煤/生物质气化合成气燃烧特性的激光诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由煤、生物质、有机废弃物的气化产生的合成气是一种很有前景的清洁高效燃料,主要组成为H2、CO、CH4、C02、02、N2等,与固体燃料直接燃烧相比,不仅能够提高能源利用效率,而且还能有效降低污染物排放,在未来的能源利用与转化方面具有极大的潜力。但是合成气的气体组成复杂、热值低、燃烧不稳定,加上其燃烧机理研究的不足,给实际应用带来很大挑战。因此,深入研究合成气的燃烧特性、高效清洁的利用合成气,是我国清洁能源战略的一个重要组成部分。
     激光燃烧诊断技术具有不干扰流场、对恶劣的燃烧环境适应性强等优点,是研究火焰燃烧机理的理想手段。本文运用先进的激光燃烧诊断技术,对合成气的预混层流和湍流燃烧特性以及臭氧的强化燃烧展开了一系列的研究,形成了比较全面、系统的合成气燃烧理论,不仅为我国新型燃烧设备的发展与优化提供了重要的基础与工程实践指导,而且对未来的燃烧科学研究领域和工程设计也有着重要的意义。
     本文先利用瑞利散射对烟煤气化合成气在稀薄预混条件下的层流火焰温度进行了定量测量,并与热电偶测量及CHEMKIN数值计算结果进行了对比分析;然后利用热流量法和热敏磷光测温法测量了两种典型合成气:5%H2-95%CO和20%H2-20%CO-60%N2的绝热层流火焰速度,并运用CHEMKIN的三种机理:GRI-Mech3.0, USC Mech Ⅱ和Davis'H2/CO进行了计算与对比验证。结果发现,氮气稀释对合成气的层流火焰速度有抑制作用,而预热温度的提高对火焰速度有促进作用;热流量法测合成气层流火焰速度的最小误差为0.5975cm/s;三种机理中Davis'H2/CO机理能够更好地预测H2/CO合成气的层流火焰速度。
     接下来,本文模拟了真实组分的低热值煤/生物质气化合成气,利用OH-PLIF技术,对四种典型煤/生物质气化合成气的稀薄预混湍流火焰特性进行了试验研究与分析,包括湍流火焰结构、火焰前锋位置和湍流火焰速度等。研究表明,当量比、氢气含量、低热值和湍流强度对合成气火焰中OH自由基的强度分布、OH反应层的厚度、火焰长度、火焰前锋位置以及湍流火焰速度均有一定的影响;四种合成气中烟煤气化合成气的湍流火焰速度最大、更有利于燃烬;湍流强度可以压缩OH反应层的厚度,增强OH自由基的强度分布,从而强化了合成气的燃烧过程。
     最后,本文利用热流量法精确测量了甲烷-空气预混气在有/无臭氧添加条件下的绝热层流火焰速度,研究了臭氧浓度变化对燃烧速度的影响,并改进了新的16步臭氧机理,运用CHEMKIN软件的PREMIX模块,对甲烷-空气-臭氧预混火焰的温度、主要自由基的分布、10个关键反应的敏感度分析以及火焰速度进行了计算与验证,确定了对臭氧增强火焰速度起关键作用的机理反应,进一步研究了臭氧分子的强化燃烧机理。研究表明,臭氧分子的加入,在火焰的预热区产生了大量的O自由基,从而激发了支链反应的发生,提高了火焰速度,强化了燃烧。
Syngas, derived from coal, biomass and organic waste gasification, is considered to be a more attractive fuel due to the cleanness and high efficiency. Compared with direct combustion of solid fuel, syngas (basis CO/H2/CH4/CO2/N2/O2) can not only enhance energy utilization efficiency but also reduce the toxic emission, which is very potential for further energy conversion and utilization. However, the complex gas composition, much lower low calorific value (LCV) and combustion instability of syngas as well as the shortage of combustion mechanism research, the practical application of syngas is faced with huge challenge. Therefore, it is necessary to investigate the combustion characteristic in depth, and efficiently and cleanly utilize the LCV syngas.
     Laser diagnostics in combustion is a kind of ideal instrument for combustion mechanism investigation due to the noninterference for flow field and nice applicability for the abominable combustion environment. Premixed laminar and turbulent combustion characteristic of syngas and combustion enhancement of O3were investigated using advanced laser diagnostics technology and formed a relative comprehensive and systemic syngas combustion theory, which not only provide groundwork and guidance for the development and optimize of new combustion equipment, but also have great meaning for future combustion science and engineering design.
     First, laminar flame temperatures of lean premixed bituminous coal gasification syngas were measured quantitatively using Rayleigh scattering and the results of thermocouple and CHEMKIN calculation were also carried out to compare with the experimental results; then adiabatic laminar flame speeds of two typical syngases:5%H2-95%CO and20%H2-20%CO-60%N2were accurately measured using improved Heat Flux method and thermographic phosphor. Three chemical kinetic mechanisms:GRI-Mech3.0, USC Mech Ⅱ and Davis'H2/CO were adopted to calculate and evaluate the experimental data. Results show that N2dilution restrain the flame speed of syngas while higher preheat temperature accelerate the flame speed. The smallest measurement uncertainty of the flame speed using heat flux method in present measurement was±0.5975cm/s. The Davis'H2/CO mechanism gives the best prediction among all the three models.
     Then, lean premixed turbulent flame characteristics of several typical coal/biomass gasification syngases were investigated using OH planar laser induced fluorescence (PLIF) technology, including turbulent flame structure, flame front and turbulent flame speed etc. The syngases were prepared according to the actual gas composition of syngas. Results show that equivalence ratio, H2content, LCV and turbulence intensity are the most effective factors influencing the OH radical intensity distribution, thickness of OH reaction layer, flame length, flame front and turbulent flame speed. The bituminous coal gasification syngas has the fastest turbulent flame speed and tends to burn out easily. Through changes in thickness of the OH layers and signal intensities, the reaction layer can be compressed by intensifying turbulence and thereby the combustion processes of syngas.
     In the end, the adiabatic laminar flame speeds of premixed methane/air flames with/without O3additive were accurately measured using the Heat Flux method, and the effect of O3on the enhancement of flame speed was investigated. An improved new16-step O3kinetic mechanism were proposed and adopted in the PREMIX module of CHEMKIN to calculate and validate the experimental results, including the premixed flame temperature, main radical distribution, sensitivity analysis of10key reactions and flame speed. The crucial reactions for the combustion enhancement by ozone additive were confirmed and the enhancement mechanism of ozone was investigated. Results show that Extra O radicals contributed by O3molecules in the pre-heat zone initiate and accelerate the chain-branching reactions and consequently increase the burning velocity.
引文
[1]程军,曹欣玉,宋玉彩,刘建忠,范红宇,周俊虎,岑可法.层燃炉内高温燃烧脱硫热工环境的研究.中国电机工程学报2002;22:142-47.
    [2]Gamino B, Aguillon J. Numerical simulation of syngas combustion with a multi-spark ignition system in a diesel engine adapted to work at the Otto cycle. Fuel 2010;89:581-91.
    [3]Natarajan J, Lieuwen T, Seitzman J. Laminar flame speeds of H2/CO mixtures:Effect of COt dilution, preheat temperature, and pressure. Combust Flame 2007; 151:104-19.
    [4]Dobbeling K, Knopfel HP, Polifke W, Winkler D, Steinbach C, Sattelmayer T. Low-NOx premixed combustion of MBtu fuels using the ABB double cone burner (EV Burner). J Eng Gas Turb Power 1996; 118:46-53.
    [5]王晟,刘晶儒,胡志云,张振荣,张立荣,叶景峰,赵新艳,黄梅生.分子过滤瑞利散射技术测量火焰温度和密度.强激光与粒子束2008;20:2001-05.
    [6]Kychakoff G, Howe RD, Hanson RK, Mcdaniel JC. Quantitative Visualization of Combustion Species in a Plane. Applied Optics 1982;21:3225-27.
    [7]Yakar AB, Hanson RK. Experimental investigation of flame holding capability of hydrogen transverse jet in supersonic cross-flow. Proceedings of the Combustion Institute 1998;27:2173-80.
    [8]Frank JH, Barlow RS. Simultaneous rayleigh, raman, and LIF measurements in turbulent premixed methane-air flames. Proceedings of the Combustion Institute 1998;27:759-66.
    [9]Kalt PAM, Chen YC, Bilger RW. Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combust Flame 2002;129:401-15.
    [10]Li ZS, Kiefer J, Zetterberg J, Linvin M, Leipertz A, Bai XS, Alden M. Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames. Proceedings of the Combustion Institute 2007;31:727-35.
    [11]张永生,王岳,张哲巅,穆克进,惠鑫,张文兴,杨伟鹏,肖云汉.合成气稀释旋流扩散火焰稳定性研究.燃气轮机技术2007:20:29-34.
    [12]张永生,穆克进,张哲巅,王岳.不同空气和燃料旋流强度下合成气稀释扩散火焰特性研究.中国电机工程学报2009;29:63-68.
    [13]穆克进,张彦,惠鑫,王岳.运用OH-PLIF方法探测预混火焰前锋结构.工程热物理学报2008;29:711-14.
    [14]王岳,雷宇,张培元,张孝谦.用OH-PLIF研究浮力对预混V形火焰的作用.工程热物理学报2001;22:382-85.
    [15]王岳,雷宇,张孝谦,Konig J, Eigenbrod C浮力对皱折锋面预混V形火焰的影响.燃烧科学与技术2002;8:493-97.
    [16]王岳,雷宇,Eigenbrod C, Tang Y湍流预混火焰中的浮力效应.工程热物理学报2004;25:527-30.
    [17]赵建荣,陈立红.平面激光诱导荧光显示火焰中OH的分布图像.流体力学实验与测量2000;14:67-71.
    [18]赵建荣,陈立红.显示OH浓度分布图像的平面激光诱导荧光技术.光学技术2000;26:429-31.
    [19]赵建荣,陈立红,俞刚,杨仕润,张新宇.OH在火焰中浓度分布图像及与温度关系的PLIF和CARS研究.分析测试学报2000;19:1-4.
    [20]杨仕润,赵建荣,俞刚,张新宇.超音速燃烧室氢氧基平面激光诱导荧光测量.激光技术2004;28:20-22.
    [21]赵建荣,杨仕润,俞刚,张新宇.火焰结构的平面激光诱导荧光技术观测.分析测试学报2003;22:16-18.
    [22]关小伟,刘晶儒,黄梅生,胡志云,张振荣,叶锡生PLIF法定量测量甲烷-空气火焰二维温度场分布.强激光与粒子束2005;17:173-76.
    [23]胡志云,刘晶儒,关小伟,张振荣,黄梅生,刘建胜,袁孝,叶锡生.燃烧场参数的激光诊断技术研究.强激光与粒子束2002;14:702-06.
    [24]关小伟,刘晶儒,黄梅生,胡志云,张振荣.利用平面激光诱导荧光技术测量燃烧场内NO的浓度分布.强激光与离子束2003;15:629-31.
    [25]关小伟,刘晶儒,黄梅生,胡志云,张振荣,叶锡生,张立荣TP-LIF技术测量甲烷空气火焰中CO的相对浓度分布.强激光与粒子束2005;17:17-21.
    [26]李麦亮,周进,耿辉,王振国.测量火焰中氢氧基分布的激光诱导荧光技术.国防科技大学学报2003;25:10-13.
    [27]李麦亮,周进,耿辉,翟振辰.平面激光诱导荧光技术在超声速燃烧中的应用.推进技术2004;25:381-84.
    [28]耿辉,翟振辰,桑艳,林志勇,周进.利用OH-PLIF技术显示超声速燃烧的火焰结构.国防科技大学学报2006;28:1-6.
    [29]高剑波,蒋占魁,李春喜,赵明.固体推进剂火焰中OH基的激光感生荧光(LIF)二维图像.中国激光2001;28:823-25.
    [30]陈锐,周霖.燃烧产物组成激光诱导荧光光谱的测量.应用光学2006;27:455-59.
    [31]Frassoldati A, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1:Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int J Hydrogen Energ 2007;32:3471-85.
    [32]Prathap C, Ray A, Ravi MR. Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combust Flame 2008; 155:145-60.
    [33]Lee C, Kil HG. Effects of nitrogen dilution for coal synthetic gas fuel on the flame stability and NOx formation. Korean J Chem Eng 2009;26:862-66.
    [34]Mendes MAA, Pereira JMC, Pereira JCF. On the stability of ultra-lean H-2/CO combustion in inert porous burners. Int J Hydrogen Energ 2008;33:3416-25.
    [35]Parka J, Baea DS, Chab MS, Yunb JH, Keel SI, Choc HC, Kimd TK, Hae JS. Flame characteristics in H2/CO synthetic gas diffusion flames diluted with CO2:Effects of radiative heat loss and mixture composition. Int J Hydrogen Energ 2008;33:7256-64.
    [36]Park J, Bae DS, Cha MS, Yun JH, Keel SI, Cho HC, Kim TK, Ha JS. Flame characteristics in H2/CO synthetic gas diffusion flames diluted with CO2:Effects of radiative heat loss and mixture composition. Int J Hydrogen Energ 2008;33:7256-64.
    [37]Park J, Kwon OB, Yun JH, Keel SI, Cho HC, Kim S. Preferential diffusion effects on flame characteristics in H2/CO syngas diffusion flames diluted with CO2. Int J Hydrogen Energ 2008;33:7286-94.
    [38]Park J, Lee DH, Yoon SH, Vu TM, Yun JH, Keel SI. Effects of Lewis number and preferential diffusion on flame characteristics in 80%H2/20%CO syngas counterflow diffusion flames diluted with He and Ar. Int J Hydrogen Energ 2009;34:1578-84.
    [39]Cuoci A, Frassoldati A, Ferraris GB, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 2:Fluid dynamics and kinetic aspects of syngas combustion. Int J Hydrogen Energ 2007;32:3486-500.
    [40]Walton SM, He X, Zigler BT, Wooldridge MS. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proceedings of the Combustion Institute 2007;31:3147-54.
    [41]Ouimette P, Seers P. Numerical comparison of premixed laminar flame velocity of methane and wood syngas. Fuel 2009;88:528-33.
    [42]Mo KJ, Zhang YS, Zhang ZD, Wang Y, Xiao YH, Hui X. Effect Of Fuel Dilution On The Stability Characteristics Of Syngas Diffusion Flames. ASME Turbo Expo 2008;GT2008-50327:221-28
    [43]Charlston-Goch D, Chadwick BL, Morrison RJS, Campisi A, Thomsen DD, Laurendeau NM. Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H-2+CH4 and air at high pressures Ⅰ. Nitrogen fixation. Combust Flame 2001;125:729-43.
    [44]Dobbeling K, Eroglu A, Winkler D. Low NOx premixed combustion of MBtu fuels in a research burner. J Eng Gas Turb Power 1997; 119:553-58.
    [45]Hasegawa T, Sato M, Nakata T. A study of combustion characteristics of gasified coal fuel. J. Eng. Gas Turbines Power 2001;123:22-32.
    [46]Hasegawa T, Hisamatsu T, Katsuki Y, Sato M, Koizumi H, Hayashi A, Kobayashi N. Development of low NOx combustion technology in medium-Btu fueled 1300 degrees C-class gas turbine combustor in an integrated coal gasification combined cycle. J. Eng. Gas Turbines Power 2003; 1-10.
    [47]Brdar RD, M.Jones R. GE IGCC technology and experience with advanced gas turbines. GE Power Systems 2000;GER4207.
    [48]Jones RM, Shilling NZ. IGCC Gas turbines for refinery applications. GE Power Systems 2003;GER4219.
    [49]惠鑫.合成气稀释扩散火焰的实验和数值研究.中国科学院研究生院硕士学位论文,2007.
    [50]张文兴,穆克进,张哲巅,张永生,王岳,肖云汉.合成气-甲醇伴烧火焰实验研究及数值分析.燃气轮机技术2008;21:15-20.
    [51]田颖,徐纲,宋权斌,崔玉峰,房爱兵,聂超群.贫燃料预混燃烧的回火特性研究.工程热物理学报2006;27:871-74.
    [52]Tuncer O, Acharya S, Uhm JH. Dynamics, NOx and flashback characteristics of confined premixed hydrogen-enriched methane flames. Int J Hydrogen Energ 2009;34:496-506.
    [53]Choudhuri AR, Subramanya M, Gollahalli SR. Flame extinction limits of H2-CO fuel blends. J Eng Gas Turb Power 2008;130:1-8.
    [54]Natarajan J, Nandula S, Lieuwen T, Seitzman J. Laminar flame speeds of synthetic gas fuel mixtures. ASME Turbo Expo 2005;GT2005-68917:1-10.
    [55]Natarajan J, Lieuwen T, Seitzman J. Laminar Flame Speeds and Strain Sensitivities of Mixtures of H2 with CO, CO2 and N2 at Elevated Temperatures. ASME Turbo Expo 2007;GT2007-27967:1-10.
    [56]Dong C, Zhou QL, Zhao QX, Zhang YQ, Xu TM, Hui S. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel 2009;88:1858-63.
    [57]Kiefer J, Li ZS, Zetterberg J, Bai XS, Alden M. Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging. Combust Flame 2008;154:802-18.
    [58]Donbar JM, Driscoll JF, Carter CD. Reaction zone structure in turbulent nonpremixed jet flames-From CH-OHPLIF images. Combust Flame 2000;122:1-19.
    [59]Griebel P, Bombach R, Inauen A, Scharen R, Schenker S, Siewert. P. Flame characteristics and turbulent flame speeds of turbulent, high-pressure, lean premixed methane/air flames. Proceedings of GT2005 ASME Turbo Expo 2005:Power for Land, Sea, and Air 2005;Reno-Tahoe, Nevada, USA:GT2005-68565.
    [60]Daniele S, Jansohn P, Mantzaras J, Boulouchos K. Turbulent flame speed for syngas at gas turbine relevant conditions. Proceedings of the Combustion Institute 2011;33:2937-44.
    [61]Kim W, Godfrey Mungal M, Cappelli MA. The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames. Combust Flame 2010;157:374-83.
    [62]Ombrello T, Won SH, Ju Y, Williams S. Flame propagation enhancement by plasma excitation of oxygen. Part Ⅱ:Effects of O2(a'[D]g). Combust Flame 2010; 157:1916-28.
    [63]Petersson P, Olofsson J, Brackman C, Seyfried H, Zetterberg J, Richter M, Alden M, Linne MA, Cheng RK, Nauert A, Geyer D, Dreizler A. Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame. Applied Optics 2007;46:3928-36.
    [64]Starikovskii AY. Plasma supported combustion. Proceedings of the Combustion Institute 2005;30:2405-17.
    [65]Kim W, Do H, Mungal MG, Cappelli MA. Optimal discharge placement in plasma-assisted combustion of a methane jet in cross flow. Combust Flame 2008;153:603-15.
    [66]Karpenko El, Messerle VE, Ustimenko AB. Plasma-aided solid fuel combustion. Proceedings of the Combustion Institute 2007;31:3353-60.
    [67]Rosocha LA, Kim Y, Anderson GK, Abbate S. Combusion enhancement using silent electrical discharges. International Journal of Plasma Environmental Science & Technology 2007; 1:8-13.
    [68]Stockman ES, Zaidi SH, Miles RB, Carter CD, Ryan MD. Measurements of combustion properties in a microwave enhanced flame. Combust Flame 2009;156:1453-61.
    [69]Cathey C, Cain J, Wang H, Gundersen MA, Carter C, Ryan M. OH production by transient plasma and mechanism of flame ignition and propagation in quiescent methane-air mixtures. Combust Flame 2008;154:715-27.
    [70]Prager J, Reidel U, Warnatz J. Modeling ion chemistry and charged species diffusion in lean methane-oxygen flames. Proceedings of the Combustion Institute 2007;31:1129-37
    [71]Starik AM, Titova NS. Kinetics of ion formation in the volumetric reaction of methane with air. Combust Explo Shock+2002;38:253-68.
    [72]Basevich VY, Belyaev AA. Evaluation of hydrogen-oxygen flame velocity increase at singlet oxygen addition. Chem. Phys. Rep.1989;8:1124-27.
    [73]Starik AM, Titova NS. Kinetics of detonation initiation in the supersonic flow of the H-2+0-2 (air) mixture in 0-2 molecule excitation by resonance laser radiation. Kinet Catal+2003;44:28-39.
    [74]Starik AM, Titova NS, Bezgin LV, Kopchenov VI, Naumov VV. Control of combustion by generation of singlet oxygen molecules in electrical discharge. Czech J Phys 2006;56:B1357-B63.
    [75]Popov NA. The effect of nonequilibrium excitation on the ignition of hydrogen-oxygen mixtures. High Temp.2007;45:261-79.
    [76]Bourig A, Thevenin D, Martin J, Janiga G, Zahringer K. Numerical modeling of H2-O2 flames involving electronically-excited species O2(a1Δg),O('D) and OH(2Σ+) Proceedings of the Combustion Institute 2009;32:3171-79.
    [77]Smekhov GD, Ibraguimova LB, Karkach SP, Skrebkov OV, Shatalov OP. Numerical simulation of ignition of a hydrogen-oxygen mixture in view of electronically excited components. High Temp.2007;45:395-407.
    [78]Skrebkov OV, Karkach SP. Vibrational nonequilibrium and electronic excitation in the reaction of hydrogen with oxygen behind a shock wave. Kinet Catal+2007;48:367-75.
    [79]Smirnov VV, Stelmakh OM, Fabelinsky VI, Kozlov DN, Starik AM, Titova NS. On the influence of electronically excited oxygen molecules on combustion of hydrogen-oxygen mixture. J Phys D Appl Phys 2008;41:l-6.
    [80]Kozlov VE, Starik AM, Titova NS. Enhancement of combustion of a hydrogen-air mixture by excitation of O-2 molecules to the a(1)Delta(g) state. Combust Explo Shock+ 2008;44:371-79.
    [81]Starik AM, Kozlov VE, Titova NS. On the influence of singlet oxygen molecules on the speed of flame propagation in methane-air mixture. Combust Flame 2010;157:313-27.
    [82]Tanahashi M, Murakami S, Choi GM, Fukuchi Y, Miyauchi T. Simultaneous CH-OHPLIF and stereoscopic PIV measurements of turbulent premixed flames. Proceedings of the Combustion Institute 2005;30:1665-72.
    [83]Sutton JA, Driscoll JF. Scalar dissipation rate measurements in flames:A method to improve spatial resolution by using nitric oxide PLIF. Proceedings of the Combustion Institute 2003:29:2727-34.
    [84]Lachaux T, Musculus MPB. In-cylinder unburned hydrocarbon visualization during low-temperature compression-ignition engine combustion using formaldehyde PLIF. Proceedings of the Combustion Institute 2007;31:2921-29.
    [85]Yao MF, Zheng ZL, Liu HF. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science 2009;35:398-437.
    [86]Kirby BJ, Hanson RK. Infrared PLIF Imaging of CO and CO2. AIAA Aerospace Sciences Meeting and Exhibit 1999;37:1-8.
    [87]Ma X, He X, Wang J-x, Shuai S. Co-evaporative multi-component fuel design for in-cylinder PLIF measurement and application in gasoline direct injection research. Applied Energy 2011;88:2617-27.
    [88]Prucker S, Meier W, Stricker W. A Flat Flame Burner as Calibration Source for Combustion Research-Temperatures and Species Concentrations of Premixed H-2/Air Flames. Rev Sci Instrum 1994;65:2908-11.
    [89]Sutton G, Levick A, Edwards G, Greenhalgh D. A combustion temperature and species standard for the calibration of laser diagnostic techniques. Combust Flame 2006;147:39-48.
    [90]Yang J, Li QS, Zhang SW. Reaction-path dynamics and theoretical rate constants for the reaction CH4+O-3-> HOOO+CH3. Int J Quantum Chem 2007; 107:1999-2005.
    [91]虞和济,宋利明编.故障诊断的热像技术.北京:冶金工业出版社,1992.
    [92]吴永生,方可人.热工测量及仪表(第二版).北京:中国电力出版社,1994.
    [93]黄泽铣编著.热电偶原理及其检定.北京:中国计量出版社,1993.
    [94]田裕鹏编著.红外检测与诊断技术.北京:化学工业出版社,2006.
    [95]李晓刚,付冬梅著.红外热像检测与诊断技术.北京:中国电力出版社,2006.
    [96]Meier W, Plath I, Stricker W. The Application of Single-Pulse Cars for Temperature-Measurements in a Turbulent Stagnation Flame. Appl Phys B-Photo 1991;53:339-46.
    [97]Brandley D, Lawes M, Scott MJ, C.G.W. S, D.A. G, F.M. F. Measurement of temperature PDF in turbulent flames by CARS technique. Proceedings of the Combustion Institute 1992;24:527-35.
    [98]李麦亮,赵永学,耿辉,周进,王振国,庄逢辰.基于光谱测量的燃烧诊断技术.装备指挥技术学院学报2002;13:32-36.
    [99]Cao MH, Meier W. Application of laser Rayleigh scattering to measuring flame temperature. Journal of Aerospace Power 1996; 11:67-71.
    [100]Namer I, Schefer RW. Error-Estimates for Rayleigh-Scattering Density and Temperature-Measurements in Premixed Flames. Exp Fluids 1985;3:1-9.
    [101]Fielding J, Frank JH, Kaiser SA, Smooke MD, Long MB. Polarized/depolarized Rayleigh scattering for determining fuel concentrations in flames. Proceedings of the Combustion Institute 2002;29:2703-09.
    [102]Frank JH, Kaiser SA, Long MB. Reaction-rate, mixture-fraction, and temperature imaging in turbulent methane/air jet flames. Proceedings of the Combustion Institute 2002;29:2687-94.
    [103]Robben F. Comparison of density and temperature measurement using Raman scattering and Rayleigh scattering. In:Combustion measurements:Modern techniques and instrumentation; Proceedings of the SQUID Workshop, Purdue University, West Lafayette, Ind., (A77-33701 15-35) New York, Academic Press, Inc.1975;
    [104]Shardanand, A.D. Prasad. R. Absolute Rayleigh scattering cross sections of gases and Freons of stratospheric interest in the visible and ultraviolet regions of gases and Freons of stratospheric interest in the visible and ultraviolet regions. NASA TN D-8422 (National Aeronautics and Space Administration, Washington, D.C.,1977)
    [105]马隆龙,吴创之,孙立.生物质气化技术及其应用.化学工业出版社,2003.
    [106]Sutton JA, Driscoll JF. Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications. Opt Lett 2004;29:2620-22.
    [107]Li B, Li Y, Wang ZH, Li ZS, Sun ZW, Alden M. A novel multi-jet quartz burner for laminar near-adiabatic flames:Standards of temperatures calibration of laser diagnostics techniques. Proceedings of the European Combustion Meeting 2009;
    [108]Otugen MV. Uncertainty estimates of turbulent temperature in Rayleigh scattering measurements. Exp Therm Fluid Sci 1997; 15:25-31.
    [109]王魁汉,吴玉锋.热电偶测量误差及其注意事项International Instrumentation & Automation 2004;8:16-19.
    [110]Stepowski D, Cabot G. Single-Shot Temperature and Mixture Fraction Profiles by Rayleigh-Scattering in the Development Zone of a Turbulent-Diffusion Flame. Combust Flame 1992;88:296-308.
    [111]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998.
    [112]岑可法,姚强,骆仲泱,李绚天.高等燃烧学[M].浙江大学出版社,2002.
    [113]Law CK, Sung CJ. Structure, aerodynamics, and geometry of premixed flamelets. Progress in Energy and Combustion Science 2000;26:459-505.
    [114]Zhao Z, Kazakov A, Dryer FL. Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry. Combust Flame 2004; 139:52-60.
    [115]Kishore VR, Muchahary R, Ray A, Ravi MR. Adiabatic burning velocity of H2-O2 mixtures diluted with CO2/N2/Ar. Int J Hydrogen Energ 2009;34:8378-88.
    [116]Bosschaart KJ, de Goey LPH. Detailed analysis of the heat flux method for measuring burning velocities. Combust Flame 2003; 132:170-80.
    [117]Badami GN, Egerton A. The Determination of Burning Velocities of Slow Flames. Proc R Soc Lon Ser-A 1955;228:297-322.
    [118]Scholte TG, Vaags PB. The Influence of Small Quantities of Hydrogen and Hydrogen Compounds on the Burning Velocity of Carbon Monoxide Air Flames. Combust Flame 1959;3:503-10.
    [119]Mclean IC, Smith DB, Taylor SC. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction. Proceedings of the Combustion Institute 1994;25:749-57.
    [120]Vagelopoulos CS, Egolfopoulos FN. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane and air. Proceedings of the Combustion Institute 1994;25:1317-23.
    [121]Brown MJ, Mclean IC, Smith DB, Taylor SC. Markstein lengths of CO/H2/air flames, using expanding spherical flames. Proceedings of the Combustion Institute 1996;26:875-81.
    [122]Hassan MI, Aung KT, Faeth GM. Properties of laminar premixed CO/H-2/air flames at various pressures. J Propul Power 1997;13:239-45.
    [123]Rumminger MD, Linteris GT. Inhibition of premixed carbon monoxide-hydrogen-oxygen-nitrogen flames by iron pentacarbonyl. Combust Flame 2000; 120:451-64.
    [124]Konnov AA, Dyakov IV, Ruyck JD. Nitric oxide formation in premixed flames of H2+CO+CO2 and air. Proceedings of the Combustion Institute 2002;29:2171-7.
    [125]Sun H, Yang SI, Jomaas G, Law CK. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proceedings of the Combustion Institute 2007;31:439-46.
    [126]Natarajan J. Experimental and Numerical Investigation of Laminar Flame Speeds of H2/CO/CO2/N2 Mixtures [dissertation]. Georgia:Georgia Institute of Technology,2008.
    [127]Som S, Ramirez AI, Hagerdorn J, Saveliev A, Aggarwal SK. A numerical and experimental study of counterflow syngas flames at different pressures. Fuel 2008;87:319-34.
    [128]Natarajan J, Kochar Y, lieuwen T, Seitzman J. Pressure and preheat dependence of laminar flame speeds of H2/CO/CO2/O2/He mixtures. Proceedings of the Combustion Institute 2009;32:1261-68.
    [129]Burke MP, Chen Z, Ju YG, Dryer FL. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust Flame 2009; 156:771-79.
    [130]Ichikawa Y, Otawara Y, Kobayashi H, Ogami Y, Kudo T, Okuyama M, Kadowaki S. Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure. Proceedings of the Combustion Institute 2010;doi:10.1016/j.proci.2010.05.068.
    [131]Bouvet N, Chauveau C, Gokalp I, Halter F. Experimental studies of the fundamental flame speeds of syngas (H-2/CO)/air mixtures. Proceedings of the Combustion Institute 2011;33:913-20.
    [132]Bouvet N, Chauveau C, Gokalp I, Lee SY, Santoro RJ. Characterization of syngas laminar flames using the Bunsen burner configuration. Int J Hydrogen Energ 2011;36:992-1005.
    [133]Bouvet N. Experimental and Numerical Studies of the Fundamental Flame Speeds of Methane/Air and Syngas (H2/CO)/Air Mixtures [dissertation]. New Orleans:University of Orleans,2009.
    [134]Bradley D, Gaskell PH, Gu XJ. Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames:A computational study. Combust Flame 1996; 104:176-98.
    [135]Aung KT, Hassan MI, Faeth GM. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combust Flame 1997;109:1-24.
    [136]Kwon OC, Faeth GM. Flame/stretch interactions of premixed hydrogen-fueled flames: Measurements and predictions. Combust Flame 2001; 124:590-610.
    [137]de Goey LPH, Vanmaaren A, Quax RM. Stabilization of Adiabatic Premixed Laminar Flames on a Flat Flame Burner. Combust Sci Technol 1993;92:201-07.
    [138]de Goey LPH, Somers LMT, Bosch WMML, Mallens RMM. Modeling of the small scale structure of flat burner-stabilized flames. Combust Sci Technol 1995;104:387-400.
    [139]Li B, Linden J, Li ZS, Konnov AA, Alden M, DeGoey LPH. Accurate Measurements of Laminar Burning Velocity Using the Heat Flux Method and Thermographic Phosphor Technique. Proceedings of the Combustion Institute 2010;33:939-46.
    [140]Dyakov IV, Konnov AA, Ruyck JD, Bosschaart KJ, Brock ECM, Goey LPHD. Measurement of adiabatic burning velocity in methane-oxygen-nitrogen mixtures. Combust Sci Technol 2001; 172:81-96.
    [141]Bosschaart KJ. Analysis of the heat flux method for measuring burning velocities [dissertation]. Eindhoven:Eindhoven University of Technology,2002.
    [142]Konnov AA, Dyakov IV, De Ruyck J. Measurement of adiabatic burning velocity in ethane-oxygen-nitrogen and in ethane-oxygen-argon mixtures. Exp Therm Fluid Sci 2003;27:379-84.
    [143]Bosschaart KJ, de Goey LPH. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust Flame 2004;136:261-69.
    [144]Coppens FHV, De Ruyck J, Konnov AA. Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane plus air flames. Exp Therm Fluid Sci 2007;31:437-44.
    [145]Konnov AA, Dyakov IV. Measurement of propagation speeds in adiabatic cellular premixed flames of CH4+O2+CO2. Exp Therm Fluid Sci 2005;29:901-07.
    [146]Konnov AA, Dyakov IV. Experimental study of adiabatic cellular premixed flames of methane (ethane, propane)-oxygen-carbon dioxide Mixtures. Combust Sci Technol 2007;179:747-65.
    [147]Hermanns RTE. Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures [dissertation]. Eindhoven:Eindhoven University of Technology,2007.
    [148]Dyakov IV, De Ruyck J, Konnov AA. Probe sampling measurements and modeling of nitric oxide formation in ethane plus air flames. Fuel 2007;86:98-105.
    [149]Konnov AA, Alvarez GP, Rybitskaya IV, De Ruyck J. The Effects of Enrichment by Carbon Monoxide on Adiabatic Burning Velocity and Nitric Oxide Formation in Methane Flames. Combust Sci Technol 2009;181:117-35.
    [150]Hermanns RTE, Konnov AA, Bastiaans RJM, de Goey LPH, Lucka K, Kohne H. Effects of temperature and composition on the laminar burning velocity of CH4+H2+ O2+N2 flames. Fuel 2010;89:114-21.
    [151]Yan B, Wu Y, Liu C, Yu JF, Li B, Li ZS, Chen G, Bai XS, Alden M, Konnov AA. Experimental and modeling study of laminar burning velocity of biomass derived gases/air mixtures. Int J Hydrogen Energ 2011;36:3769-77.
    [152]伯纳德.刘易斯,京特.冯.埃尔贝著,王方译.燃气燃烧与瓦斯爆炸.北京:中国建筑工业出版社,原著第三版,2010.
    [153]Ouimette P, Seers P. Numerical comparison of premixed laminar flame velocity of methane and wood syngas. Fuel 2009;88:523-33.
    [154]李兴虎.氮气稀释丙烷空气混合气的层流火焰速度测量.燃烧科学与技术2001;7:288-89.
    [155]Vagelopoulos CM, Egolfopoulos FN. Direct Experimental Determination Of Laminar Flame Speeds. Proceedings of the Combustion Institute 1998;27:513-19.
    [156]Wu CK, Law CK. On the determination of laminar flame speeds from stretched flames. Proceedings of the Combustion Institute 1984;20:1941-49.
    [157]Law CK, Zhu DL, Yu G. Propagation and extinction of stretched premixed flames. Proceedings of the Combustion Institute 1988;21:1419-26.
    [158]Zhu DL, Egolfopoulos FN, Law CK. Experimental and numerical determination of laminar flame speeds of methane/(Ar, N2, CO2)-air mixtures as function of stoichiometry, pressure, and flame temperature. Proceedings of the Combustion Institute 1989;22:1537-45.
    [159]Yu G, Law CK, Wu CK. Laminar Flame Speeds of Hydrocarbon+Air Mixtures with Hydrogen Addition. Combust Flame 1986;63:339-47.
    [160]Egolfopoulos FN, Cho P, Law CK. Laminar Flame Speeds of Methane Air Mixtures under Reduced and Elevated Pressures. Combust Flame 1989;76:375-91.
    [161]Egolfopoulos FN, Law CK. Chain Mechanisms in the Overall Reaction Orders in Laminar Flame Propagation. Combust Flame 1990;80:7-16.
    [162]Xue HS, Aggarwal SK. Effects of reaction mechanisms on structure and extinction of partially premixed flames. AIAA JOURNAL 2001;39:637-45.
    [163]Egolfopoulos FN, Law CK. An Experimental And Computational Study Of The Burning Rates Of Ultra-Lean To Moderately-Rich H2/Ojn-Laminar Flames With Pressure Variations. Proceedings of the Combustion Institute 1990;23:333-40.
    [164]Vagelopoulos CM, Egolfopoulos FN. Further Considerations On The Determination Of Laminar Flame Speeds With The Counterflow Twin-Flame Technique. Proceedings of the Combustion Institute 1994;25:1341-47.
    [165]Kee R, Miller J, Evans G, Dixon-Lewis G. A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flame. Proceedings of the Combustion Institute 1989;22:1479-94.
    [166]Som S, Aggarwal SK. A numerical investigation of methane air partially premixed flames at elevated pressures. Combustion Science and Technology 2007;179:1085-112.
    [167]Fotache CG, Tan Y, Sung CJ, Law CK. Ignition of CO/H-2/N-2 versus heated air in counterflow:Experimental and modeling results. Combust Flame 2000; 120:417-26.
    [168]Chellian H, Law C, Ueda T, Smooke M, Williams F. An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames. Proceedings of the Combustion Institute 1991;23:503-11.
    [169]Vagelopoulos CM, Egolfopoulos FN. Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide with Hydrogen, Methane, and air. Proceedings of the Combustion Institute 1994;25:1317-23.
    [170]Nair MRS, Gupta MC. Burning Velocity-Measurement by Bomb Method. Combust Flame 1974;22:219-21.
    [171]Tahtouh T, Halter F, Mounaim-Rousselle C. Measurement of laminar burning speeds and Markstein lengths using a novel methodology. Combust Flame 2009; 156:1735-43.
    [172]Davis SG, Quinard J, Searby G. Markstein numbers in counterflow, methane-and propane-air flames:A computational study. Combust Flame 2002; 130:123-36.
    [173]Law CK, Jomaas G, Bechtold JK. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures:theory and experiment. Proceedings of the Combustion Institute 2005;30:159-67.
    [174]Hassan MI, Aung KT, Faeth GM. Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combust Flame 1998;115:539-50.
    [175]Gu XJ, Haq MZ, Lawes M, Woolley R. Laminar burning velocity and Markstein lengths of methane-air mixtures. Combust Flame 2000;121:41-58.
    [176]Lamoureux N, Djebaili-Chaumeix N, Paillard CE. Laminar flame velocity determination for H-2-air-He-CO2 mixtures using the spherical bomb method. Exp Therm Fluid Sci 2003;27:385-93.
    [177]Qiao L, Kim CH, Faeth GM. Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames. Combust Flame 2005; 143:79-96.
    [178]Bradley D, Lawes M, Liu K, Verhelst S, Woolley R. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa. Combust Flame 2007; 149:162-72.
    [179]Liao SY, Jiang DM, Gao J, Huang ZH, Cheng Q. Measurements of Markstein numbers and laminar burning velocities for liquefied petroleum gas-air mixtures. Fuel 2004;83:1281-88.
    [180]黄潜,苗海燕,黄佐华,蒋德明,曾科.EGR中二氧化碳对氢气层流燃烧特性的影响.燃烧科学与技术2009;15:361-67.
    [181]王倩,黄佐华,余金荣,张勇,曾科,苗海燕,蒋德明.二甲醚一空气混合气层流燃烧速度的测定.内燃机学报2007;25:372-78.
    [182]巩静,金春,姜雪,黄佐华.高辛烷值燃料-空气预混层流燃烧特性研究.西安交通大学学报2009;43:26-30.
    [183]张勇,黄佐华,廖世勇,王倩,蒋德明.天然气-氢气-空气混合气的层流燃烧速度测定.内燃机学报2006;24:97-103.
    [184]张勇,黄佐华,王倩,王金华,蒋德明,苗海燕.天然气-氢气-空气混合气火焰传播特性研究.内燃机学报2006;24:481-88.
    [185]廖世勇,井明科,程前,黄佐华,蒋德明.乙醇-空气预混层流火焰特性的试验研究.内燃机学报2007;25:469-74.
    [186]Van Maaren A, De Goey LPH. Laser Doppler thermometry in flat flames. Combustion Science and Technology 1994;99:105-18.
    [187]Van Maaren A, DS T, De Goey L. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combustion Science and Technology 1994;96:327-44.
    [188]Bosschaart K, Versluis M, Knikker R, van Der Meer T, Schreel K, de Goey LPH. The heat flux method for producing burner stabilized adiabatic flames:an evaluation with CARS thermometry. Combust Sci Technol 2001; 169:69-87.
    [189]Egolfopoulos FN, Cho P, Law CK. An experimental and computational study of the burning rates of ultra lean to moderately rich H2-O2-N2 laminar flames with pressure variations. Proceedings of the Combustion Institute 1990;23:333-40.
    [190]Sarner G, Richter M, Alden M. Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence. Opt Lett 2008;33:1327-29.
    [191]Alden M, Omrane A, Richter M, Sarner G. Thermographic phosphors for thermometry: A survey of combustion applications. Progress in Energy and Combustion Science 2010;doi:10.1016/j.pecs.2010.07.001
    [192]Seyfried H, Sarner G, Omrane A, Richter M, Alden M. Optical diagnostics for characterization of a full-size fighter-jet after-burner. ASME Turbo Expo 2005;GT2005-69058.
    [193]Higman C, Burgt MVD. Gasification. Burlington, MA, USA:Elsevier/Gulf Professional Publishing,2003.
    [194]Williams TC, Shaddix CR. Contamination of carbon monoxide with metal carbonyls: Implications for combustion research. Combust Sci Technol 2007; 179:1225-30.
    [195]Egerton A, Rudrakanchana S. The Combustion of Some Organo-Metallic Compounds. Proc R Soc Lon Ser-A 1954;225:427-43.
    [196]Wu CY, Chao YC, Cheng TS, Chen CP, Ho CT. Effects of CO addition on the characteristics of laminar premixed CH4/air opposed-jet flames. Combust Flame 2009;156:362-73.
    [197]Kee RJ, Rupley FM, Meeks E, Miller JA. Chemkin III:A fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Sandia National Laboratories 1996;SAND96-8216.
    [198]Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson RK, Song S, Jr WCG, Lissianski VV, Qin Z. GRI Mech-3.0.
    [199]Wang H, You X, Joshi A, Davis S, Laskin A, Egolfopoulos F, Law C. USC MechVersion Ⅱ:High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. Available from:,2007.
    [200]Davis SG, Joshi AV, Wang H, Egolfopoulos F. An optimized kinetic model of H2/CO combustion. Proceedings of the Combustion Institute 2005;30:1283-92.
    [201]Siewert P. Flame Front Characteristics of Turbulent Premixed Lean Methane/Air Flames at High-pressure and High-temperature. Ph.D thesis, Swiss Federal Institute of Technology ETH-Zurich, Zurich, Switzerland 2005;available at
    [202]Driscoll JF. Turbulent premixed combustion:Flamelet structure and its effect on turbulent burning velocities. Progress in Energy and Combustion Science 2008;34:91-134.
    [203]Chen JH, Hawkes ER, Sankaran R, Mason SD, Im HG. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities-Ⅰ. Fundamental analysis and diagnostics. Combust Flame 2006; 145:128-44.
    [204]Kolera-Gokula H, Echekki T. Direct numerical simulation of premixed flame kernel-vortex interactions in hydrogen-air mixtures. Combust Flame 2006; 146:155-67.
    [205]Hawkes ER, Chen JH. Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames. Combust Flame 2004;138:242-58.
    [206]Thevenin D. Three-dimensional direct simulations and structure of expanding turbulent methane flames. Proceedings of the Combustion Institute 2005;30:629-37.
    [207]Sankaran R, Hawkes ER, Chen JH, Lu T, Law CK. Sturcture of a spatially developing turbulent lean methane-air Bunsen flame. Proceedings of the Combustion Institute 2007;31:1291-98.
    [208]Cook DJ, Pitsch H, Chen JH, Hawkes ER. Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines. Proceedings of the Combustion Institute 2007;31:2903-11.
    [209]Bisetti F, Chen JY, Hawkes ER, Chen JH. Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratified mixture for application to HCCI engine modeling. Combust Flame 2008;155:571-84.
    [210]Chen DL, Sun JH, Wang QS, Liu Y. Combustion behaviors and flame structure of methane/coal dust hybrid in a vertical rectangle chamber. Combustion Science and Technology 2008; 180:1518-28.
    [211]Hawkes ER, Sankaran R, Sutherland JC, Chen JH. Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics. Proceedings of the Combustion Institute 2007;31:1633-40.
    [212]Quang VN, Phillip HP. The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH. Proceedings of the Combustion Institute 1996;26:357-64.
    [213]Li GQ, Gutmark EJ. Geometry effects on the flow field and the spectral characteristics of a triple annular swirler. Proceedings of ASME Turbo Expo 2003;GT2003-38799.
    [214]Kalmthout EV, Veynante D, Candel SM. Direct numerical simulation analysis of flame surface density equation in non-premixed turbulent combustion. Proceedings of the Combustion Institute 1996;26:35-42.
    [215]何勇,王智化,杨丽,朱燕群,翁武斌,周俊虎,岑可法.H2含量和湍流强度对典型烟煤合成气火焰结构影响的PLIF测量研究.中国电机工程学报2010;
    [216]Il Seo J, Il Kim N, Shin HD. An experimental study of the fuel dilution effect on the propagation of methane-air tribrachial flames. Combust Flame 2008;153:355-66.
    [217]Mungal MG, Karasso PS, Lozano A. The Visible Structure of Turbulent Jet Diffusion Flames-Large-Scale Organization and Flame Tip Oscillation. Combustion Science and Technology 1991;76:165-85.
    [218]Bilger RW, Pope SB, Bray KNC, Driscoll JF. Paradigms in Turbulent Combustion Research. Proceedings of the Combustion Institute 2005;30:21-42.
    [219]Hakberg B, Gosman AD. Analytical determination of turbulent flame speed from combustion models. Proceedings of the combustion institute 1984;20:225-32.
    [220]Griebel P, Siewert P, Jansohn P. Flame characteristics of turbulent lean premixed methane/air flames at high pressure:Turbulent flame speed and flame brush thickness. Proceedings of the Combustion Institute 2007;31:3083-90.
    [221]Karlovitz B, Denniston DW, Wells FE. Investigation of Turbulent Flames. THE JOURNAL OF CHEMICAL PHYSICS 1951;19:541-47.
    [222]Cheng RK, Shepherd IG, Talbot L. Reaction rates in premixed turbulent flame and their relevance to the turbulent burning speed. Proceedings of the Combustion Institute 1988;22:771-80.
    [223]Poludnenko AY, Oran ES. The interaction of high-speed turbulence with flames: Turbulent flame speed. Combust Flame 2011;158:301-26.
    [224]Lipatnikov AN, Chomiak J. Turbulent flame speed and thickness:phenomenology, evaluation, and application in multi-dimensional simulations. Progress in Energy and Combustion Science 2002;28:1-74.
    [225]Lipatnikov A, Chomiak J. Molecular transport effects on turbulent flame propagation and structure. Progress in Energy and Combustion Science 2005;31:1-73.
    [226]Damkohler G. The effect of turbulence on the combustion rate in gas compounds. Zeitschrift Fur Elektrochemie Und Angewandte Physikalische Chemie 1940;46:601-26.
    [227]Shchelkin KI. Combustion in turbulent flow. Zhournal Tekhnicheskoi Fiziki 1947;13:520-30.
    [228]Abdel-Gayed RG, Bradley D, Lawes M. Turbulent burning velocity:a general correlation in terms of straining rates. Proceedings of the Royal Society of London 1987;A 414:389-413.
    [229]Plessing T, Kortschik C, Peters N, Mansour MS, Cheng RK. Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proceedings of the Combustion Institute 2000;28:359-66.
    [230]Bradley D, Haq MZ, Hicks RA, Kitagawa T, Lawes M, Sheppard CGW, Woolley R. Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combust Flame 2003;133:415-30.
    [231]Soika A, Dinkelacker F, Leipertz A. Pressure influence on the flame front curvature of turbulent premixed flames:comparison between experiment and theory. Combust Flame 2003;132:451-62.
    [232]Kobayashi H, Seyama K, Hagiwara H, Ogami Y. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proceedings of the Combustion Institute 2005;30:827-34.
    [233]Chen YC, Bilger RW. Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion-Ⅰ:Hydrocarbon/air bunsen flames. Combust Flame 2002; 131:400-35.
    [234]Most D, Dinkelacker F, Leipertz A. Direct determination of the turbulent flux by simultaneous application of filtered Rayleigh scattering thermometry and particle image velocimetry. Proceedings of the Combustion Institute 2003;29:2669-77.
    [235]Renou B, Mura A, Samson E, Boukhalfa A. Characterization of the local flame structure and the flame surface density for freely propagating premixed flames at various Lewis numbers. Combustion Science and Technology 2002; 174:143-79.
    [236]Kido H, Nakahara M, Nakashima K, Hashimoto J. Influence of local flame displacement velocity on turbulent burning velocity. Proceedings of the Combustion Institute 2003;29:1855-61.
    [237]Daniele S, Jansohn P, Boulouchos K. Flame front characteristic and turbulent flame speed of lean premixed syngas combustion at gas turbine relevant conditions. Proceedings of ASME Turbo Expo 2009, Orlando, Florida 2009;
    [238]Griebel P, Bombach R, Inauen A, Kreutner W, Scharen R. Structure and NO emission of turbulent high pressure lean premixed methane/air flames. Paul Scherrer Institut (PSI), General Energy, Combustion Research Laboratory, CH-5232 VILLIGEN, SWITZERLAND
    [239]岑可法,姚强,骆仲泱,高翔编著.燃烧理论与污染控制.北京:机械工业出版社,2004.
    [240]张会强,陈兴隆,周力行,陈昌麒.湍流燃烧数值模拟研究的综述.力学进展1999;29:567-75.
    [241]Shepherd IG, Cheng RK. The burning rate of premixed flames in moderate and intense turbulence. Combust Flame 2001;127:2066-75.
    [242]Lawn CJ, Schefer RW. Scaling of premixed turbulent flames in the corrugated regime. Combust Flame 2006; 146:180-99.
    [243]Haber LC, U.Vandsburger, Saunders WR, V.K. Khanna. An Examination of the Relationship Between Chemiluminescent Light Emissions and Heat Release Rate Under Non-Adiabatic Conditions. Proceedings of the International Gas Turbine Institute 2000;2000-GT-0121:1-8.
    [244]Peters N. Turbulent Combustion. Cambridge University Press,2000.
    [245]Griebel P, Bombach R, Inauen A, Kreutner W, Scharen R. Structure and NO emission of turbulent high pressure lean premixed methane/air flames. Sixth European Conference on Industrial Furnaces and Boilers, INFUB 2002;45-54.
    [246]Cheng RK, Littlejohn D, Strakey PA, Sidwell T. Laboratory investigations of a low-swirl injector with H-2 and CH4 at gas turbine conditions. Proceedings of the Combustion Institute 2009;32:3001-09.
    [247]Aleksandrov NL, Kindysheva SV, Kosarev IN, Starikovskaia SM, Starikovskii AY. Mechanism of ignition by non-equilibrium plasma. Proceedings of the Combustion Institute 2009;32:205-12.
    [248]Starik AM, Lukhovitskii BI, Naumov VV, Titova NS. On combustion enhancement mechanisms in the case of electrical-discharge-excited oxygen molecules. Tech. Phys. 2007;52:1281-90.
    [249]Ombrello T, Ju YG. Kinetic Ignition Enhancement of H2 Versus Fuel-Blended Air Diffusion Flames Using Nonequilibrium Plasma. IEEE Trans. Plasma Sci. 2008;36:2924-32.
    [250]Lee Y-H, Jung W-S, Choi Y-R, Oh J-S, Jang S-D, Son Y-G, Cho M-H, Namkung W, Koh D-J, Mok Y-S, Chung J-W. Application of Pulsed Corona Induced Plasma Chemical Process to an Industrial Incinerator. Environmental Science & Technology 2003;37:2563-67.
    [251]Kim H, Jun H, Sakaguchi Y, Minami W. Simultaneous oxidization of NOx and SO2 by a new non-thermal plasma reactor enhanced by catalyst and additive. Plasma Sci. Technol.2008; 10:53-56.
    [252]Wang Z, Zhou J, Zhu Y, Wen Z, Liu J, Cen K. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:Experimental results. Fuel Processing Technology 2007;88:817-23.
    [253]Kyung Bo K, Youngchul B, Moohyun C, Won N, Hamilton IP, Dong Nam S, Dong Jun K, Kyoung Tae K. Pulsed corona discharge for oxidation of gaseous elemental mercury. Applied Physics Letters 2008;92:251503.
    [254]Gordiets BF, Ferreira CM, Guerra VL, Loureiro J, Nahorny J, Pagnon D, Touzeau M, Vialle M. KINETIC-MODEL OF A LOW-PRESSURE N2-O2 FLOWING GLOW-DISCHARGE. IEEE Trans. Plasma Sci.1995;23:750-68.
    [255]Heimerl JM, Coffee TP. The detailed modeling of premixed, laminar steady-state flames. Ⅰ. Ozone. Combust Flame 1980;39:301-15.
    [256]Lewis B, Von Elbe G. Theory of flame propagation. Proceedings of the Symposium on Combustion 1948; 1-2:183-88.
    [257]McClurkin JD, Maier DE,2010. Half-life time of ozone as a function of air conditions and movement,10th International Working Conference on Stored Product Protection. Julius-Kuhn-Archiv, Portugal, Estoril Congress Center, pp.381-85.
    [258]孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术.北京:化学工业出版社,2002.
    [259]陈美娟.臭氧技术及其在水处理应用中的探讨.机电设备2002;4:28-31.
    [260]戚仕涛,汤黎明,吴敏,屈弘.臭氧水杀菌效果评价及其在医学上的应用.医疗设备信息2003;18:13-27.
    [261]刘春芳.臭氧高级氧化技术在废水处理中的研究进展.石化技术与应用2002;20:278-80.
    [262]王智化,周俊虎,魏林生,温正城,岑可法.用臭氧氧化技术同时脱除锅炉烟气中NOx及S02的试验研究.中国电机工程学报2007;27:1-5.
    [263]姜树栋,王智化,周俊虎,杨卫娟,岑可法.臭氧氧化烟气脱硝制硝酸的试验研究.燃烧科学与技术2010;16:57-61.
    [264]Mok YS. Absorption-reduction technique assisted by ozone injection and sodium sulfide for NOx removal from exhaust gas. Chem Eng J 2006; 118:63-67.
    [265]王智化.燃煤多种污染一体化协同脱除机理及反应射流直接数值模拟DNS的研究.浙江大学博士学位论文,2005.
    [266]魏林生,周俊虎,王智化,岑可法.臭氧氧化结合化学吸收同时脱硫脱硝的研究.动力工程2006;26:563-67.
    [267]Wang ZH, Jiang SD, Zhu YQ, Zhou JS, Zhou JH, Li ZS, Cen KF. Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment. Fuel Processing Technology 2010;91:1395-400.
    [268]姜树栋.利用臭氧及活性分子协同脱除多种污染物的实验及机理研究.浙江大学博士学位论文,2009.
    [269]Tachibana T, Hirata K, Nishida H, Osada H. Effect of ozone on combustion of compression ignition engines. Combust Flame 1991;85:515-19.
    [270]Decarne C, Bokova M, Abi-Aad E, Lunin VV, Aboukais A. Catalytic Combustion of Diesel Soot:The role of Ozone as Promoting Reactant. Journal of Electron Devices 2003;2:27-30.
    [271]Nomaguchi T, Koda S. Spark ignition of methane and methanol in ozonized air. Symposium (International) on Combustion 1989;22:1677-82.
    [272]Ombrello T, Won SH, Ju Y, Williams S. Flame propagation enhancement by plasma excitation of oxygen. Part Ⅰ:Effects of O3. Combust Flame 2010; 157:1906-15.
    [273]Kee RJ, Rupley FM, Miller JA, Coltrin ME, Grcar JF, Meeks E, Moffat HK, Lutz AE, Dixon-Lewis G, Smooke MD, Warnatz J, Evans GH, Larson RS, Mitchell RE, Petzold LR, Reynolds WC, M.Caracotsios, Stewart WE, Glarborg P, Wang C, Adigun O, Houf WG, Chou CP, Miller SF,2003. Chemkin Collection, Release 3.7.1, Reaction Design, Inc., San Diego, CA.
    [274]Qin Z, Lissianski VV, Yang H, Gardiner WC, Davis SG, Wang H. Combustion chemistry of propane:A case study of detailed reaction mechanism optimization. Proceedings of the Combustion Institute 2000;28:1663-69.
    [275]Chen XL, Patterson BD, Settersten TB. Time-domain investigation of OH ground-state energy transfer using picosecond two-color polarization spectroscopy. Chem Phys Lett 2004;388:358-62.
    [276]DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ. Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12. JPL Publication 97-4 1997; 1-266.
    [277]Howard CJ, Finlayson-Pitts BJ. Yields of HO2 in the reaction of hydrogen atoms with ozone. Journal of Chemical Physics 1980;72:3842-43.
    [278]Mansergas A, Anglada JM. The gas-phase reaction between O-3 and HO radical:A theoretical study. Chemphyschem 2007;8:1534-39.
    [279]Hatakeyama S, Leu MT. Rate Constants for Reactions between Atmospheric Reservoir Species.2. H2o. J Phys Chem-Us 1989;93:5784-89.
    [280]Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume Ⅰ-gas phase reactions of O-x, HOx, NOx and SOx species. Atmos Chem Phys 2004;4:1461-738.
    [281]Albaladejo J, Jimenez E, Notario A, Cabanas B, Martinez E. CH3O yield in the CH3+O-3 reaction using the LP/LIF technique at room temperature. J Phys Chem A 2002;106:2512-19.
    [282]van den Boom JDBJ, Konnov AA, Verhasselt AMHH, Kornilov VN, de Goey LPH, Nijmeijer H. The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames. Proceedings of the Combustion Institute 2009;32:1237-44.
    [283]Konnov AA. The effect of temperature on the adiabatic laminar burning velocities of CH4-air and H-2-air flames. Fuel 2010;89:2211-16.
    [284]Yan B, Liu C, Yu JF, Wu Y, Li B, Li ZS, Chen G, Bai XS, Alden M, Konnov AA. Experimental and modeling study of laminar burning velocity of biomass derived gases/air mixtures. Int J Hydrogen Energ 2010;doi:10.1016/j.ijhydene.2010.12.015.
    [285]Murai A, Yamabe C, Ihara S. A Study of Ozone Formation on the Surfaces of Electrodes. Ozone-Sci. Eng.2010;32:153-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700