallic plates using vibrothermography,9th International Conference on Quantitative Infrared Thermography.
    [82]Huth S, Breitenstein O, Huber A, Dantz D, Lambert U, Altmann F. Lock-in IR-thermography-A novel tool for material and device characterization[J], Solid State Phenomena,2002(82-84):741-746
    [83]Bauer J, Breitenstein O, Wagner J M. Lock-in thermography:A versatile tool for failure analysis of solar cells[J], Electronic Device Failure Analysis,2009 (3):6-12
    [84]Quek S, Almond D, Nelson L, Barden T. A novel and robust thermal wave signal reconstruction technique for defect detection in lock-in thermography [J], Measurement science and technology,2005 (16):1223-33
    [85]Bai W, Wong B S. Non-destructive Evaluation of Aircraft Structure Using Lock-in Thermography[C], Proceedings of SPIE,2000 (3994):37-46
    [861薛书文;雷雨;陈习权;祖小涛.脉冲红外热成像无损检测的物理检测机理[J].电子科技大学学报,2005,34(3)320-327.
    [87]Lugin S, Netzelmann U. A defect shape reconstruction algorithm for pulsed themography, NDT & E International.2007,40(3):220-228.
    [88]Omar MA, Zhou Y. A quantitative review of three flash thermography processing routines. Infrared Physics & Technology,2008,51(4):300-06
    [89]Maldague X, Couturier J P. Review of Pulse Phase Infrared Thermography, Proceeding of 4th International Workshop on Advanced Infrared Technology and Applications (AITA), Firenze, Italy,1997,53(1):271-286.
    [90]Ibarra-Castanedo C, Maldague X. Interactive methodology for optimized defect characterization by quantitative pulsed phase thermography [J], Research in Nondestructive Evaluation,2005,16:175-193.
    [91]Maldague X, Galmiche F, Ziadi A. Advances in pulsed phase thermography. Infrared Physics & Technology.2002; 43:175-181.
    [92]Ibarra-Castanedo C, Gonzalez DA, Maldague X. Automatic algorithm for quantitative pulsed phase thermography calculations. Proceedings of WCNDT on CD; Montreal (Quebec),2004.
    [93]祝洪良,装艳丽,杨德仁.氮化硅薄膜制备和生长动力学研究进展,材料导报,2002,16(12):34-36.
    [94]Quirk Michael, Serda Julian.半导体制造技术[M].北京:电子工业出版社,2004.
    [95]郭江华,王水弟,张忠会,胡涛,贾松良.倒装芯片凸焊点的UBM,半导体技术,2001,26(6):60-64.
    [96]Teo P S, Huang Y W, Tung C H et al. Investigation of under bump metallization systems for flip chip assemblies. IEEE/CPMT Electronic Components and Technology Conference.
    [97]Liu C Y, Tu K N, Sheng T T, et al. Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization[J]. Journal of Applied Physics.2000,87(2):750-754.
    [98]Li M, Zhang F, Chen W T, et al. Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin films[J]. Journary of Materials Research.2002, 17(7):1612-1621.
    [99]Campbell, Stephen. The Science and Engineering of Microelectronic Fabrication. Oxford University Press; 2nd edition.
    [100]Pratt W K. Digital Image Processing, Wiley, New York,1991.
    [101]Marinetti S, Maldague X, Prystay M, Calibration procedure for focal plane array cameras and noise equivalent material loss for quantitative thermographic NDT[J], Mater. Eval.1997,55 (3):407-412.
    [102]Heriansyah R, Abu-Bakar SAR. Defect detection in thermal image for nondestructive evaluation of petrochemical equipments. NDT & E International.2009,42(8):729-40.
    [103]Canny J. A computattiomal approach to edge detection [M]. IEEE Trans, Pattcm Amal, Machinc Intell,1986.
    [104]刘晨,张东,等.边缘检测算子研究及其在医学图像中的应用[J].计算机技术与发展,2006,8:129-130.
    [105]冯伍,张俊兰,苗秋瑾.几种典型边缘检测算子的评估[J].电子设计工程,2011,19(4):131-133.
    [106]Sham F C, Huang YH, Liu L, Chen YS, Hung YY, Lo TY. Computerized tomography technique for reconstruction of obstructed temperature field in infrared thermography. Infrared Physics & Technology.2010,53(l):1-9.
    [107]Susa M, Maldague X, Boras I. Improved method for absolute thermal contrast evaluation using Source Distribution Image (SDI). Infrared Physics & Technology, 2010,53:197-203.
    [108]Susa M, Maldague X, Boras I. Application of the Source Distribution Image (SDI) procedure for porosity detection in honeycomb structures.10th International Conference on Quantitative InfraRed Thermography, Quebec,2010
    [109]Omar M, Hassan M I, Saito K, Alloo R. IR self-referencing thermography for detection of in-depth defects, Infrared Physics& Technology,2005,46:283-289.
    [110]Sakagami T, Nishimura T, Kubo S. Development of a self-reference lock-in thermography and its application to crack monitoring. Proceedings of SPIE, Bellingham, WA,2005,5782:379-387;
    [111]Shepard SM, Lhota JR, Rubadeux BA, Wang D, Ahmed T. Reconstruction and enhancement of active thermographic image sequence [J], optical engineering.2003, 42(5):1337-1342.
    [112]Rajic N. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures, Compos. Struct.2002 (58):521-528.
    [113]Maldague X. Theory and practice of IR technology for nondestructive testing,1st ed., New York:Wiley-Interscience,2001.
    [114]Lu X N, Liao G L, Zha Z Y, Xia Q, Shi T L, A novel approach for flip chip solder joint inspection based on pulsed phase thermography, NDT&E Int.44 (2011) 484-489.
    [115]Ben Hamza A, Luque-Escamilla PL, Martinez-Aroza J, Roman-Roldan R. Removing noise and preserving details with relaxed median filter, J. Math. Imag. Vision.1999, 11(2):161-77.
    [116]Sun B, Ma Q, Zhao H, Fitting-correlation Analysis of Pulsed Thermo graphic Sequence. Data[C], Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,2007:630-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700